organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 2,6-di­chloro-N-cyano­benzimidate

aKey Laboratory of Drug Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China, and bDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: hwc@scu.edu.cn

(Received 26 June 2009; accepted 7 July 2009; online 11 July 2009)

The mol­ecule of the title compound, C9H6Cl2N2O, displays an E conformation about the C=N double bond. The N-cyano­imidate fragment is substanti­ally planar [maximum deviation 0.010 (4) Å] and perpendicular to the benzene ring [dihedral angle = 88.50 (14)°]. In the crystal packing, inter­molecular Cl⋯Cl inter­actions [3.490 (2) Å] are observed.

Related literature

For the synthesis of substituted cyano­imidates, see: Huffman & Schaefer (1963[Huffman, K. R. & Schaefer, F. C. (1963). J. Org. Chem. 28, 1816-1821.]). For the crystal structures of compounds containing the N-cyano­imidate fragment, see: Zöllinger et al. (2006[Zöllinger, M., Mayer, P. & Lindel, T. (2006). J. Org. Chem. 71, 9431-9439.]); Ponomareva et al. (1995[Ponomareva, V. V., Domasevich, K. V., Skopenko, V. V., Simonov, Y. A., Dvorkin, A. A. & Mazus, M. D. (1995). J. Inorg. Chem. 40, 763-768.]); Jäger et al. (1996[Jäger, L., Krug, A., Hartung, H. & Kolbe, A. (1996). Z. Anorg. Allg. Chem. 622, 361-366.]). For details of halogen⋯halogen inter­actions, see: Desiraju & Parthasarathy (1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6Cl2N2O

  • Mr = 229.06

  • Monoclinic, C 2/c

  • a = 21.199 (4) Å

  • b = 8.548 (3) Å

  • c = 15.005 (4) Å

  • β = 128.49 (4)°

  • V = 2128.2 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 291 K

  • 0.52 × 0.46 × 0.28 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.754, Tmax = 0.855

  • 2116 measured reflections

  • 1948 independent reflections

  • 1167 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 120 reflections intensity decay: 3.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.170

  • S = 1.04

  • 1948 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies aimed to prepare substituted cyanoimidates (Huffman & Schaefer, 1963) from the corresponding aromatic aldehyde by oxidation using 1-bromopyrrolidine-2,5-dione, the title compound was obtained in 84% yield, and its crystal structure is reported herein.

The molecule of the title compound (Fig. 1) displays an E conformation about the CN double bond. The O—CN—CN N-cyanoimidate fragment is substantially planar [maximum deviation 0.010 (4) Å for atom N2] and forms a dihedral angle of 88.50 (14)° with the plane of the benzene ring. As far as the authors are aware, crystal structures reporting the presence of the N-cyanoimidate fragment are very rare, the only examples found in the literature being 1-(2,3-dibromo-10-oxo-7,8-dihydro-6H,10H-dipyrrolo[1,2-a:1',2'-d]pyrazin-5-yl)-2-(2,6-dimethylphenyl)-3-cyanoisourea monohydrate (Zöllinger et al., 2006), catena-poly-[(µ6-benzoylcyanamido)-thallium(I)] (Ponomareva et al., 1995) and tris(ethylenediamine)-nickel(II) bis[2-methyl-4-chlorophenoxy(cyanamido)acetate] (Jäger et al., 1996). In the crystal structure, molecules are connected by intermolecular Cl···Cl interactions of 3.490 (2) Å (Desiraju & Parthasarathy, 1989) into one-dimensional chains running parallel to [101].

Related literature top

For the synthesis of substituted cyanoimidates, see: Huffman & Schaefer (1963). For the crystal structures of compounds containing the N-cyanoimidate fragment, see: Zöllinger et al. (2006); Ponomareva et al. (1995); Jäger et al. (1996). For details of halogen···halogen interactions, see: Desiraju & Parthasarathy (1989).

Experimental top

A mixture of 2,6-dichlorobenzaldehyde (1 mmol), H2NCN (3 equiv) and t-BuONa (3 equiv) in MeOH (8 ml) was stirred for 30 min at room temperature, then N-bromosuccinimide (NBS; 3 equiv) was added. After stirring for 12 h at 323 K, the mixture was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (100:1–25:1 v/v) as eluent to give the title compound in 84% yield. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether/acetyl acetate solution (25:1 v/v) at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound approximately viewed along the b axis. Cl···Cl interactions are shown as dotted lines.
(E)-Methyl 2,6-dichloro-N-cyanobenzimidate top
Crystal data top
C9H6Cl2N2OF(000) = 928
Mr = 229.06Dx = 1.430 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 28 reflections
a = 21.199 (4) Åθ = 4.8–9.2°
b = 8.548 (3) ŵ = 0.58 mm1
c = 15.005 (4) ÅT = 291 K
β = 128.49 (4)°Block, colourless
V = 2128.2 (16) Å30.52 × 0.46 × 0.28 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1167 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
ω/2θ scansh = 2517
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
k = 010
Tmin = 0.754, Tmax = 0.855l = 1818
2116 measured reflections3 standard reflections every 120 reflections
1948 independent reflections intensity decay: 3.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.1053P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1948 reflectionsΔρmax = 0.30 e Å3
129 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (15)
Crystal data top
C9H6Cl2N2OV = 2128.2 (16) Å3
Mr = 229.06Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.199 (4) ŵ = 0.58 mm1
b = 8.548 (3) ÅT = 291 K
c = 15.005 (4) Å0.52 × 0.46 × 0.28 mm
β = 128.49 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1167 reflections with I > 2σ(I)
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
Rint = 0.016
Tmin = 0.754, Tmax = 0.8553 standard reflections every 120 reflections
2116 measured reflections intensity decay: 3.8%
1948 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
1948 reflectionsΔρmin = 0.32 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54862 (5)0.67130 (14)0.65350 (8)0.0881 (5)
Cl20.24528 (6)0.72469 (18)0.26898 (9)0.1121 (6)
O10.36902 (14)0.4760 (2)0.5066 (2)0.0672 (7)
N10.35148 (15)0.7020 (3)0.5663 (2)0.0563 (7)
N20.3600 (2)0.9913 (4)0.5784 (3)0.0866 (10)
C10.40050 (16)0.7037 (3)0.4547 (2)0.0472 (7)
C20.48117 (18)0.7300 (3)0.5135 (3)0.0545 (8)
C30.5094 (2)0.8077 (4)0.4632 (3)0.0675 (9)
H30.56420.82590.50390.081*
C40.4550 (3)0.8571 (4)0.3523 (3)0.0745 (10)
H40.47350.90860.31790.089*
C50.3742 (2)0.8318 (4)0.2917 (3)0.0750 (10)
H50.33790.86640.21690.090*
C60.3471 (2)0.7542 (4)0.3432 (3)0.0613 (9)
C70.37157 (16)0.6295 (3)0.5129 (2)0.0486 (7)
C80.3474 (3)0.3932 (4)0.5685 (4)0.0930 (13)
H8A0.38810.41020.64870.139*
H8B0.34330.28330.55250.139*
H8C0.29660.43120.54530.139*
C90.3568 (2)0.8581 (4)0.5699 (3)0.0619 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0583 (5)0.1217 (9)0.0646 (6)0.0019 (5)0.0285 (5)0.0127 (5)
Cl20.0589 (6)0.1721 (13)0.0731 (7)0.0024 (6)0.0252 (5)0.0231 (7)
O10.0903 (16)0.0367 (12)0.0958 (17)0.0011 (10)0.0684 (15)0.0009 (10)
N10.0733 (17)0.0436 (14)0.0707 (16)0.0010 (11)0.0540 (15)0.0000 (11)
N20.129 (3)0.0544 (18)0.122 (3)0.0121 (17)0.100 (3)0.0177 (17)
C10.0566 (16)0.0401 (14)0.0550 (16)0.0025 (12)0.0397 (14)0.0008 (12)
C20.0587 (17)0.0537 (17)0.0574 (17)0.0016 (13)0.0393 (15)0.0039 (13)
C30.0639 (19)0.070 (2)0.087 (2)0.0075 (16)0.056 (2)0.0115 (18)
C40.103 (3)0.069 (2)0.090 (3)0.000 (2)0.079 (2)0.0017 (19)
C50.096 (3)0.078 (2)0.066 (2)0.013 (2)0.058 (2)0.0132 (18)
C60.0620 (18)0.068 (2)0.0564 (18)0.0022 (15)0.0382 (16)0.0003 (15)
C70.0502 (15)0.0413 (15)0.0535 (16)0.0004 (12)0.0319 (13)0.0001 (12)
C80.123 (3)0.050 (2)0.144 (4)0.004 (2)0.101 (3)0.014 (2)
C90.080 (2)0.055 (2)0.076 (2)0.0076 (16)0.0612 (19)0.0101 (16)
Geometric parameters (Å, º) top
Cl1—C21.724 (3)C2—C31.389 (4)
Cl2—C61.724 (4)C3—C41.374 (5)
O1—C71.314 (3)C3—H30.9300
O1—C81.451 (4)C4—C51.367 (5)
N1—C71.278 (4)C4—H40.9300
N1—C91.338 (4)C5—C61.385 (5)
N2—C91.143 (4)C5—H50.9300
C1—C21.370 (4)C8—H8A0.9600
C1—C61.382 (4)C8—H8B0.9600
C1—C71.486 (4)C8—H8C0.9600
C7—O1—C8117.2 (3)C4—C5—H5120.4
C7—N1—C9117.1 (3)C6—C5—H5120.4
C2—C1—C6118.8 (3)C1—C6—C5120.9 (3)
C2—C1—C7119.9 (3)C1—C6—Cl2119.2 (3)
C6—C1—C7121.3 (3)C5—C6—Cl2119.8 (3)
C1—C2—C3121.1 (3)N1—C7—O1121.0 (3)
C1—C2—Cl1119.5 (2)N1—C7—C1125.6 (2)
C3—C2—Cl1119.4 (2)O1—C7—C1113.4 (2)
C4—C3—C2119.0 (3)O1—C8—H8A109.5
C4—C3—H3120.5O1—C8—H8B109.5
C2—C3—H3120.5H8A—C8—H8B109.5
C5—C4—C3121.1 (3)O1—C8—H8C109.5
C5—C4—H4119.5H8A—C8—H8C109.5
C3—C4—H4119.5H8B—C8—H8C109.5
C4—C5—C6119.2 (3)N2—C9—N1174.8 (4)
C6—C1—C2—C30.8 (4)C7—C1—C6—Cl22.1 (4)
C7—C1—C2—C3176.1 (3)C4—C5—C6—C10.6 (5)
C6—C1—C2—Cl1178.8 (2)C4—C5—C6—Cl2178.7 (3)
C7—C1—C2—Cl11.9 (4)C9—N1—C7—O1179.2 (3)
C1—C2—C3—C40.6 (5)C9—N1—C7—C10.2 (4)
Cl1—C2—C3—C4178.6 (3)C8—O1—C7—N13.7 (4)
C2—C3—C4—C50.4 (5)C8—O1—C7—C1175.4 (3)
C3—C4—C5—C60.4 (5)C2—C1—C7—N189.7 (4)
C2—C1—C6—C50.8 (5)C6—C1—C7—N187.1 (4)
C7—C1—C6—C5176.0 (3)C2—C1—C7—O189.4 (3)
C2—C1—C6—Cl2178.9 (2)C6—C1—C7—O193.8 (3)

Experimental details

Crystal data
Chemical formulaC9H6Cl2N2O
Mr229.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)21.199 (4), 8.548 (3), 15.005 (4)
β (°) 128.49 (4)
V3)2128.2 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.52 × 0.46 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(WinGX; Farrugia, 1999)
Tmin, Tmax0.754, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
2116, 1948, 1167
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.170, 1.04
No. of reflections1948
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

References

First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationHuffman, K. R. & Schaefer, F. C. (1963). J. Org. Chem. 28, 1816–1821.  CrossRef CAS Web of Science Google Scholar
First citationJäger, L., Krug, A., Hartung, H. & Kolbe, A. (1996). Z. Anorg. Allg. Chem. 622, 361–366.  Google Scholar
First citationPonomareva, V. V., Domasevich, K. V., Skopenko, V. V., Simonov, Y. A., Dvorkin, A. A. & Mazus, M. D. (1995). J. Inorg. Chem. 40, 763–768.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZöllinger, M., Mayer, P. & Lindel, T. (2006). J. Org. Chem. 71, 9431–9439.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds