organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Ethyl-1H-pyrrole-2-carboxamido)propionic acid monohydrate

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 30 June 2009; accepted 8 July 2009; online 15 July 2009)

The title compound, C10H14N2O3·H2O, was synthesized by alkyl­ation of methyl 3-(1H-pyrrole-2-carboxamido)­propion­ate with ethyl bromide, followed by saponification and acidification. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, forming layers parallel to the ac plane.

Related literature

For pyrroles sourced from marine organisms, see: Liu et al. (2005[Liu, J. F., Guo, S. P. & Jiang, B. (2005). Chin. J. Org. Chem. 25, 788-799.]). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006[Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.]); Sosa et al. (2002[Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498-4500.]). For related structures, see: Zeng et al. (2005[Zeng, X.-C., Xu, S.-H., Liu, P.-R. & Gu, J. (2005). Acta Cryst. E61, o1076-o1078.]); Liu et al. (2006[Liu, P.-R., Zeng, X.-C. & Xu, S.-H. (2006). Acta Cryst. E62, o1181-o1183.]); Tang et al. (2008[Tang, G. H., Li, D. D., Zeng, X. C., Dong, S. S. & Wang, Y. S. (2008). Acta Cryst. E64, o1867.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N2O3·H2O

  • Mr = 228.25

  • Monoclinic, P 21 /c

  • a = 5.2814 (12) Å

  • b = 31.795 (7) Å

  • c = 7.0226 (16) Å

  • β = 106.392 (4)°

  • V = 1131.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.47 × 0.44 × 0.15 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.985

  • 5260 measured reflections

  • 2215 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.163

  • S = 1.14

  • 2215 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.84 1.83 2.669 (3) 173
N2—H2⋯O4ii 0.88 2.28 3.091 (3) 154
O4—H4A⋯O1iii 0.96 (3) 1.79 (3) 2.737 (2) 170 (3)
O4—H4B⋯O2iv 0.81 (3) 2.08 (4) 2.863 (3) 164 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z.

Data collection: SMART (Bruker,1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrole derivatives are well known constituents of many marine organisms (Liu et al., 2005), and some of them show important bioactivities, such as antitumor (Banwell et al., 2006) and protein kinase inhibiting (Sosa et al., 2002) activities. As a continuation of our studies in this field, which have recently resulted in the communication of the crystal structure of 3-(4-bromo-1H-pyrrole-2-carboxamido)propanoic acid (Zeng et al., 2005), 3-(1-methyl-1H-pyrrole-2-carboxamido)propanoic acid (Liu et al., 2006) and methyl 2-(1H-pyrrole-2-carboxamido)acetate (Tang et al., 2008), we report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), bond lengths and angles are unexceptional. In the crystal structure, molecules are linked by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) involving water molecules to form two-dimensional layers parallel to the ac plane (Fig. 2, Fig. 3)

Related literature top

For pyrroles sourced from marine organisms, see: Liu et al. (2005). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006); Sosa et al. (2002). For related structures, see: Zeng et al. (2005); Liu et al. (2006); Tang et al. (2008).

Experimental top

A suspension of potassium carbonate (2.10 mg, 15.0 mmol), ethyl bromide (1.87 ml, 25.0 mmol) and methyl 3-(1H-pyrrole-2-carbonyl)aminopropionate (0.98 g, 5.0 mmol) in acetonitrile (12 ml) was refluxed for 40 h. After evaporation of the solvent, the residue was dissolved in ethyl acetate (15 ml) and washed twice with water. The organic layer was dried over sodium sulfate and evaporated in vacuo. Then the alkylated product was added to a solution of 10% aqueous sodium hydroxide (10 ml) and ethanol (2 ml), and the mixture was stirred at room temperature for 24 h. The hydrolyzed mixture was made acidic with 10% hydrochloric acid to pH 2–3. After filtration, the precipitate was collected as a yellow solid (m.p. 320 K, 92.3% yield). Pale yellow crystals suitable for X-ray analysis were obtained over a period of one week by slow evaporation at room temperature of an ethanol/water solution (3:2 v/v).

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The water H atoms were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95-0.99Å, N—H = 0.88 Å, O—H = 0.84 Å, and with Uiso = 1.2 Ueq(C, N) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

Computing details top

Data collection: SMART (Bruker,1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the c axis. Dashed lines indicate hydrogen bonds.
3-(1-Ethyl-1H-pyrrole-2-carboxamido)propionic acid monohydrate top
Crystal data top
C10H14N2O3·H2OF(000) = 488
Mr = 228.25Dx = 1.340 Mg m3
Monoclinic, P21/cMelting point: 320 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.2814 (12) ÅCell parameters from 2595 reflections
b = 31.795 (7) Åθ = 2.6–28.0°
c = 7.0226 (16) ŵ = 0.10 mm1
β = 106.392 (4)°T = 173 K
V = 1131.3 (4) Å3Plate, pale yellow
Z = 40.47 × 0.44 × 0.15 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2215 independent reflections
Radiation source: fine-focus sealed tube1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 64
Tmin = 0.953, Tmax = 0.985k = 3933
5260 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.087P)2 + 0.3989P]
where P = (Fo2 + 2Fc2)/3
2215 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H14N2O3·H2OV = 1131.3 (4) Å3
Mr = 228.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2814 (12) ŵ = 0.10 mm1
b = 31.795 (7) ÅT = 173 K
c = 7.0226 (16) Å0.47 × 0.44 × 0.15 mm
β = 106.392 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2215 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1772 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.985Rint = 0.028
5260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.30 e Å3
2215 reflectionsΔρmin = 0.26 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2174 (3)0.48016 (5)0.1312 (3)0.0377 (4)
O10.4540 (3)0.36651 (5)0.1693 (2)0.0350 (4)
N10.9087 (4)0.32234 (6)0.4136 (3)0.0281 (5)
O30.0271 (4)0.53444 (5)0.2775 (3)0.0370 (5)
H30.11050.54790.22130.055*
N20.3901 (4)0.39704 (6)0.4423 (3)0.0307 (5)
H20.44580.39940.57230.037*
C40.7462 (4)0.34863 (6)0.4836 (3)0.0254 (5)
C60.1614 (4)0.42138 (7)0.3356 (3)0.0295 (5)
H6A0.02050.41830.40230.035*
H6B0.09360.41030.19900.035*
C50.5200 (4)0.37122 (6)0.3528 (3)0.0250 (5)
C70.2283 (4)0.46754 (7)0.3265 (3)0.0277 (5)
H7A0.31320.47780.46270.033*
H7B0.35670.47070.24850.033*
C80.0108 (5)0.49402 (7)0.2343 (3)0.0267 (5)
C30.8518 (5)0.35132 (7)0.6881 (3)0.0319 (6)
H3A0.78240.36730.77610.038*
C90.8797 (5)0.30933 (8)0.2082 (3)0.0361 (6)
H9A1.05160.29870.19800.043*
H9B0.83190.33420.12060.043*
C11.1074 (5)0.30880 (8)0.5705 (4)0.0350 (6)
H11.24460.29010.56290.042*
C100.6725 (6)0.27552 (8)0.1358 (4)0.0407 (6)
H10A0.73170.24930.20840.061*
H10B0.64570.27080.00650.061*
H10C0.50600.28460.15850.061*
C21.0782 (5)0.32635 (8)0.7411 (4)0.0366 (6)
H2A1.19120.32230.87150.044*
O40.5768 (4)0.57638 (6)0.1280 (3)0.0343 (4)
H4A0.584 (6)0.5980 (10)0.034 (5)0.057 (9)*
H4B0.465 (7)0.5596 (10)0.074 (5)0.051 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0288 (9)0.0372 (9)0.0415 (10)0.0021 (7)0.0009 (8)0.0031 (7)
O10.0450 (10)0.0355 (9)0.0196 (8)0.0068 (8)0.0013 (7)0.0001 (6)
N10.0253 (10)0.0322 (10)0.0270 (10)0.0003 (8)0.0077 (8)0.0016 (7)
O30.0413 (11)0.0273 (8)0.0404 (10)0.0022 (7)0.0087 (8)0.0014 (7)
N20.0350 (11)0.0324 (10)0.0220 (9)0.0048 (8)0.0038 (8)0.0004 (8)
C40.0285 (12)0.0239 (10)0.0227 (11)0.0027 (9)0.0057 (9)0.0011 (8)
C60.0255 (12)0.0301 (12)0.0309 (12)0.0011 (9)0.0048 (9)0.0013 (9)
C50.0290 (11)0.0225 (10)0.0222 (11)0.0043 (9)0.0049 (9)0.0010 (8)
C70.0255 (11)0.0311 (12)0.0265 (11)0.0032 (9)0.0076 (9)0.0026 (9)
C80.0311 (12)0.0292 (11)0.0219 (10)0.0009 (9)0.0110 (9)0.0003 (8)
C30.0376 (13)0.0312 (12)0.0235 (11)0.0002 (10)0.0029 (10)0.0005 (9)
C90.0368 (14)0.0459 (14)0.0306 (12)0.0049 (11)0.0179 (11)0.0016 (10)
C10.0258 (12)0.0371 (13)0.0393 (13)0.0020 (10)0.0044 (10)0.0052 (10)
C100.0506 (16)0.0392 (14)0.0304 (13)0.0054 (12)0.0082 (12)0.0061 (10)
C20.0341 (13)0.0394 (14)0.0282 (12)0.0038 (11)0.0044 (10)0.0039 (10)
O40.0431 (11)0.0282 (9)0.0289 (9)0.0011 (8)0.0058 (8)0.0009 (7)
Geometric parameters (Å, º) top
O2—C81.210 (3)C7—H7A0.9900
O1—C51.245 (3)C7—H7B0.9900
N1—C11.359 (3)C3—C21.395 (4)
N1—C41.384 (3)C3—H3A0.9500
N1—C91.466 (3)C9—C101.516 (4)
O3—C81.323 (3)C9—H9A0.9900
O3—H30.8400C9—H9B0.9900
N2—C51.335 (3)C1—C21.370 (4)
N2—C61.452 (3)C1—H10.9500
N2—H20.8800C10—H10A0.9800
C4—C31.388 (3)C10—H10B0.9800
C4—C51.473 (3)C10—H10C0.9800
C6—C71.515 (3)C2—H2A0.9500
C6—H6A0.9900O4—H4A0.96 (3)
C6—H6B0.9900O4—H4B0.81 (3)
C7—C81.504 (3)
C1—N1—C4108.54 (19)O2—C8—O3123.0 (2)
C1—N1—C9123.4 (2)O2—C8—C7124.0 (2)
C4—N1—C9128.08 (19)O3—C8—C7113.00 (19)
C8—O3—H3109.5C4—C3—C2107.7 (2)
C5—N2—C6123.23 (18)C4—C3—H3A126.1
C5—N2—H2118.4C2—C3—H3A126.1
C6—N2—H2118.4N1—C9—C10113.3 (2)
N1—C4—C3107.2 (2)N1—C9—H9A108.9
N1—C4—C5123.25 (19)C10—C9—H9A108.9
C3—C4—C5129.3 (2)N1—C9—H9B108.9
N2—C6—C7111.60 (19)C10—C9—H9B108.9
N2—C6—H6A109.3H9A—C9—H9B107.7
C7—C6—H6A109.3N1—C1—C2109.2 (2)
N2—C6—H6B109.3N1—C1—H1125.4
C7—C6—H6B109.3C2—C1—H1125.4
H6A—C6—H6B108.0C9—C10—H10A109.5
O1—C5—N2122.0 (2)C9—C10—H10B109.5
O1—C5—C4121.9 (2)H10A—C10—H10B109.5
N2—C5—C4116.13 (18)C9—C10—H10C109.5
C8—C7—C6112.51 (19)H10A—C10—H10C109.5
C8—C7—H7A109.1H10B—C10—H10C109.5
C6—C7—H7A109.1C1—C2—C3107.3 (2)
C8—C7—H7B109.1C1—C2—H2A126.3
C6—C7—H7B109.1C3—C2—H2A126.3
H7A—C7—H7B107.8H4A—O4—H4B108 (3)
C1—N1—C4—C30.7 (2)N2—C6—C7—C8174.39 (18)
C9—N1—C4—C3179.4 (2)C6—C7—C8—O219.0 (3)
C1—N1—C4—C5175.90 (19)C6—C7—C8—O3161.00 (19)
C9—N1—C4—C55.3 (3)N1—C4—C3—C20.3 (3)
C5—N2—C6—C7106.2 (2)C5—C4—C3—C2175.1 (2)
C6—N2—C5—O10.6 (3)C1—N1—C9—C10101.2 (3)
C6—N2—C5—C4179.44 (19)C4—N1—C9—C1077.4 (3)
N1—C4—C5—O13.2 (3)C4—N1—C1—C20.8 (3)
C3—C4—C5—O1177.3 (2)C9—N1—C1—C2179.6 (2)
N1—C4—C5—N2176.8 (2)N1—C1—C2—C30.6 (3)
C3—C4—C5—N22.6 (3)C4—C3—C2—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.832.669 (3)173
N2—H2···O4ii0.882.283.091 (3)154
O4—H4A···O1iii0.96 (3)1.79 (3)2.737 (2)170 (3)
O4—H4B···O2iv0.81 (3)2.08 (4)2.863 (3)164 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H14N2O3·H2O
Mr228.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.2814 (12), 31.795 (7), 7.0226 (16)
β (°) 106.392 (4)
V3)1131.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.44 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5260, 2215, 1772
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.163, 1.14
No. of reflections2215
No. of parameters155
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: SMART (Bruker,1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.832.669 (3)172.7
N2—H2···O4ii0.882.283.091 (3)154.1
O4—H4A···O1iii0.96 (3)1.79 (3)2.737 (2)170 (3)
O4—H4B···O2iv0.81 (3)2.08 (4)2.863 (3)164 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

References

First citationBanwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J. F., Guo, S. P. & Jiang, B. (2005). Chin. J. Org. Chem. 25, 788–799.  CAS Google Scholar
First citationLiu, P.-R., Zeng, X.-C. & Xu, S.-H. (2006). Acta Cryst. E62, o1181–o1183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498–4500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTang, G. H., Li, D. D., Zeng, X. C., Dong, S. S. & Wang, Y. S. (2008). Acta Cryst. E64, o1867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-C., Xu, S.-H., Liu, P.-R. & Gu, J. (2005). Acta Cryst. E61, o1076–o1078.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds