metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[zinc(II)-μ-aqua-κ2O:O-bis­­(μ-quinoline-4-carboxyl­ato-κ2O:O′)]

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: mww_514730@163.com

(Received 26 June 2009; accepted 1 July 2009; online 4 July 2009)

The asymmetric unit of the title complex, [Zn(C10H6NO2)2(H2O)]n, consists of one quinoline-4-carboxyl­ate anion, half of a Zn2+ cation and half of a coordinated water mol­ecule. The cation and the water O atom have crystallographically imposed inversion and twofold rotation symmetry, respectively. The metal centre displays an elongated ZnO6 octa­hedral coordination geometry provided by the O atoms of four anions at the equatorial plane and two axial water mol­ecules. Each anion and water mol­ecule act as bridges between ZnII cations, forming a polymeric chain parallel to [001]. The chains are further linked into a three-dimensional framework through O—H⋯N hydrogen bonds.

Related literature

For the coordination chemistry of transition metal complexes with quinoline-4-carboxyl­ate, see: Bu et al. (2004[Bu, X.-H., Tong, M.-L., Chang, H.-C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192-195.], 2005[Bu, X.-H., Tong, M.-L., Xie, Y.-B., Li, J.-R., Chang, H.-C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837-9846.]); Xiong et al. (2000[Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183-4186.]); Chen et al. (2002[Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 35-37.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H6NO2)2(H2O)]

  • Mr = 427.72

  • Monoclinic, C 2/c

  • a = 14.929 (2) Å

  • b = 14.4025 (13) Å

  • c = 7.5428 (11) Å

  • β = 91.961 (6)°

  • V = 1620.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.635, Tmax = 0.732

  • 5552 measured reflections

  • 1831 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.09

  • 1831 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H7⋯N1i 0.90 1.89 2.7920 (15) 174
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, new coordination compounds based on transition metals and quinoline-4-carboxylic acid have attracted much attention because of the role of non-covalent supramolecular interactions such as hydrogen bonding or π-π conjugate effect (Bu et al. 2005). However, the use of quinoline-4-carboxylic acid for the construction of metal-organic frameworks has not been well documented yet (Bu et al., 2004; Xiong et al., 2000; Chen et al., 2002).

The asymmetric unit of the title complex polymer (Fig. 1) consists of one quinoline-4-carboxylate anion, half of a zinc(II) cation and half of a coordinated water molecule. The cation and the water oxygen atom have crystallographically imposed inversion and twofold rotation symmetry, respectively. The geometry around the zinc(II) metal centre can be best described as elongated octahedral, with four oxygen atoms from four independent quinoline-4-carboxylate anions at the equatorial plane and two oxygen atoms from two H2O molecules at the axial position. Each quinoline-4-carboxylate anion adopts an O,O'-bidentate bridging mode. Adjacent zinc(II) cations are bridged by the quinoline-4-carboxylate ligands and water molecules, forming a chain parallel to [001] (Fig. 2). The chains are further linked into a three-dimensional network (Fig. 3) by O—H···N hydrogen bonds (Table 1).

Related literature top

For the coordination chemistry of transition metal complexes with quinoline-4-carboxylate, see: Bu et al. (2004, 2005); Xiong et al. (2000); Chen et al. (2002).

Experimental top

The title compound was synthesized by the solvothermal reaction of Zn(NO3)2.6H2O (0.2 mmol, 0.0595 g), 4-quinolinecarboxylic acid (0.6 mmol, 0.1039 g) and C2H5OH/H2O (4:1 v/v; 5 ml) in a Teflon-lined autoclave at 180°C for 3 days. After the reaction autoclave was slowly cooled to room temperature for 24 h, light yellow block single crystals suitable for X-ray diffraction analysis were obtained, isolated by filtration and washed with water.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.96 Å, O—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing the polymeric chain parallel to [001]. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the c axis. N—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
catena-Poly[zinc(II)-µ-aqua-κ2O:O-bis(µ-quinoline- 4-carboxylato-κ2O:O')] top
Crystal data top
[Zn(C10H6NO2)2(H2O)]F(000) = 872
Mr = 427.72Dx = 1.753 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 30 reflections
a = 14.929 (2) Åθ = 3.3–27.5°
b = 14.4025 (13) ŵ = 1.56 mm1
c = 7.5428 (11) ÅT = 293 K
β = 91.961 (6)°Block, light yellow
V = 1620.8 (4) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1831 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1819
Tmin = 0.635, Tmax = 0.732k = 1518
5552 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.5104P]
where P = (Fo2 + 2Fc2)/3
1831 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Zn(C10H6NO2)2(H2O)]V = 1620.8 (4) Å3
Mr = 427.72Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.929 (2) ŵ = 1.56 mm1
b = 14.4025 (13) ÅT = 293 K
c = 7.5428 (11) Å0.30 × 0.30 × 0.20 mm
β = 91.961 (6)°
Data collection top
Rigaku SCXmini
diffractometer
1831 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1741 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.732Rint = 0.030
5552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
1831 reflectionsΔρmin = 0.82 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.01513 (10)
O10.40680 (9)0.40753 (9)0.38283 (15)0.0330 (3)
O20.39589 (8)0.42662 (9)0.08731 (15)0.0325 (3)
O30.50000.58494 (9)0.25000.0162 (3)
N10.14620 (8)0.20508 (9)0.23221 (16)0.0219 (3)
C10.22399 (11)0.18428 (10)0.3075 (2)0.0224 (3)
C20.29962 (10)0.24374 (10)0.3085 (2)0.0214 (3)
C30.29358 (10)0.32726 (10)0.22272 (18)0.0179 (3)
C40.19859 (11)0.43283 (11)0.0286 (2)0.0266 (3)
C50.11735 (13)0.45081 (12)0.0528 (2)0.0342 (4)
C60.04541 (12)0.38852 (14)0.0379 (2)0.0353 (4)
C70.05608 (11)0.30808 (13)0.0555 (2)0.0293 (3)
C80.13929 (10)0.28722 (10)0.14128 (19)0.0200 (3)
C90.21217 (9)0.35055 (10)0.13033 (18)0.0185 (3)
C100.37322 (9)0.39320 (10)0.23183 (19)0.0193 (3)
H10.22990.12550.36480.027*
H20.35430.22520.36970.026*
H30.24690.47540.01820.032*
H40.10920.50630.12170.041*
H50.01150.40340.09290.043*
H60.00730.26550.06190.035*
H70.54540.62640.25010.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01229 (15)0.01835 (14)0.01481 (15)0.00068 (7)0.00133 (9)0.00354 (7)
O10.0360 (7)0.0416 (7)0.0210 (6)0.0229 (5)0.0037 (5)0.0001 (5)
O20.0303 (6)0.0465 (7)0.0211 (5)0.0222 (5)0.0049 (5)0.0001 (5)
O30.0148 (6)0.0152 (6)0.0186 (7)0.0000.0000 (5)0.000
N10.0216 (6)0.0240 (6)0.0203 (6)0.0082 (5)0.0032 (5)0.0022 (5)
C10.0273 (8)0.0196 (6)0.0205 (7)0.0041 (6)0.0028 (6)0.0014 (5)
C20.0194 (7)0.0261 (7)0.0186 (6)0.0026 (5)0.0004 (5)0.0005 (5)
C30.0182 (7)0.0212 (6)0.0144 (6)0.0058 (5)0.0043 (5)0.0042 (5)
C40.0309 (8)0.0220 (7)0.0273 (7)0.0018 (6)0.0061 (6)0.0004 (6)
C50.0382 (10)0.0338 (8)0.0309 (9)0.0100 (7)0.0044 (7)0.0077 (7)
C60.0255 (8)0.0503 (10)0.0299 (9)0.0083 (7)0.0008 (7)0.0037 (8)
C70.0192 (7)0.0421 (9)0.0268 (8)0.0034 (6)0.0018 (6)0.0010 (7)
C80.0185 (7)0.0250 (7)0.0167 (6)0.0040 (5)0.0030 (5)0.0026 (5)
C90.0196 (7)0.0199 (6)0.0162 (6)0.0029 (5)0.0039 (5)0.0037 (5)
C100.0171 (7)0.0217 (6)0.0193 (7)0.0065 (5)0.0023 (5)0.0032 (5)
Geometric parameters (Å, º) top
Zn1—O2i2.0090 (11)C2—C31.367 (2)
Zn1—O2ii2.0090 (11)C2—H20.96
Zn1—O1iii2.0991 (11)C3—C91.420 (2)
Zn1—O12.0991 (11)C3—C101.5213 (19)
Zn1—O32.2478 (7)C4—C51.365 (3)
Zn1—O3iii2.2478 (7)C4—C91.422 (2)
O1—C101.2459 (18)C4—H30.95
O2—C101.2489 (18)C5—C61.407 (3)
O2—Zn1ii2.0090 (11)C5—H40.96
O3—Zn1ii2.2478 (7)C6—C71.362 (3)
O3—H70.90C6—H50.96
N1—C11.310 (2)C7—C81.413 (2)
N1—C81.3695 (19)C7—H60.95
C1—C21.417 (2)C8—C91.4244 (19)
C1—H10.95
O2i—Zn1—O2ii180.0C1—C2—H2119.9
O2i—Zn1—O1iii92.14 (6)C2—C3—C9118.77 (13)
O2ii—Zn1—O1iii87.86 (6)C2—C3—C10119.28 (13)
O2i—Zn1—O187.86 (6)C9—C3—C10121.94 (13)
O2ii—Zn1—O192.14 (6)C5—C4—C9120.58 (15)
O1iii—Zn1—O1180.0C5—C4—H3120.3
O2i—Zn1—O390.62 (4)C9—C4—H3119.1
O2ii—Zn1—O389.38 (4)C4—C5—C6120.78 (16)
O1iii—Zn1—O389.36 (4)C4—C5—H4119.8
O1—Zn1—O390.64 (4)C6—C5—H4119.4
O2i—Zn1—O3iii89.38 (4)C7—C6—C5120.50 (16)
O2ii—Zn1—O3iii90.62 (4)C7—C6—H5120.1
O1iii—Zn1—O3iii90.64 (4)C5—C6—H5119.4
O1—Zn1—O3iii89.36 (4)C6—C7—C8120.20 (15)
O3—Zn1—O3iii180.00 (6)C6—C7—H6119.8
C10—O1—Zn1136.90 (10)C8—C7—H6120.0
C10—O2—Zn1ii136.44 (10)N1—C8—C7117.58 (13)
Zn1ii—O3—Zn1114.05 (6)N1—C8—C9122.53 (13)
Zn1ii—O3—H7109.9C7—C8—C9119.90 (14)
Zn1—O3—H7112.4C3—C9—C4124.42 (13)
C1—N1—C8117.71 (12)C3—C9—C8117.57 (13)
N1—C1—C2123.96 (14)C4—C9—C8118.01 (14)
N1—C1—H1117.8O1—C10—O2128.43 (13)
C2—C1—H1118.2O1—C10—C3115.72 (13)
C3—C2—C1119.31 (14)O2—C10—C3115.84 (13)
C3—C2—H2120.8
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H7···N1iv0.901.892.7920 (15)174
Symmetry code: (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H6NO2)2(H2O)]
Mr427.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.929 (2), 14.4025 (13), 7.5428 (11)
β (°) 91.961 (6)
V3)1620.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.635, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
5552, 1831, 1741
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.09
No. of reflections1831
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.82

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H7···N1i0.901.892.7920 (15)174
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the start-up fund of Southeast University.

References

First citationBu, X.-H., Tong, M.-L., Chang, H.-C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationBu, X.-H., Tong, M.-L., Xie, Y.-B., Li, J.-R., Chang, H.-C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183–4186.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds