organic compounds
(E)-Methyl 2,6-dichloro-N-cyanobenzimidate
aKey Laboratory of Drug Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China, and bDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: hwc@scu.edu.cn
The molecule of the title compound, C9H6Cl2N2O, displays an E conformation about the C=N double bond. The N-cyanoimidate fragment is substantially planar [maximum deviation 0.010 (4) Å] and perpendicular to the benzene ring [dihedral angle = 88.50 (14)°]. In the crystal packing, intermolecular Cl⋯Cl interactions [3.490 (2) Å] are observed.
Related literature
For the synthesis of substituted cyanoimidates, see: Huffman & Schaefer (1963). For the crystal structures of compounds containing the N-cyanoimidate fragment, see: Zöllinger et al. (2006); Ponomareva et al. (1995); Jäger et al. (1996). For details of halogen⋯halogen interactions, see: Desiraju & Parthasarathy (1989).
Experimental
Crystal data
|
Data collection: DIFRAC (Gabe & White, 1993); cell DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809026452/rz2343sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026452/rz2343Isup2.hkl
A mixture of 2,6-dichlorobenzaldehyde (1 mmol), H2NCN (3 equiv) and t-BuONa (3 equiv) in MeOH (8 ml) was stirred for 30 min at room temperature, then N-bromosuccinimide (NBS; 3 equiv) was added. After stirring for 12 h at 323 K, the mixture was purified by flash
on silica gel with petroleum ether/ethyl acetate (100:1–25:1 v/v) as to give the title compound in 84% yield. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether/acetyl acetate solution (25:1 v/v) at room temperature.H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.
Data collection: DIFRAC (Gabe & White, 1993); cell
DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H6Cl2N2O | F(000) = 928 |
Mr = 229.06 | Dx = 1.430 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 28 reflections |
a = 21.199 (4) Å | θ = 4.8–9.2° |
b = 8.548 (3) Å | µ = 0.58 mm−1 |
c = 15.005 (4) Å | T = 291 K |
β = 128.49 (4)° | Block, colourless |
V = 2128.2 (16) Å3 | 0.52 × 0.46 × 0.28 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | 1167 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
Graphite monochromator | θmax = 25.5°, θmin = 2.5° |
ω/2θ scans | h = −25→17 |
Absorption correction: for a sphere (WinGX; Farrugia, 1999) | k = 0→10 |
Tmin = 0.754, Tmax = 0.855 | l = −18→18 |
2116 measured reflections | 3 standard reflections every 120 reflections |
1948 independent reflections | intensity decay: 3.8% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.170 | w = 1/[σ2(Fo2) + (0.1053P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1948 reflections | Δρmax = 0.30 e Å−3 |
129 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0069 (15) |
C9H6Cl2N2O | V = 2128.2 (16) Å3 |
Mr = 229.06 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 21.199 (4) Å | µ = 0.58 mm−1 |
b = 8.548 (3) Å | T = 291 K |
c = 15.005 (4) Å | 0.52 × 0.46 × 0.28 mm |
β = 128.49 (4)° |
Enraf–Nonius CAD-4 diffractometer | 1167 reflections with I > 2σ(I) |
Absorption correction: for a sphere (WinGX; Farrugia, 1999) | Rint = 0.016 |
Tmin = 0.754, Tmax = 0.855 | 3 standard reflections every 120 reflections |
2116 measured reflections | intensity decay: 3.8% |
1948 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.30 e Å−3 |
1948 reflections | Δρmin = −0.32 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.54862 (5) | 0.67130 (14) | 0.65350 (8) | 0.0881 (5) | |
Cl2 | 0.24528 (6) | 0.72469 (18) | 0.26898 (9) | 0.1121 (6) | |
O1 | 0.36902 (14) | 0.4760 (2) | 0.5066 (2) | 0.0672 (7) | |
N1 | 0.35148 (15) | 0.7020 (3) | 0.5663 (2) | 0.0563 (7) | |
N2 | 0.3600 (2) | 0.9913 (4) | 0.5784 (3) | 0.0866 (10) | |
C1 | 0.40050 (16) | 0.7037 (3) | 0.4547 (2) | 0.0472 (7) | |
C2 | 0.48117 (18) | 0.7300 (3) | 0.5135 (3) | 0.0545 (8) | |
C3 | 0.5094 (2) | 0.8077 (4) | 0.4632 (3) | 0.0675 (9) | |
H3 | 0.5642 | 0.8259 | 0.5039 | 0.081* | |
C4 | 0.4550 (3) | 0.8571 (4) | 0.3523 (3) | 0.0745 (10) | |
H4 | 0.4735 | 0.9086 | 0.3179 | 0.089* | |
C5 | 0.3742 (2) | 0.8318 (4) | 0.2917 (3) | 0.0750 (10) | |
H5 | 0.3379 | 0.8664 | 0.2169 | 0.090* | |
C6 | 0.3471 (2) | 0.7542 (4) | 0.3432 (3) | 0.0613 (9) | |
C7 | 0.37157 (16) | 0.6295 (3) | 0.5129 (2) | 0.0486 (7) | |
C8 | 0.3474 (3) | 0.3932 (4) | 0.5685 (4) | 0.0930 (13) | |
H8A | 0.3881 | 0.4102 | 0.6487 | 0.139* | |
H8B | 0.3433 | 0.2833 | 0.5525 | 0.139* | |
H8C | 0.2966 | 0.4312 | 0.5453 | 0.139* | |
C9 | 0.3568 (2) | 0.8581 (4) | 0.5699 (3) | 0.0619 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0583 (5) | 0.1217 (9) | 0.0646 (6) | 0.0019 (5) | 0.0285 (5) | 0.0127 (5) |
Cl2 | 0.0589 (6) | 0.1721 (13) | 0.0731 (7) | −0.0024 (6) | 0.0252 (5) | 0.0231 (7) |
O1 | 0.0903 (16) | 0.0367 (12) | 0.0958 (17) | 0.0011 (10) | 0.0684 (15) | 0.0009 (10) |
N1 | 0.0733 (17) | 0.0436 (14) | 0.0707 (16) | −0.0010 (11) | 0.0540 (15) | 0.0000 (11) |
N2 | 0.129 (3) | 0.0544 (18) | 0.122 (3) | −0.0121 (17) | 0.100 (3) | −0.0177 (17) |
C1 | 0.0566 (16) | 0.0401 (14) | 0.0550 (16) | 0.0025 (12) | 0.0397 (14) | −0.0008 (12) |
C2 | 0.0587 (17) | 0.0537 (17) | 0.0574 (17) | 0.0016 (13) | 0.0393 (15) | −0.0039 (13) |
C3 | 0.0639 (19) | 0.070 (2) | 0.087 (2) | −0.0075 (16) | 0.056 (2) | −0.0115 (18) |
C4 | 0.103 (3) | 0.069 (2) | 0.090 (3) | 0.000 (2) | 0.079 (2) | 0.0017 (19) |
C5 | 0.096 (3) | 0.078 (2) | 0.066 (2) | 0.013 (2) | 0.058 (2) | 0.0132 (18) |
C6 | 0.0620 (18) | 0.068 (2) | 0.0564 (18) | 0.0022 (15) | 0.0382 (16) | 0.0003 (15) |
C7 | 0.0502 (15) | 0.0413 (15) | 0.0535 (16) | 0.0004 (12) | 0.0319 (13) | −0.0001 (12) |
C8 | 0.123 (3) | 0.050 (2) | 0.144 (4) | −0.004 (2) | 0.101 (3) | 0.014 (2) |
C9 | 0.080 (2) | 0.055 (2) | 0.076 (2) | −0.0076 (16) | 0.0612 (19) | −0.0101 (16) |
Cl1—C2 | 1.724 (3) | C2—C3 | 1.389 (4) |
Cl2—C6 | 1.724 (4) | C3—C4 | 1.374 (5) |
O1—C7 | 1.314 (3) | C3—H3 | 0.9300 |
O1—C8 | 1.451 (4) | C4—C5 | 1.367 (5) |
N1—C7 | 1.278 (4) | C4—H4 | 0.9300 |
N1—C9 | 1.338 (4) | C5—C6 | 1.385 (5) |
N2—C9 | 1.143 (4) | C5—H5 | 0.9300 |
C1—C2 | 1.370 (4) | C8—H8A | 0.9600 |
C1—C6 | 1.382 (4) | C8—H8B | 0.9600 |
C1—C7 | 1.486 (4) | C8—H8C | 0.9600 |
C7—O1—C8 | 117.2 (3) | C4—C5—H5 | 120.4 |
C7—N1—C9 | 117.1 (3) | C6—C5—H5 | 120.4 |
C2—C1—C6 | 118.8 (3) | C1—C6—C5 | 120.9 (3) |
C2—C1—C7 | 119.9 (3) | C1—C6—Cl2 | 119.2 (3) |
C6—C1—C7 | 121.3 (3) | C5—C6—Cl2 | 119.8 (3) |
C1—C2—C3 | 121.1 (3) | N1—C7—O1 | 121.0 (3) |
C1—C2—Cl1 | 119.5 (2) | N1—C7—C1 | 125.6 (2) |
C3—C2—Cl1 | 119.4 (2) | O1—C7—C1 | 113.4 (2) |
C4—C3—C2 | 119.0 (3) | O1—C8—H8A | 109.5 |
C4—C3—H3 | 120.5 | O1—C8—H8B | 109.5 |
C2—C3—H3 | 120.5 | H8A—C8—H8B | 109.5 |
C5—C4—C3 | 121.1 (3) | O1—C8—H8C | 109.5 |
C5—C4—H4 | 119.5 | H8A—C8—H8C | 109.5 |
C3—C4—H4 | 119.5 | H8B—C8—H8C | 109.5 |
C4—C5—C6 | 119.2 (3) | N2—C9—N1 | 174.8 (4) |
C6—C1—C2—C3 | 0.8 (4) | C7—C1—C6—Cl2 | −2.1 (4) |
C7—C1—C2—C3 | −176.1 (3) | C4—C5—C6—C1 | 0.6 (5) |
C6—C1—C2—Cl1 | 178.8 (2) | C4—C5—C6—Cl2 | 178.7 (3) |
C7—C1—C2—Cl1 | 1.9 (4) | C9—N1—C7—O1 | 179.2 (3) |
C1—C2—C3—C4 | −0.6 (5) | C9—N1—C7—C1 | 0.2 (4) |
Cl1—C2—C3—C4 | −178.6 (3) | C8—O1—C7—N1 | −3.7 (4) |
C2—C3—C4—C5 | 0.4 (5) | C8—O1—C7—C1 | 175.4 (3) |
C3—C4—C5—C6 | −0.4 (5) | C2—C1—C7—N1 | 89.7 (4) |
C2—C1—C6—C5 | −0.8 (5) | C6—C1—C7—N1 | −87.1 (4) |
C7—C1—C6—C5 | 176.0 (3) | C2—C1—C7—O1 | −89.4 (3) |
C2—C1—C6—Cl2 | −178.9 (2) | C6—C1—C7—O1 | 93.8 (3) |
Experimental details
Crystal data | |
Chemical formula | C9H6Cl2N2O |
Mr | 229.06 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 291 |
a, b, c (Å) | 21.199 (4), 8.548 (3), 15.005 (4) |
β (°) | 128.49 (4) |
V (Å3) | 2128.2 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.58 |
Crystal size (mm) | 0.52 × 0.46 × 0.28 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | For a sphere (WinGX; Farrugia, 1999) |
Tmin, Tmax | 0.754, 0.855 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2116, 1948, 1167 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.170, 1.04 |
No. of reflections | 1948 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.32 |
Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
References
Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104. Google Scholar
Huffman, K. R. & Schaefer, F. C. (1963). J. Org. Chem. 28, 1816–1821. CrossRef CAS Web of Science Google Scholar
Jäger, L., Krug, A., Hartung, H. & Kolbe, A. (1996). Z. Anorg. Allg. Chem. 622, 361–366. Google Scholar
Ponomareva, V. V., Domasevich, K. V., Skopenko, V. V., Simonov, Y. A., Dvorkin, A. A. & Mazus, M. D. (1995). J. Inorg. Chem. 40, 763–768. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zöllinger, M., Mayer, P. & Lindel, T. (2006). J. Org. Chem. 71, 9431–9439. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our studies aimed to prepare substituted cyanoimidates (Huffman & Schaefer, 1963) from the corresponding aromatic aldehyde by oxidation using 1-bromopyrrolidine-2,5-dione, the title compound was obtained in 84% yield, and its crystal structure is reported herein.
The molecule of the title compound (Fig. 1) displays an E conformation about the C═N double bond. The O—C═N—C≡N N-cyanoimidate fragment is substantially planar [maximum deviation 0.010 (4) Å for atom N2] and forms a dihedral angle of 88.50 (14)° with the plane of the benzene ring. As far as the authors are aware, crystal structures reporting the presence of the N-cyanoimidate fragment are very rare, the only examples found in the literature being 1-(2,3-dibromo-10-oxo-7,8-dihydro-6H,10H-dipyrrolo[1,2-a:1',2'-d]pyrazin-5-yl)-2-(2,6-dimethylphenyl)-3-cyanoisourea monohydrate (Zöllinger et al., 2006), catena-poly-[(µ6-benzoylcyanamido)-thallium(I)] (Ponomareva et al., 1995) and tris(ethylenediamine)-nickel(II) bis[2-methyl-4-chlorophenoxy(cyanamido)acetate] (Jäger et al., 1996). In the crystal structure, molecules are connected by intermolecular Cl···Cl interactions of 3.490 (2) Å (Desiraju & Parthasarathy, 1989) into one-dimensional chains running parallel to [101].