organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(4-cyano­phen­yl)-6-methyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wudehong@seu.edu.cn

(Received 24 June 2009; accepted 26 June 2009; online 1 July 2009)

The asymmetric unit of the title compound, C15H15N3O2S, contains two independent mol­ecules corresponding to the R and S enanti­omers. The dihydro­pyrimidinone rings adopt a flattened boat conformation. One of the ethyl groups is disordered over two orientations with occupancy factors of 0.700 (7) and 0.300 (7). In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen-bonding inter­actions into one-dimensional chains along the c-axis direction. The chains are further connected by N—H⋯S hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthesis and the pharmaceutical applications of pyrimidinones, see: Atwal (1990[Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.]); Steele et al. (1998[Steele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315-9318.]); Manjula et al. (2004[Manjula, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665-2671.]); Matsuda & Hirao (1965[Matsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195-1197.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2S

  • Mr = 301.37

  • Triclinic, [P \overline 1]

  • a = 9.2938 (19) Å

  • b = 13.277 (3) Å

  • c = 14.512 (3) Å

  • α = 101.247 (17)°

  • β = 108.442 (13)°

  • γ = 107.89 (3)°

  • V = 1529.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 K

  • 0.50 × 0.48 × 0.47 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.898, Tmax = 0.904

  • 13899 measured reflections

  • 5958 independent reflections

  • 4590 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.151

  • S = 1.06

  • 5958 reflections

  • 386 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S2i 0.86 2.60 3.4612 (19) 174
N2—H2A⋯O3ii 0.86 2.14 2.843 (2) 138
N5—H5A⋯O1iii 0.86 2.01 2.852 (2) 165
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The common synthetic routes to the synthesis of dihydropyrimidinone derivatives generally involve multi-step transformations that are essentially based on the Biginelli condensation methodology (Steele et al., 1998). 3,4-Dihydropyrimidinones are compounds which have drawn wide-spread attention due to their pharmaceutical applications. A variety of dihydropyrimidinone derivatives have been screened for antihypertension (Atwal, 1990), antibacterial (Matsuda & Hirao, 1965) and calcium channel blocking (Manjula et al., 2004) activities.We report herein the crystal structure of the title compound, ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylate (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules corresponding to the R- and S-enantiomers. One ethyl group (C6–C7) is disordered over two orientations with refined occupancy factors of 0.700 (7) and 0.300 (7). The dihydropyrimidinone rings adopt a flattened boat conformation. In the crystal structure, the molecules are linked by intermolecular N—H···O hydrogen bonding interactions (Table 1) into one-dimensional chains along the c direction (Fig. 2). The chains are further connected by N—H···S hydrogen bonds forming a three-dimensional network.

Related literature top

For the synthesis and the pharmaceutical applications of pyrimidinones, see: Atwal (1990); Steele et al. (1998); Manjula et al. (2004); Matsuda & Hirao (1965).

Experimental top

The title compound was synthesized by refluxing 4-cyanobenzaldehyde (2 mmol), ethyl acetoacetate (2 mmol), thiourea (3 mmol) and NH4Cl (1 mmol) in acetic acid (10 ml) at 100 °C for 8 h. The reaction mixture was then allowed to stand at room temperature and the product formed was filtered, washed with ethanol followed by water and dried. Further purification was done by recrystallization from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution for 4 weeks.

Refinement top

H atoms were placed in calculated positions (N—H = 0.86 Å; C—H = 0.93–0.98 Å for Csp2 and Csp3 atoms, respectively), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride. The ethyl group labeled by C(6) and C(7) is disordered over two positions with occupancies of 0.700 (7) and 0.300 (7), and all disordered atoms were subjected to a rigid bond restraint.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the chains along [001] formed by N—H···O hydrogen bonds (dashed lines). The minor component of disorder and H atoms not involved in hydrogen bonds are omitted for clarity.
Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C15H15N3O2SZ = 4
Mr = 301.37F(000) = 632
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2938 (19) ÅCell parameters from 4203 reflections
b = 13.277 (3) Åθ = 2.4–27.5°
c = 14.512 (3) ŵ = 0.22 mm1
α = 101.247 (17)°T = 291 K
β = 108.442 (13)°Block, yellow
γ = 107.89 (3)°0.50 × 0.48 × 0.47 mm
V = 1529.6 (7) Å3
Data collection top
Rigaku SCXmini
diffractometer
5958 independent reflections
Radiation source: fine-focus sealed tube4590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.898, Tmax = 0.904l = 1717
13899 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.2227P]
where P = (Fo2 + 2Fc2)/3
5958 reflections(Δ/σ)max < 0.001
386 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H15N3O2Sγ = 107.89 (3)°
Mr = 301.37V = 1529.6 (7) Å3
Triclinic, P1Z = 4
a = 9.2938 (19) ÅMo Kα radiation
b = 13.277 (3) ŵ = 0.22 mm1
c = 14.512 (3) ÅT = 291 K
α = 101.247 (17)°0.50 × 0.48 × 0.47 mm
β = 108.442 (13)°
Data collection top
Rigaku SCXmini
diffractometer
5958 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4590 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.904Rint = 0.029
13899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
5958 reflectionsΔρmin = 0.30 e Å3
386 parameters
Special details top

Experimental. 1H-NMR (d4-Methanol) δ (p.p.m.): 7.73 (d, 2H, J = 8 Hz), 7.50 (d, 2H, J = 8 Hz), 5.40 (s, 1H), 4.11 (q, 2H, J = 7 Hz), 2.37 (s, 3H), 1.19(t, 3H, J = 7 Hz). 13 C-NMR (d4-Methanol) δ(p.p.m.): 13.08 (–CH2—CH3), 16.33 (–CH3), 54.66 (C*), 60.03 (–CH2—CH3), 100.73 (C—C=O), 111.32 (C—CN), 118.08 (–CN), 127.46, 132.29 (CH in phenyl), 145.42 (C in phenyl), 148.56 (CH3—C—NH–), 165.53 (C=O), 175.35 (C=S).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2143 (2)0.01219 (17)0.21806 (15)0.0419 (4)
C20.2370 (2)0.03499 (16)0.06791 (14)0.0398 (4)
C30.2591 (3)0.0104 (2)0.02697 (17)0.0561 (6)
H3A0.24650.03590.06960.084*
H3B0.17760.08520.06390.084*
H3C0.36750.01100.00840.084*
C40.2051 (2)0.12633 (16)0.09358 (13)0.0374 (4)
C50.1790 (3)0.19201 (18)0.02444 (15)0.0454 (5)
C60.1450 (8)0.3589 (6)0.0092 (7)0.082 (2)0.700 (7)
H6A0.04350.32710.05230.098*0.700 (7)
H6B0.23750.37680.01080.098*0.700 (7)
C70.1533 (8)0.4606 (4)0.0772 (5)0.1006 (17)0.700 (7)
H7A0.14620.51340.04100.151*0.700 (7)
H7B0.25600.49300.13660.151*0.700 (7)
H7C0.06320.44150.09830.151*0.700 (7)
C80.2021 (2)0.16692 (16)0.19771 (13)0.0368 (4)
H8A0.10930.18990.18840.044*
C90.3609 (2)0.26699 (16)0.27233 (14)0.0387 (4)
C100.5112 (3)0.25592 (17)0.30151 (16)0.0474 (5)
H10A0.51520.18810.27350.057*
C110.6553 (3)0.34466 (18)0.37184 (17)0.0510 (5)
H11A0.75480.33570.39220.061*
C120.6507 (3)0.44634 (17)0.41161 (15)0.0461 (5)
C130.8014 (3)0.53885 (19)0.48441 (17)0.0554 (6)
C140.5017 (3)0.45957 (19)0.38096 (17)0.0554 (6)
H14A0.49890.52860.40640.067*
C150.3576 (3)0.36968 (18)0.31243 (16)0.0495 (5)
H15A0.25780.37820.29310.059*
C160.5233 (3)0.77227 (17)0.18205 (15)0.0451 (5)
C170.5666 (3)0.77320 (17)0.35679 (15)0.0436 (5)
C180.4795 (3)0.7769 (2)0.42837 (19)0.0603 (6)
H18A0.55490.79010.49670.091*
H18B0.38730.70690.40600.091*
H18C0.44080.83620.42800.091*
C190.7254 (2)0.78795 (16)0.38041 (14)0.0384 (4)
C200.8419 (3)0.82399 (17)0.48790 (15)0.0439 (5)
C211.1249 (3)0.9003 (2)0.60221 (18)0.0630 (6)
H21A1.10710.84460.63640.076*
H21B1.12110.96690.64120.076*
C221.2875 (3)0.9271 (3)0.5945 (3)0.0823 (9)
H22A1.37410.95630.66210.123*
H22B1.30320.98180.56010.123*
H22C1.29000.86040.55620.123*
C230.7893 (2)0.77481 (16)0.29625 (14)0.0382 (4)
H23A0.90010.83370.32160.046*
C240.8018 (2)0.66181 (16)0.26707 (14)0.0381 (4)
C250.9496 (3)0.65221 (18)0.31451 (17)0.0488 (5)
H25A1.04060.71510.36260.059*
C260.9640 (3)0.5505 (2)0.29138 (18)0.0556 (6)
H26A1.06410.54550.32380.067*
C270.8294 (3)0.45617 (18)0.21999 (16)0.0504 (5)
C280.6818 (3)0.4646 (2)0.17110 (18)0.0591 (6)
H28A0.59130.40170.12260.071*
C290.6684 (3)0.56674 (19)0.19433 (17)0.0538 (5)
H29A0.56870.57180.16080.065*
C300.8447 (4)0.3498 (2)0.20089 (19)0.0659 (7)
C6'0.070 (2)0.3356 (16)0.0032 (18)0.082 (2)0.300 (7)
H6'A0.03240.29600.07560.098*0.300 (7)
H6'B0.02020.34770.01050.098*0.300 (7)
C7'0.2159 (17)0.4385 (11)0.0334 (12)0.1006 (17)0.300 (7)
H7'A0.19320.48600.00630.151*0.300 (7)
H7'B0.30570.42120.02640.151*0.300 (7)
H7'C0.24530.47620.10430.151*0.300 (7)
N10.2529 (2)0.02691 (14)0.13483 (13)0.0448 (4)
H1A0.28960.07790.12280.054*
N20.1754 (2)0.07505 (14)0.24092 (12)0.0416 (4)
H2A0.13100.07790.28460.050*
N30.9225 (3)0.60999 (18)0.54293 (17)0.0738 (6)
N40.4650 (2)0.75428 (16)0.25562 (13)0.0516 (4)
H4A0.36000.73000.23850.062*
N50.6813 (2)0.79053 (14)0.20621 (12)0.0441 (4)
H5A0.72420.81350.16580.053*
N60.8613 (4)0.2675 (2)0.1898 (2)0.0943 (9)
O10.1803 (2)0.17349 (17)0.06000 (12)0.0695 (5)
O20.1501 (3)0.27880 (16)0.06545 (13)0.0776 (6)
O30.8045 (2)0.82617 (18)0.56068 (12)0.0720 (5)
O40.99902 (18)0.85749 (13)0.49825 (11)0.0513 (4)
S10.21451 (8)0.10085 (6)0.28636 (5)0.0632 (2)
S20.39778 (8)0.77075 (5)0.06890 (4)0.0592 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (10)0.0473 (11)0.0412 (10)0.0142 (8)0.0170 (9)0.0176 (9)
C20.0396 (10)0.0435 (10)0.0339 (9)0.0131 (8)0.0160 (8)0.0111 (8)
C30.0722 (15)0.0587 (13)0.0437 (11)0.0300 (12)0.0304 (11)0.0110 (10)
C40.0373 (9)0.0438 (10)0.0305 (9)0.0142 (8)0.0148 (8)0.0124 (8)
C50.0460 (11)0.0568 (12)0.0369 (10)0.0220 (9)0.0173 (9)0.0190 (9)
C60.119 (6)0.075 (4)0.075 (3)0.057 (5)0.035 (5)0.048 (3)
C70.114 (4)0.074 (3)0.136 (5)0.051 (3)0.050 (3)0.055 (3)
C80.0386 (10)0.0442 (10)0.0329 (9)0.0192 (8)0.0169 (8)0.0148 (8)
C90.0448 (10)0.0440 (10)0.0309 (9)0.0189 (9)0.0181 (8)0.0131 (8)
C100.0467 (11)0.0404 (10)0.0530 (12)0.0197 (9)0.0173 (10)0.0116 (9)
C110.0435 (11)0.0491 (12)0.0551 (13)0.0174 (10)0.0147 (10)0.0161 (10)
C120.0517 (12)0.0451 (11)0.0353 (10)0.0122 (9)0.0166 (9)0.0130 (8)
C130.0643 (14)0.0469 (12)0.0485 (12)0.0175 (11)0.0198 (12)0.0145 (10)
C140.0690 (15)0.0440 (12)0.0513 (12)0.0263 (11)0.0225 (11)0.0079 (9)
C150.0513 (12)0.0517 (12)0.0448 (11)0.0264 (10)0.0163 (10)0.0094 (9)
C160.0611 (13)0.0422 (11)0.0392 (10)0.0269 (10)0.0216 (10)0.0157 (8)
C170.0533 (12)0.0497 (11)0.0409 (10)0.0265 (9)0.0260 (9)0.0204 (9)
C180.0621 (14)0.0887 (18)0.0607 (14)0.0418 (13)0.0427 (12)0.0379 (13)
C190.0518 (11)0.0390 (10)0.0373 (10)0.0246 (9)0.0247 (9)0.0166 (8)
C200.0581 (12)0.0448 (11)0.0386 (10)0.0285 (10)0.0237 (10)0.0138 (8)
C210.0676 (15)0.0553 (14)0.0467 (12)0.0228 (12)0.0068 (11)0.0058 (10)
C220.0594 (16)0.0692 (17)0.095 (2)0.0237 (13)0.0063 (15)0.0221 (15)
C230.0468 (10)0.0412 (10)0.0361 (9)0.0211 (8)0.0222 (8)0.0168 (8)
C240.0490 (11)0.0434 (10)0.0343 (9)0.0236 (9)0.0247 (9)0.0161 (8)
C250.0502 (12)0.0504 (12)0.0488 (12)0.0250 (10)0.0195 (10)0.0152 (9)
C260.0582 (13)0.0606 (14)0.0585 (13)0.0369 (12)0.0233 (11)0.0197 (11)
C270.0710 (14)0.0501 (12)0.0446 (11)0.0367 (11)0.0286 (11)0.0159 (9)
C280.0675 (15)0.0488 (13)0.0532 (13)0.0262 (11)0.0187 (12)0.0043 (10)
C290.0532 (12)0.0535 (12)0.0537 (13)0.0290 (10)0.0160 (11)0.0114 (10)
C300.0886 (18)0.0633 (15)0.0518 (13)0.0462 (14)0.0248 (13)0.0111 (11)
C6'0.119 (6)0.075 (4)0.075 (3)0.057 (5)0.035 (5)0.048 (3)
C7'0.114 (4)0.074 (3)0.136 (5)0.051 (3)0.050 (3)0.055 (3)
N10.0559 (10)0.0441 (9)0.0463 (9)0.0253 (8)0.0274 (8)0.0189 (7)
N20.0458 (9)0.0482 (9)0.0372 (8)0.0181 (8)0.0237 (7)0.0162 (7)
N30.0695 (14)0.0556 (12)0.0631 (13)0.0094 (11)0.0093 (12)0.0049 (10)
N40.0486 (10)0.0679 (12)0.0459 (10)0.0265 (9)0.0219 (8)0.0240 (9)
N50.0591 (10)0.0524 (10)0.0398 (9)0.0317 (8)0.0288 (8)0.0238 (8)
N60.134 (2)0.0732 (16)0.0725 (15)0.0687 (17)0.0222 (16)0.0050 (12)
O10.0948 (13)0.1007 (14)0.0499 (9)0.0593 (11)0.0437 (9)0.0432 (9)
O20.1407 (18)0.0738 (12)0.0546 (10)0.0714 (13)0.0467 (11)0.0369 (9)
O30.0800 (12)0.1160 (15)0.0370 (8)0.0530 (11)0.0314 (8)0.0239 (9)
O40.0519 (9)0.0556 (9)0.0404 (8)0.0189 (7)0.0153 (7)0.0122 (6)
S10.0743 (4)0.0735 (4)0.0747 (4)0.0400 (3)0.0448 (4)0.0500 (4)
S20.0743 (4)0.0698 (4)0.0399 (3)0.0421 (3)0.0167 (3)0.0196 (3)
Geometric parameters (Å, º) top
C1—N21.329 (3)C18—H18A0.9600
C1—N11.361 (2)C18—H18B0.9600
C1—S11.680 (2)C18—H18C0.9600
C2—C41.346 (3)C19—C201.469 (3)
C2—N11.391 (3)C19—C231.521 (2)
C2—C31.494 (3)C20—O31.210 (2)
C3—H3A0.9600C20—O41.337 (3)
C3—H3B0.9600C21—O41.452 (3)
C3—H3C0.9600C21—C221.489 (4)
C4—C51.464 (3)C21—H21A0.9700
C4—C81.514 (2)C21—H21B0.9700
C5—O11.206 (2)C22—H22A0.9600
C5—O21.333 (3)C22—H22B0.9600
C6—O21.464 (8)C22—H22C0.9600
C6—C71.473 (9)C23—N51.471 (2)
C6—H6A0.9700C23—C241.528 (3)
C6—H6B0.9700C23—H23A0.9800
C7—H7A0.9600C24—C251.386 (3)
C7—H7B0.9600C24—C291.391 (3)
C7—H7C0.9600C25—C261.385 (3)
C8—N21.467 (2)C25—H25A0.9300
C8—C91.529 (3)C26—C271.385 (3)
C8—H8A0.9800C26—H26A0.9300
C9—C151.388 (3)C27—C281.381 (3)
C9—C101.389 (3)C27—C301.445 (3)
C10—C111.386 (3)C28—C291.385 (3)
C10—H10A0.9300C28—H28A0.9300
C11—C121.380 (3)C29—H29A0.9300
C11—H11A0.9300C30—N61.137 (3)
C12—C141.391 (3)C6'—C7'1.453 (16)
C12—C131.445 (3)C6'—O21.51 (2)
C13—N31.144 (3)C6'—H6'A0.9700
C14—C151.386 (3)C6'—H6'B0.9700
C14—H14A0.9300C7'—H7'A0.9600
C15—H15A0.9300C7'—H7'B0.9600
C16—N51.327 (3)C7'—H7'C0.9600
C16—N41.370 (3)N1—H1A0.8600
C16—S21.679 (2)N2—H2A0.8600
C17—C191.345 (3)N4—H4A0.8600
C17—N41.394 (3)N5—H5A0.8600
C17—C181.508 (3)
N2—C1—N1116.14 (17)C20—C19—C23118.95 (17)
N2—C1—S1122.57 (15)O3—C20—O4122.34 (19)
N1—C1—S1121.29 (16)O3—C20—C19125.4 (2)
C4—C2—N1118.89 (17)O4—C20—C19112.29 (16)
C4—C2—C3127.33 (19)O4—C21—C22107.1 (2)
N1—C2—C3113.77 (18)O4—C21—H21A110.3
C2—C3—H3A109.5C22—C21—H21A110.3
C2—C3—H3B109.5O4—C21—H21B110.3
H3A—C3—H3B109.5C22—C21—H21B110.3
C2—C3—H3C109.5H21A—C21—H21B108.5
H3A—C3—H3C109.5C21—C22—H22A109.5
H3B—C3—H3C109.5C21—C22—H22B109.5
C2—C4—C5121.66 (17)H22A—C22—H22B109.5
C2—C4—C8120.44 (17)C21—C22—H22C109.5
C5—C4—C8117.85 (17)H22A—C22—H22C109.5
O1—C5—O2121.6 (2)H22B—C22—H22C109.5
O1—C5—C4126.9 (2)N5—C23—C19109.13 (15)
O2—C5—C4111.51 (17)N5—C23—C24110.81 (15)
O2—C6—C7108.0 (6)C19—C23—C24112.27 (15)
O2—C6—H6A110.1N5—C23—H23A108.2
C7—C6—H6A110.1C19—C23—H23A108.2
O2—C6—H6B110.1C24—C23—H23A108.2
C7—C6—H6B110.1C25—C24—C29118.28 (19)
H6A—C6—H6B108.4C25—C24—C23119.63 (18)
C6—C7—H7A109.5C29—C24—C23122.09 (18)
C6—C7—H7B109.5C26—C25—C24121.0 (2)
H7A—C7—H7B109.5C26—C25—H25A119.5
C6—C7—H7C109.5C24—C25—H25A119.5
H7A—C7—H7C109.5C25—C26—C27120.0 (2)
H7B—C7—H7C109.5C25—C26—H26A120.0
N2—C8—C4109.60 (15)C27—C26—H26A120.0
N2—C8—C9109.97 (15)C28—C27—C26119.6 (2)
C4—C8—C9112.24 (15)C28—C27—C30121.2 (2)
N2—C8—H8A108.3C26—C27—C30119.1 (2)
C4—C8—H8A108.3C27—C28—C29120.0 (2)
C9—C8—H8A108.3C27—C28—H28A120.0
C15—C9—C10118.92 (18)C29—C28—H28A120.0
C15—C9—C8120.95 (17)C28—C29—C24121.0 (2)
C10—C9—C8120.14 (17)C28—C29—H29A119.5
C11—C10—C9120.83 (19)C24—C29—H29A119.5
C11—C10—H10A119.6N6—C30—C27177.3 (3)
C9—C10—H10A119.6C7'—C6'—O295.9 (11)
C12—C11—C10119.8 (2)C7'—C6'—H6'A112.6
C12—C11—H11A120.1O2—C6'—H6'A112.6
C10—C11—H11A120.1C7'—C6'—H6'B112.6
C11—C12—C14119.99 (19)O2—C6'—H6'B112.6
C11—C12—C13119.6 (2)H6'A—C6'—H6'B110.1
C14—C12—C13120.4 (2)C6'—C7'—H7'A109.5
N3—C13—C12178.1 (3)C6'—C7'—H7'B109.5
C15—C14—C12119.8 (2)H7'A—C7'—H7'B109.5
C15—C14—H14A120.1C6'—C7'—H7'C109.5
C12—C14—H14A120.1H7'A—C7'—H7'C109.5
C14—C15—C9120.6 (2)H7'B—C7'—H7'C109.5
C14—C15—H15A119.7C1—N1—C2124.43 (17)
C9—C15—H15A119.7C1—N1—H1A117.8
N5—C16—N4116.15 (18)C2—N1—H1A117.8
N5—C16—S2123.41 (16)C1—N2—C8125.33 (15)
N4—C16—S2120.44 (17)C1—N2—H2A117.3
C19—C17—N4119.20 (17)C8—N2—H2A117.3
C19—C17—C18127.79 (19)C16—N4—C17123.55 (18)
N4—C17—C18113.00 (18)C16—N4—H4A118.2
C17—C18—H18A109.5C17—N4—H4A118.2
C17—C18—H18B109.5C16—N5—C23125.58 (16)
H18A—C18—H18B109.5C16—N5—H5A117.2
C17—C18—H18C109.5C23—N5—H5A117.2
H18A—C18—H18C109.5C5—O2—C6116.0 (4)
H18B—C18—H18C109.5C5—O2—C6'119.6 (10)
C17—C19—C20120.67 (17)C20—O4—C21116.71 (17)
C17—C19—C23120.26 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S2i0.862.603.4612 (19)174
N2—H2A···O3ii0.862.142.843 (2)138
N5—H5A···O1iii0.862.012.852 (2)165
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H15N3O2S
Mr301.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.2938 (19), 13.277 (3), 14.512 (3)
α, β, γ (°)101.247 (17), 108.442 (13), 107.89 (3)
V3)1529.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.48 × 0.47
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.898, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
13899, 5958, 4590
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.151, 1.06
No. of reflections5958
No. of parameters386
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S2i0.862.603.4612 (19)174.3
N2—H2A···O3ii0.862.142.843 (2)138.4
N5—H5A···O1iii0.862.012.852 (2)165.2
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Jiangsu Planned Projects for Postdoctoral Research Funds (grant No. 0802003B) and Professor Dr Rengen Xiong.

References

First citationAtwal, K. S. (1990). J. Med. Chem. 33, 1510–1515.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationManjula, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665–2671.  Web of Science CrossRef CAS Google Scholar
First citationMatsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195–1197.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315–9318.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds