organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-4-fluoro-N-phenyl­benzamide

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bGuangxi Institute of Standards and Technology, Nanning 530022, People's Republic of China
*Correspondence e-mail: tzd0517@163.com

(Received 7 June 2009; accepted 27 June 2009; online 4 July 2009)

In the title compound, C13H9ClFNO, the dihedral angle between the two aromatic rings is 13.6 (2)°. In the crystal, the mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into chains extending along the c-axis direction.

Related literature

For the chemical and pharmacological properties of amides, see: Arrizabalaga et al. (1984[Arrizabalaga, P., Castan, P. & Laurent, J. P. (1984). J. Am. Chem. Soc. 106, 4814-4818.]); Šladowska et al. (1999[Šladowska, H., Sieklucka-Dziuba, M., Rajtar, G., Sodowski, M. & Kleinrok, Z. (1999). Farmaco, 54, 773-779.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClFNO

  • Mr = 249.66

  • Monoclinic, C c

  • a = 22.262 (3) Å

  • b = 5.6452 (6) Å

  • c = 9.6743 (12) Å

  • β = 105.832 (2)°

  • V = 1169.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 0.919

  • 2887 measured reflections

  • 1671 independent reflections

  • 1470 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.04

  • 1671 reflections

  • 154 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 637 Friedel pairs

  • Flack parameter: 0.04 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.04 2.857 (3) 159
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemical and pharmacological properties of acid amides have been investigated extensively, owing to their chelating ability with metal ions and to their potentially beneficial chemical and biological activties (Arrizabalaga et al., 1984; Šladowska et al., 1999). As part of our studies on the synthesis and characterization of related compounds, we report here the synthesis and crystal structure of 2-chloro-4-fluoro-N-phenylbenzamide. The C=O bond length is 1.224 (3) Å, indicating that the molecule is in the keto form (Fig. 1). In the crystal structure, the molecules are linked by intermolecular N—H···O hydrogen bonds into chains, which extend along the c direction (Table 1 and Fig. 2)

Related literature top

For the chemical and pharmacological properties of acid amides, see: Arrizabalaga et al. (1984); Šladowska et al. (1999).

Experimental top

A solution of 2-chloro-4-fluorobenzoyl chloride (10 mmol) in 50 ml toluene was added to a solution of aniline (10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring then the resulting white precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo (yield 90%). Elemental analysis calculated: C, 62.54; H, 3.63; N, 5.61; found: C, 62.51; H, 3.62; N, 5.59. Crystals were obtained by slow evaporation of a solution in methanol after one week.

Refinement top

H atoms were placed geometrically and refined using a riding model, with C—H = 0.93Å and N—H = 0.86 Å, respectively. Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonds as dashed lines.
2-Chloro-4-fluoro-N-phenylbenzamide top
Crystal data top
C13H9ClFNOF(000) = 512
Mr = 249.66Dx = 1.418 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 22.262 (3) ÅCell parameters from 1638 reflections
b = 5.6452 (6) Åθ = 2.9–27.0°
c = 9.6743 (12) ŵ = 0.32 mm1
β = 105.832 (2)°T = 298 K
V = 1169.7 (2) Å3Block, colorless
Z = 40.45 × 0.40 × 0.27 mm
Data collection top
Bruker SMART CCD
diffractometer
1671 independent reflections
Radiation source: fine-focus sealed tube1470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2426
Tmin = 0.869, Tmax = 0.919k = 65
2887 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1416P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1671 reflectionsΔρmax = 0.21 e Å3
154 parametersΔρmin = 0.12 e Å3
2 restraintsAbsolute structure: Flack, (1983), 637 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Crystal data top
C13H9ClFNOV = 1169.7 (2) Å3
Mr = 249.66Z = 4
Monoclinic, CcMo Kα radiation
a = 22.262 (3) ŵ = 0.32 mm1
b = 5.6452 (6) ÅT = 298 K
c = 9.6743 (12) Å0.45 × 0.40 × 0.27 mm
β = 105.832 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1671 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1470 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.919Rint = 0.023
2887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.12 e Å3
1671 reflectionsAbsolute structure: Flack, (1983), 637 Friedel pairs
154 parametersAbsolute structure parameter: 0.04 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25827 (4)0.57325 (11)0.03581 (7)0.0567 (2)
F10.19086 (10)0.1122 (4)0.2865 (2)0.0839 (7)
N10.42846 (11)0.5122 (4)0.3097 (2)0.0439 (5)
H10.42000.49440.39070.053*
O10.39721 (10)0.4168 (4)0.0742 (2)0.0619 (6)
C10.38996 (13)0.4115 (4)0.1951 (3)0.0407 (6)
C20.33604 (12)0.2803 (4)0.2241 (2)0.0362 (6)
C30.27498 (13)0.3337 (4)0.1537 (3)0.0392 (6)
C40.22559 (14)0.2060 (5)0.1747 (3)0.0479 (7)
H40.18450.24580.12810.057*
C50.23956 (15)0.0173 (6)0.2675 (3)0.0538 (8)
C60.29854 (16)0.0470 (5)0.3395 (3)0.0513 (8)
H60.30610.17720.40080.062*
C70.34669 (13)0.0887 (5)0.3182 (3)0.0457 (7)
H70.38750.05100.36810.055*
C80.48249 (13)0.6470 (5)0.3095 (3)0.0428 (7)
C90.47880 (18)0.8278 (6)0.2111 (4)0.0632 (8)
H90.44150.85930.14220.076*
C100.5315 (2)0.9607 (7)0.2168 (5)0.0802 (12)
H100.52961.08100.15010.096*
C110.5862 (2)0.9185 (6)0.3187 (5)0.0805 (12)
H110.62121.01070.32200.097*
C120.58956 (18)0.7403 (7)0.4161 (5)0.0810 (10)
H120.62690.71020.48550.097*
C130.53723 (17)0.6047 (6)0.4110 (4)0.0637 (9)
H130.53950.48380.47750.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0651 (5)0.0510 (4)0.0528 (5)0.0117 (4)0.0138 (3)0.0092 (4)
F10.0792 (15)0.0871 (14)0.0939 (17)0.0334 (11)0.0379 (13)0.0012 (12)
N10.0456 (13)0.0597 (13)0.0304 (13)0.0075 (11)0.0170 (10)0.0029 (10)
O10.0661 (15)0.0934 (16)0.0314 (11)0.0216 (11)0.0221 (10)0.0078 (10)
C10.0450 (15)0.0521 (15)0.0278 (15)0.0011 (13)0.0145 (12)0.0014 (12)
C20.0434 (15)0.0422 (14)0.0235 (13)0.0018 (12)0.0101 (11)0.0035 (10)
C30.0473 (16)0.0376 (13)0.0340 (15)0.0002 (11)0.0133 (13)0.0045 (11)
C40.0416 (16)0.0548 (16)0.0473 (17)0.0005 (13)0.0122 (13)0.0097 (14)
C50.060 (2)0.0530 (17)0.056 (2)0.0156 (18)0.0290 (18)0.0052 (14)
C60.070 (2)0.0450 (17)0.0436 (18)0.0034 (14)0.0226 (16)0.0029 (13)
C70.0496 (18)0.0528 (16)0.0337 (15)0.0032 (13)0.0097 (14)0.0016 (13)
C80.0431 (18)0.0492 (15)0.0410 (16)0.0041 (13)0.0199 (14)0.0049 (12)
C90.065 (2)0.0698 (19)0.057 (2)0.0049 (17)0.0210 (17)0.0119 (17)
C100.088 (3)0.072 (2)0.090 (3)0.018 (2)0.042 (3)0.014 (2)
C110.062 (3)0.084 (3)0.102 (3)0.021 (2)0.034 (3)0.005 (2)
C120.048 (2)0.088 (3)0.103 (3)0.0086 (18)0.0121 (18)0.002 (2)
C130.056 (2)0.071 (2)0.062 (2)0.0065 (17)0.0130 (17)0.0067 (16)
Geometric parameters (Å, º) top
Cl1—C31.743 (3)C6—H60.9300
F1—C51.361 (4)C7—H70.9300
N1—C11.330 (4)C8—C131.362 (5)
N1—C81.424 (3)C8—C91.382 (4)
N1—H10.8600C9—C101.381 (5)
O1—C11.224 (3)C9—H90.9300
C1—C21.500 (4)C10—C111.363 (6)
C2—C31.377 (4)C10—H100.9300
C2—C71.392 (4)C11—C121.366 (6)
C3—C41.375 (4)C11—H110.9300
C4—C51.373 (4)C12—C131.383 (5)
C4—H40.9300C12—H120.9300
C5—C61.357 (5)C13—H130.9300
C6—C71.378 (4)
C1—N1—C8125.4 (2)C6—C7—C2122.0 (3)
C1—N1—H1117.3C6—C7—H7119.0
C8—N1—H1117.3C2—C7—H7119.0
O1—C1—N1124.3 (3)C13—C8—C9120.0 (3)
O1—C1—C2120.8 (2)C13—C8—N1119.7 (3)
N1—C1—C2114.9 (2)C9—C8—N1120.3 (3)
C3—C2—C7117.5 (2)C10—C9—C8118.9 (3)
C3—C2—C1122.1 (2)C10—C9—H9120.5
C7—C2—C1120.2 (2)C8—C9—H9120.5
C4—C3—C2122.2 (2)C11—C10—C9121.1 (3)
C4—C3—Cl1117.8 (2)C11—C10—H10119.5
C2—C3—Cl1119.92 (19)C9—C10—H10119.5
C5—C4—C3117.1 (3)C10—C11—C12119.8 (3)
C5—C4—H4121.5C10—C11—H11120.1
C3—C4—H4121.5C12—C11—H11120.1
C6—C5—F1118.8 (3)C11—C12—C13119.8 (4)
C6—C5—C4123.9 (3)C11—C12—H12120.1
F1—C5—C4117.3 (3)C13—C12—H12120.1
C5—C6—C7117.2 (3)C8—C13—C12120.5 (3)
C5—C6—H6121.4C8—C13—H13119.7
C7—C6—H6121.4C12—C13—H13119.7
C8—N1—C1—O12.1 (4)C4—C5—C6—C70.7 (4)
C8—N1—C1—C2179.5 (2)C5—C6—C7—C21.6 (4)
O1—C1—C2—C358.5 (3)C3—C2—C7—C61.1 (4)
N1—C1—C2—C3123.1 (3)C1—C2—C7—C6175.2 (2)
O1—C1—C2—C7117.5 (3)C1—N1—C8—C13133.3 (3)
N1—C1—C2—C760.9 (3)C1—N1—C8—C949.8 (4)
C7—C2—C3—C40.5 (4)C13—C8—C9—C100.9 (5)
C1—C2—C3—C4176.6 (2)N1—C8—C9—C10177.8 (3)
C7—C2—C3—Cl1179.33 (19)C8—C9—C10—C111.0 (6)
C1—C2—C3—Cl14.5 (3)C9—C10—C11—C120.8 (6)
C2—C3—C4—C51.4 (4)C10—C11—C12—C130.4 (6)
Cl1—C3—C4—C5179.8 (2)C9—C8—C13—C120.5 (5)
C3—C4—C5—C60.7 (4)N1—C8—C13—C12177.4 (3)
C3—C4—C5—F1178.8 (2)C11—C12—C13—C80.2 (6)
F1—C5—C6—C7179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.857 (3)159
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9ClFNO
Mr249.66
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)22.262 (3), 5.6452 (6), 9.6743 (12)
β (°) 105.832 (2)
V3)1169.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.45 × 0.40 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.869, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
2887, 1671, 1470
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.04
No. of reflections1671
No. of parameters154
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.12
Absolute structureFlack, (1983), 637 Friedel pairs
Absolute structure parameter0.04 (7)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.857 (3)158.9
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The authors thank the Science Foundation of Hunan Institute of Engineering, China for support.

References

First citationArrizabalaga, P., Castan, P. & Laurent, J. P. (1984). J. Am. Chem. Soc. 106, 4814-4818.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationŠladowska, H., Sieklucka-Dziuba, M., Rajtar, G., Sodowski, M. & Kleinrok, Z. (1999). Farmaco, 54, 773–779.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds