organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(β-D-Allo­pyran­os­yl­oxy)cinnamyl 4-bromo­phenyl ketone ethanol solvate

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: chuandayouji217@163.com

(Received 15 July 2009; accepted 25 July 2009; online 31 July 2009)

The title compound, C21H21BrO7·C2H6O, was synthesized by the Claisen–Schimidt reaction of helicid (systematic name: 4-formyl­phenyl-β-D-allopyran­oside) with 4-bromo­aceto­phenone in ethanol. The pyran ring adopts a chair conformation. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For helicid and its biological activity, see: Chen et al. (1981[Chen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893-1895.]); Sha & Mao (1987[Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 27-30.]). For the synthesis and structure of related compound, see: Fan et al. (2007[Fan, B., Li, J. L., Li, Y. & Yin, S. F. (2007). Chin. J. Org. Chem. 27, 1150-1154.]); Fu et al. (2009[Fu, L., Yin, X., Zheng, L., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o679.]); Lv et al. (2009[Lv, S.-M., Zheng, L., Zhao, H., Li, Y. & Yin, S.-F. (2009). Acta Cryst. E65, o290.]); Yang et al. (2009[Yang, C., Luo, H., Yin, X., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o634.]); Ye et al. (2009[Ye, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21BrO7·C2H6O

  • Mr = 511.36

  • Monoclinic, P 21

  • a = 10.977 (2) Å

  • b = 7.6518 (15) Å

  • c = 13.259 (3) Å

  • β = 92.08 (3)°

  • V = 1113.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.703, Tmax = 0.805

  • 9199 measured reflections

  • 5171 independent reflections

  • 3636 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.056

  • S = 0.75

  • 5171 reflections

  • 296 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2358 Friedel pairs

  • Flack parameter: 0.027 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 1.97 2.783 (3) 164
O3—H3⋯O7ii 0.84 2.05 2.702 (3) 134
O3—H3⋯O4 0.84 2.38 2.786 (3) 110
O4—H4⋯O2iii 0.84 1.85 2.677 (3) 166
O5—H5⋯O8iv 0.84 1.91 2.678 (3) 152
O8—H8A⋯O1iv 0.84 2.08 2.893 (3) 163
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-1]; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Helicid (systematic name: 4-formylphenyl-β-D-allopyranoside; Chen et al. 1981), is a pure natural compound extracted from the fruit of Helicia Nilagirica Beed, which has been successfully used in the treatment of insomnia in China. Some helicid derivatives have been reported to possess good biological activities (Sha & Mao, 1987). The synthesis and structure of some helicid derivatives heve been recently reported by our group (Fu et al. 2009; Lv et al. 2009; Yang et al. 2009; Ye et al. 2009). As a continuation of our studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the average of C–C, C(sp3)–O and C(sp2)–O bond lengths in the pyranoside unit are 1.524 (4), 1.421 (4) and 1.241 (3) Å, respectively. The pyran ring adopts chair conformation with the hydroxy group at C4 in axial position and the other substituents at C2, C3 and C5 in equatorial positions. The O1–C2–C3–O3 and O2–C1–C2–O1 torsion angles are -176.5 (2) ° and -59.0 (3) °, respectively, while the O5–C5–C6–O1 and O7–C15–C16–C21 torsion angles are -173.9 (2) ° and -172.2 (3) °, respectively, possibly as a consequence of the presence of O—H···O hydrogen bonds. In the crystal packing, the molecules are linked by intermolecular O—H···O hydrogen bonds (Table 1) involving the hydroxy groups of the pyranoside unit and the ethanol molecule to form a three-dimensional network.

Related literature top

For helicid and its biological activity, see: Chen et al. (1981); Sha & Mao (1987). For the synthesis and structure of related compound, see: Fan et al. (2007); Fu et al. (2009); Lv et al. (2009); Yang et al. (2009); Ye et al. (2009).

Experimental top

The synthetic method of the title compound was reported elsewhere (Fan et al., 2007). To a solution of helicid (1.420 g, 5 mmol) in 30 ml of anhydrous ethanol, a 10% NaOH aqueous solution were added under ice bath, then 4-bromoacetophenone (1.104 g, 5.5 mmol) was added. The mixture was neutralized with diluted hydrochloric acid, concentrated to half of the original volume, and the resulting precipitate filtered. Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 98–100 K).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å, O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq (C, O) for methyl and hydroxy H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
(E)-4-(β-D-Allopyranosyloxy)cinnamyl 4-bromophenyl ketone ethanol solvate top
Crystal data top
C21H21BrO7·C2H6OF(000) = 528
Mr = 511.36Dx = 1.526 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3521 reflections
a = 10.977 (2) Åθ = 1.5–27.9°
b = 7.6518 (15) ŵ = 1.89 mm1
c = 13.259 (3) ÅT = 113 K
β = 92.08 (3)°Block, colourless
V = 1113.0 (4) Å30.20 × 0.16 × 0.12 mm
Z = 2
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5171 independent reflections
Radiation source: rotating anode3636 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.5°
ω and ϕ scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.703, Tmax = 0.805l = 1317
9199 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.003
S = 0.75Δρmax = 0.67 e Å3
5171 reflectionsΔρmin = 0.39 e Å3
296 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.0242 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2358 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.027 (6)
Crystal data top
C21H21BrO7·C2H6OV = 1113.0 (4) Å3
Mr = 511.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.977 (2) ŵ = 1.89 mm1
b = 7.6518 (15) ÅT = 113 K
c = 13.259 (3) Å0.20 × 0.16 × 0.12 mm
β = 92.08 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5171 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3636 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.805Rint = 0.039
9199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.67 e Å3
S = 0.75Δρmin = 0.39 e Å3
5171 reflectionsAbsolute structure: Flack (1983), 2358 Friedel pairs
296 parametersAbsolute structure parameter: 0.027 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.70240 (2)0.31136 (4)0.80385 (2)0.02313 (10)
O10.15927 (15)0.3593 (2)0.22799 (13)0.0125 (5)
O20.08102 (18)0.0860 (3)0.35522 (15)0.0166 (5)
H20.05530.06780.41470.025*
O30.04022 (16)0.4996 (3)0.44247 (14)0.0162 (5)
H30.07880.58230.41690.024*
O40.05197 (19)0.7491 (2)0.30705 (18)0.0153 (5)
H40.06910.85540.31360.023*
O50.32128 (15)0.7681 (2)0.28189 (15)0.0164 (5)
H50.27770.84300.25410.025*
O60.32452 (16)0.4805 (3)0.14705 (14)0.0143 (5)
O70.23659 (17)0.2120 (3)0.45816 (14)0.0192 (5)
C10.0025 (3)0.1941 (4)0.3055 (2)0.0168 (8)
H1A0.02090.14120.23960.020*
H1B0.07960.20060.34640.020*
C20.0466 (2)0.3767 (4)0.2884 (2)0.0122 (7)
H2A0.01340.44550.24960.015*
C30.0726 (3)0.4741 (4)0.3866 (2)0.0108 (7)
H3A0.12790.40120.42760.013*
C40.1343 (3)0.6463 (4)0.3622 (2)0.0142 (7)
H4A0.15320.70770.42640.017*
C50.2521 (2)0.6144 (4)0.3006 (2)0.0127 (7)
H5A0.30330.53220.33960.015*
C60.2173 (2)0.5219 (4)0.2039 (2)0.0126 (7)
H60.16270.59760.16390.015*
C70.3110 (3)0.4342 (4)0.0469 (2)0.0135 (7)
C80.1998 (2)0.4166 (4)0.0018 (2)0.0145 (7)
H80.12580.43630.03940.017*
C90.1983 (2)0.3697 (4)0.0992 (2)0.0156 (7)
H90.12210.35840.13030.019*
C100.3045 (2)0.3390 (4)0.1562 (2)0.0136 (7)
C110.4158 (2)0.3544 (4)0.1087 (2)0.0190 (8)
H110.48990.33160.14570.023*
C120.4188 (2)0.4030 (4)0.0076 (2)0.0178 (7)
H120.49470.41470.02400.021*
C130.2936 (2)0.2962 (5)0.26334 (19)0.0167 (7)
H130.21270.28240.28510.020*
C140.3805 (2)0.2741 (4)0.3339 (2)0.0141 (7)
H140.46400.27960.31770.017*
C150.3446 (3)0.2406 (4)0.4391 (2)0.0142 (7)
C160.4376 (2)0.2468 (4)0.5234 (2)0.0116 (7)
C170.4006 (3)0.2023 (4)0.6211 (2)0.0146 (7)
H170.31990.16180.63020.017*
C180.4800 (2)0.2172 (4)0.7029 (2)0.0152 (7)
H180.45470.18720.76840.018*
C190.5973 (2)0.2762 (4)0.6893 (2)0.0150 (8)
C200.6379 (2)0.3148 (5)0.59468 (18)0.0139 (6)
H200.71940.35250.58640.017*
C210.5579 (2)0.2977 (5)0.51141 (18)0.0137 (6)
H210.58570.32110.44570.016*
O80.7446 (2)0.5264 (3)0.15901 (15)0.0236 (5)
H8A0.77020.62930.16610.035*
C220.7527 (2)0.4749 (4)0.0559 (2)0.0186 (7)
H22A0.71390.56520.01200.022*
H22B0.70760.36420.04480.022*
C230.8844 (2)0.4500 (4)0.0265 (2)0.0283 (9)
H23A0.92810.56120.03340.042*
H23B0.88620.41000.04370.042*
H23C0.92370.36260.07080.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02318 (17)0.03083 (19)0.01506 (14)0.0005 (2)0.00380 (11)0.0020 (2)
O10.0135 (10)0.0100 (12)0.0137 (10)0.0031 (9)0.0042 (8)0.0028 (8)
O20.0266 (13)0.0125 (13)0.0105 (12)0.0026 (11)0.0005 (10)0.0007 (10)
O30.0193 (12)0.0162 (12)0.0128 (12)0.0055 (10)0.0041 (9)0.0025 (10)
O40.0169 (11)0.0075 (11)0.0216 (12)0.0025 (9)0.0040 (9)0.0012 (9)
O50.0157 (11)0.0123 (14)0.0214 (12)0.0043 (9)0.0046 (9)0.0034 (9)
O60.0117 (11)0.0202 (13)0.0108 (11)0.0012 (9)0.0022 (9)0.0021 (10)
O70.0108 (11)0.0321 (14)0.0148 (12)0.0053 (10)0.0011 (9)0.0017 (10)
C10.020 (2)0.0157 (18)0.0144 (17)0.0003 (15)0.0014 (15)0.0018 (15)
C20.0133 (17)0.0116 (16)0.0118 (16)0.0002 (13)0.0007 (13)0.0000 (13)
C30.0106 (16)0.0127 (17)0.0091 (17)0.0015 (14)0.0009 (13)0.0010 (14)
C40.0166 (18)0.0129 (17)0.0135 (17)0.0049 (14)0.0071 (14)0.0010 (14)
C50.0142 (16)0.0104 (17)0.0135 (16)0.0022 (13)0.0021 (13)0.0012 (13)
C60.0142 (17)0.0122 (16)0.0113 (16)0.0019 (14)0.0012 (13)0.0049 (14)
C70.0124 (16)0.0186 (18)0.0096 (16)0.0005 (14)0.0014 (13)0.0024 (14)
C80.0102 (16)0.0181 (18)0.0148 (17)0.0019 (14)0.0060 (13)0.0002 (14)
C90.0111 (15)0.0218 (18)0.0139 (16)0.0004 (13)0.0028 (12)0.0018 (13)
C100.0123 (14)0.014 (2)0.0145 (14)0.0020 (15)0.0004 (11)0.0002 (14)
C110.0130 (15)0.029 (2)0.0148 (15)0.0016 (14)0.0026 (12)0.0016 (14)
C120.0090 (16)0.0261 (19)0.0185 (17)0.0015 (14)0.0011 (13)0.0065 (14)
C130.0176 (15)0.0177 (17)0.0152 (14)0.0017 (19)0.0037 (11)0.0018 (18)
C140.0130 (15)0.014 (2)0.0159 (15)0.0009 (14)0.0032 (12)0.0025 (14)
C150.0182 (17)0.0133 (16)0.0111 (16)0.0031 (13)0.0010 (13)0.0029 (13)
C160.0161 (16)0.0104 (15)0.0084 (15)0.0018 (13)0.0003 (12)0.0021 (12)
C170.0119 (16)0.0166 (18)0.0155 (17)0.0010 (13)0.0045 (13)0.0006 (14)
C180.0198 (18)0.0188 (18)0.0072 (15)0.0014 (14)0.0009 (13)0.0029 (13)
C190.0176 (15)0.013 (2)0.0136 (14)0.0049 (14)0.0041 (12)0.0014 (14)
C200.0106 (13)0.0156 (14)0.0156 (13)0.004 (2)0.0002 (10)0.002 (2)
C210.0144 (14)0.0167 (16)0.0103 (13)0.0015 (19)0.0045 (10)0.0022 (18)
O80.0384 (14)0.0154 (13)0.0172 (13)0.0044 (11)0.0052 (11)0.0017 (11)
C220.0192 (18)0.0199 (19)0.0164 (18)0.0015 (15)0.0031 (14)0.0034 (15)
C230.0161 (18)0.037 (2)0.031 (2)0.0019 (16)0.0027 (15)0.0014 (18)
Geometric parameters (Å, º) top
Br1—C191.893 (3)C9—C101.385 (3)
O1—C61.429 (3)C9—H90.9500
O1—C21.456 (3)C10—C111.400 (3)
O2—C11.415 (3)C10—C131.468 (3)
O2—H20.8400C11—C121.394 (4)
O3—C31.433 (3)C11—H110.9500
O3—H30.8400C12—H120.9500
O4—C41.421 (3)C13—C141.323 (3)
O4—H40.8400C13—H130.9500
O5—C51.417 (3)C14—C151.485 (4)
O5—H50.8400C14—H140.9500
O6—C71.387 (3)C15—C161.487 (3)
O6—C61.411 (3)C16—C211.391 (3)
O7—C151.241 (3)C16—C171.413 (4)
C1—C21.511 (4)C17—C181.371 (4)
C1—H1A0.9900C17—H170.9500
C1—H1B0.9900C18—C191.382 (3)
C2—C31.535 (4)C18—H180.9500
C2—H2A1.0000C19—C201.378 (3)
C3—C41.511 (4)C20—C211.392 (3)
C3—H3A1.0000C20—H200.9500
C4—C51.524 (4)C21—H210.9500
C4—H4A1.0000O8—C221.429 (3)
C5—C61.526 (3)O8—H8A0.8400
C5—H5A1.0000C22—C231.523 (4)
C6—H61.0000C22—H22A0.9900
C7—C121.384 (4)C22—H22B0.9900
C7—C81.385 (4)C23—H23A0.9800
C8—C91.387 (4)C23—H23B0.9800
C8—H80.9500C23—H23C0.9800
C6—O1—C2114.0 (2)C8—C9—H9119.0
C1—O2—H2109.5C9—C10—C11118.2 (3)
C3—O3—H3109.5C9—C10—C13118.0 (2)
C4—O4—H4109.5C11—C10—C13123.8 (2)
C5—O5—H5109.5C12—C11—C10120.4 (3)
C7—O6—C6116.9 (2)C12—C11—H11119.8
O2—C1—C2112.1 (2)C10—C11—H11119.8
O2—C1—H1A109.2C7—C12—C11120.0 (3)
C2—C1—H1A109.2C7—C12—H12120.0
O2—C1—H1B109.2C11—C12—H12120.0
C2—C1—H1B109.2C14—C13—C10129.2 (2)
H1A—C1—H1B107.9C14—C13—H13115.4
O1—C2—C1106.8 (2)C10—C13—H13115.4
O1—C2—C3109.3 (2)C13—C14—C15118.5 (2)
C1—C2—C3113.5 (3)C13—C14—H14120.8
O1—C2—H2A109.0C15—C14—H14120.8
C1—C2—H2A109.0O7—C15—C14120.6 (2)
C3—C2—H2A109.0O7—C15—C16119.2 (3)
O3—C3—C4111.4 (2)C14—C15—C16120.2 (2)
O3—C3—C2108.7 (2)C21—C16—C17118.6 (2)
C4—C3—C2109.8 (2)C21—C16—C15123.4 (2)
O3—C3—H3A109.0C17—C16—C15118.0 (2)
C4—C3—H3A109.0C18—C17—C16120.6 (3)
C2—C3—H3A109.0C18—C17—H17119.7
O4—C4—C3107.7 (2)C16—C17—H17119.7
O4—C4—C5110.8 (2)C17—C18—C19119.5 (3)
C3—C4—C5109.9 (2)C17—C18—H18120.2
O4—C4—H4A109.5C19—C18—H18120.2
C3—C4—H4A109.5C20—C19—C18121.5 (2)
C5—C4—H4A109.5C20—C19—Br1119.5 (2)
O5—C5—C4113.6 (2)C18—C19—Br1119.0 (2)
O5—C5—C6112.8 (2)C19—C20—C21119.1 (2)
C4—C5—C6106.9 (2)C19—C20—H20120.4
O5—C5—H5A107.8C21—C20—H20120.4
C4—C5—H5A107.8C16—C21—C20120.6 (2)
C6—C5—H5A107.8C16—C21—H21119.7
O6—C6—O1106.3 (2)C20—C21—H21119.7
O6—C6—C5108.9 (2)C22—O8—H8A109.5
O1—C6—C5109.8 (2)O8—C22—C23111.9 (2)
O6—C6—H6110.6O8—C22—H22A109.2
O1—C6—H6110.6C23—C22—H22A109.2
C5—C6—H6110.6O8—C22—H22B109.2
C12—C7—C8120.5 (3)C23—C22—H22B109.2
C12—C7—O6115.1 (2)H22A—C22—H22B107.9
C8—C7—O6124.4 (3)C22—C23—H23A109.5
C7—C8—C9118.9 (3)C22—C23—H23B109.5
C7—C8—H8120.5H23A—C23—H23B109.5
C9—C8—H8120.5C22—C23—H23C109.5
C10—C9—C8122.1 (3)H23A—C23—H23C109.5
C10—C9—H9119.0H23B—C23—H23C109.5
C6—O1—C2—C1179.3 (2)C7—C8—C9—C100.4 (5)
C6—O1—C2—C357.5 (3)C8—C9—C10—C110.7 (5)
O2—C1—C2—O159.0 (3)C8—C9—C10—C13177.9 (3)
O2—C1—C2—C361.6 (3)C9—C10—C11—C121.3 (5)
O1—C2—C3—O3176.5 (2)C13—C10—C11—C12177.2 (3)
C1—C2—C3—O364.4 (3)C8—C7—C12—C110.3 (4)
O1—C2—C3—C454.5 (3)O6—C7—C12—C11179.5 (3)
C1—C2—C3—C4173.6 (2)C10—C11—C12—C70.8 (5)
O3—C3—C4—O457.7 (3)C9—C10—C13—C14174.7 (4)
C2—C3—C4—O462.7 (3)C11—C10—C13—C143.8 (6)
O3—C3—C4—C5178.6 (2)C10—C13—C14—C15176.7 (3)
C2—C3—C4—C558.1 (3)C13—C14—C15—O79.0 (4)
O4—C4—C5—O566.2 (3)C13—C14—C15—C16169.0 (3)
C3—C4—C5—O5174.9 (2)O7—C15—C16—C21172.2 (3)
O4—C4—C5—C658.8 (3)C14—C15—C16—C215.7 (4)
C3—C4—C5—C660.1 (3)O7—C15—C16—C176.2 (4)
C7—O6—C6—O176.7 (3)C14—C15—C16—C17175.8 (3)
C7—O6—C6—C5165.1 (2)C21—C16—C17—C183.1 (4)
C2—O1—C6—O6179.19 (19)C15—C16—C17—C18175.5 (3)
C2—O1—C6—C561.5 (3)C16—C17—C18—C190.0 (4)
O5—C5—C6—O657.9 (3)C17—C18—C19—C202.3 (5)
C4—C5—C6—O6176.6 (2)C17—C18—C19—Br1175.7 (2)
O5—C5—C6—O1173.9 (2)C18—C19—C20—C211.5 (5)
C4—C5—C6—O160.6 (3)Br1—C19—C20—C21176.5 (3)
C6—O6—C7—C12176.9 (3)C17—C16—C21—C203.9 (5)
C6—O6—C7—C83.9 (4)C15—C16—C21—C20174.6 (3)
C12—C7—C8—C90.9 (4)C19—C20—C21—C161.6 (6)
O6—C7—C8—C9179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.972.783 (3)164
O3—H3···O7ii0.842.052.702 (3)134
O3—H3···O40.842.382.786 (3)110
O4—H4···O2iii0.841.852.677 (3)166
O5—H5···O8iv0.841.912.678 (3)152
O8—H8A···O1iv0.842.082.893 (3)163
Symmetry codes: (i) x, y1/2, z1; (ii) x, y+1/2, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H21BrO7·C2H6O
Mr511.36
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)10.977 (2), 7.6518 (15), 13.259 (3)
β (°) 92.08 (3)
V3)1113.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.703, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
9199, 5171, 3636
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.056, 0.75
No. of reflections5171
No. of parameters296
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.39
Absolute structureFlack (1983), 2358 Friedel pairs
Absolute structure parameter0.027 (6)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.972.783 (3)164.3
O3—H3···O7ii0.842.052.702 (3)133.6
O3—H3···O40.842.382.786 (3)110.4
O4—H4···O2iii0.841.852.677 (3)166.0
O5—H5···O8iv0.841.912.678 (3)151.7
O8—H8A···O1iv0.842.082.893 (3)162.9
Symmetry codes: (i) x, y1/2, z1; (ii) x, y+1/2, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of the Analytical & Testing Center of Sichuan University for the X-ray data collection.

References

First citationChen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893–1895.  Google Scholar
First citationFan, B., Li, J. L., Li, Y. & Yin, S. F. (2007). Chin. J. Org. Chem. 27, 1150–1154.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, L., Yin, X., Zheng, L., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o679.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLv, S.-M., Zheng, L., Zhao, H., Li, Y. & Yin, S.-F. (2009). Acta Cryst. E65, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 27–30.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C., Luo, H., Yin, X., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds