organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-1,3-di­meth­oxy­benzene

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lpxue@163.com

(Received 12 June 2009; accepted 30 June 2009; online 8 July 2009)

Crystals of the title compound, C8H9IO2, were obtained from a dimethyl sulfoxide solution of 2,6-dimethoxy­benzoic acid and iodo­benzene diacetate under a nitro­gen atmosphere at 353 K. In the crystal structure, mol­ecules are linked by weak C—H⋯π inter­actions, generating inter­penetrating one-dimensional chains of perpendicularly oriented mol­ecules extending along [011] and [0[\overline{1}]1]. Chains are also formed through non-bonding C—I⋯π contacts extending in the same directions, projecting a zigzag motif in view down [100]. The I⋯Cg distance is 3.695 (2) Å and the C—I⋯Cg angle is 164.17 (14)°. The mol­ecular symmetry m coincides with the mirror plane of the space group Cmc21, resulting in a half-mol­ecule in the asymmetric unit (Z′ = ½).

Related literature

For the development of a deca­rboxylative palladation reaction and its use in a Heck-type olefination of arene carboxyl­ates, see: Myers et al. (2002[Myers, A. G., Tanaka, D. & Mannion, M. R. (2002). J. Am. Chem. Soc. 124, 11250-11251.]). For a novel system for deca­rboxylative bromination, see: Telvekar & Chettiar (2007[Telvekar, V. N. & Chettiar, S. N. (2007). Tetrahedron Lett. 48, 4529-4532.]). For related structures, see: Kirsop et al. (2004[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1147-o1148.]); Ali et al. (2008[Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.]). For a database study of C-halogen–π inter­actions and their influence on mol­ecular conformation and crystal packing, see: Prasanna & Guru Row (2000[Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.]). For structure validation in chemical crystallography, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9IO2

  • Mr = 264.05

  • Orthorhombic, C m c 21

  • a = 12.5767 (13) Å

  • b = 8.6788 (8) Å

  • c = 8.4338 (9) Å

  • V = 920.55 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 296 K

  • 0.23 × 0.19 × 0.16 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.500, Tmax = 0.616 (expected range = 0.469–0.578)

  • 2731 measured reflections

  • 850 independent reflections

  • 840 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.046

  • S = 1.12

  • 850 reflections

  • 55 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.84 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 362 Friedel pairs

  • Flack parameter: −0.05 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.93 2.94 3.824 (9) 159
Symmetry code: (i) -x, y+1, z. Cg1 is the centroid of the C1–C4/C3A/C2A ring.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Decarboxylation arene carboxylic acids accompanied by simultaneous replacement with different function groups is a useful reaction in organic chemistry (Myers et al., 2002;). Especially iodobenzene derivatives have been found widespread application in organic synthesis because of their selectivity and simplicity of use (Telvekar & Chettiar, 2007). Recently, we found iodobenzene derivatives could be formed by arene carboxylic acid with reaction of PhI(OAc)2. As part of our studies, we report herein the synthesis and crystal structure of the title compound (Fig. 1). The asymmetric unit of the cell contains a half-molecule (Z' = 1/2), which is completed by the space group symmetry m. Atoms I1, C4, C1, H1A occupy the special positions in the mirror plane m. The bond length of C4—I1 is 2.090 (5) Å. The two I—C—C angles, related by mirror symmetry, are 119.5 (2)°.

The molecules in the crystal structure are linked by weak C—H···π interactions to generate a one-dimensional supramolecular structure (Fig. 2). The bond length of C1—H1A···Cg1 is 3.824 (9) Å (Table. 1), Cg1 is the centroid of the C1 C2 C3 C4 C3A C2A ring. In a CSD database study, Prasanna & Guru Row (2000) reported about C-halogen···π interactions and their influence on molecular conformation and crystal packing. The authors found 171 intermolecular C—I···π contacts in the literature, with a mean I···C(π-system) atomic distance of 3.698 (13) Å. In the course of the structure validation (Spek, 2009) of the title compound, a similar geometric parameter (I1···Cg1ii = 3.695 (2) Å) has been found. The C4···Cg1ii distance amounts to 5.735 (5) Å, and the angle C4—I1···Cgii is 164.17 (14) Å. Symmetry code: (ii = -x, y + 2, z - 1). The C4—H1A···π and nonbonding C4—I1···π contacts generate interpenetrating one-dimensional chains of perpendicularly oriented molecules extending along the [0 1 1] and [0 1 1] directions, projecting a zigzag motif in view down [1 0 0] (Fig.3).

Related literature top

For the developement of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates, see: Myers et al. (2002). For a novel system for decarboxylative bromination, see: Telvekar & Chettiar (2007). For the structure of 1-allyloxy-2-bromo-3-(3-phenylallyloxy)benzene, see: Kirsop et al. (2004). For the structure of 4,4'-diiodo-3,3'-dimethoxybiphenyl, see: Ali et al. (2008). For a database study of C-halogen–π interactions and their influence on molecular conformation and crystal packing, see: Prasanna & Guru Row (2000). For structure validation in chemical crystallography, see: Spek (2009). Cg1 is the centroid of the C1–C4,C3A,C2A ring.

Experimental top

The title compound was obtained from a mixture of 2,6-Dimethoxybenzoic acid (36 mg) with Iodobenzene diacetate (77 mg) in DMSO (2 ml) under a nitrogen atmosphere at 353 K for 24 h. The crude product was isolated and purified by silica gel column chromatography. Colorless prism-shaped crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (CH) and Uiso(H) = 1.2Ueq(C), and with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Symmetry code: (2 - x, y, z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional weak C—H···π contacts in the title compound.
[Figure 3] Fig. 3. A view down the a axis showing a section of the zigzag motif of the title compound.
2-Iodo-1,3-dimethoxybenzene top
Crystal data top
C8H9IO2F(000) = 504
Mr = 264.05Dx = 1.905 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1365 reflections
a = 12.5767 (13) Åθ = 3.7–27.5°
b = 8.6788 (8) ŵ = 3.43 mm1
c = 8.4338 (9) ÅT = 296 K
V = 920.55 (16) Å3Prism, white
Z = 40.23 × 0.19 × 0.16 mm
Data collection top
Bruker P4
diffractometer
850 independent reflections
Radiation source: fine-focus sealed tube840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1515
Tmin = 0.500, Tmax = 0.616k = 107
2731 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.6278P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
850 reflectionsΔρmax = 1.02 e Å3
55 parametersΔρmin = 0.84 e Å3
1 restraintAbsolute structure: Flack (1983), 362 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Crystal data top
C8H9IO2V = 920.55 (16) Å3
Mr = 264.05Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 12.5767 (13) ŵ = 3.43 mm1
b = 8.6788 (8) ÅT = 296 K
c = 8.4338 (9) Å0.23 × 0.19 × 0.16 mm
Data collection top
Bruker P4
diffractometer
850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
840 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.616Rint = 0.017
2731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.046Δρmax = 1.02 e Å3
S = 1.12Δρmin = 0.84 e Å3
850 reflectionsAbsolute structure: Flack (1983), 362 Friedel pairs
55 parametersAbsolute structure parameter: 0.05 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.00000.95668 (3)0.54168 (9)0.04533 (12)
O10.8137 (2)0.7922 (4)0.7118 (3)0.0562 (8)
C11.00000.5564 (7)0.9408 (11)0.073 (2)
H1A1.00000.47841.01630.088*
C20.9046 (4)0.6130 (5)0.8860 (6)0.0637 (12)
H2A0.84090.57390.92500.076*
C30.9038 (3)0.7287 (4)0.7725 (4)0.0432 (9)
C41.00000.7859 (5)0.7165 (6)0.0374 (11)
C50.7137 (4)0.7340 (7)0.7685 (7)0.0776 (16)
H5A0.65660.78680.71600.116*
H5B0.70870.75050.88080.116*
H5C0.70910.62560.74640.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04655 (17)0.05029 (18)0.0391 (2)0.0000.0000.01194 (17)
O10.0454 (16)0.0700 (18)0.0531 (19)0.0124 (14)0.0033 (14)0.0111 (15)
C10.099 (6)0.052 (4)0.068 (5)0.0000.0000.030 (3)
C20.085 (3)0.051 (2)0.055 (3)0.016 (2)0.009 (2)0.014 (2)
C30.058 (2)0.0384 (16)0.033 (2)0.0055 (16)0.0005 (16)0.0015 (15)
C40.055 (3)0.030 (2)0.027 (3)0.0000.0000.0008 (19)
C50.056 (3)0.086 (4)0.091 (5)0.023 (3)0.010 (3)0.007 (3)
Geometric parameters (Å, º) top
I1—C42.090 (5)C2—H2A0.9300
O1—C31.359 (5)C3—C41.391 (5)
O1—C51.437 (6)C4—C3i1.391 (5)
C1—C21.376 (6)C5—H5A0.9600
C1—C2i1.376 (6)C5—H5B0.9600
C1—H1A0.9300C5—H5C0.9600
C2—C31.388 (5)
C3—O1—C5117.5 (4)C3i—C4—C3121.0 (5)
C2—C1—C2i121.3 (6)C3i—C4—I1119.5 (2)
C2—C1—H1A119.3C3—C4—I1119.5 (2)
C2i—C1—H1A119.3O1—C5—H5A109.5
C1—C2—C3119.8 (5)O1—C5—H5B109.5
C1—C2—H2A120.1H5A—C5—H5B109.5
C3—C2—H2A120.1O1—C5—H5C109.5
O1—C3—C2124.0 (4)H5A—C5—H5C109.5
O1—C3—C4116.9 (3)H5B—C5—H5C109.5
C2—C3—C4119.1 (4)
C2i—C1—C2—C30.5 (11)O1—C3—C4—C3i179.6 (3)
C5—O1—C3—C20.7 (6)C2—C3—C4—C3i0.1 (7)
C5—O1—C3—C4179.9 (4)O1—C3—C4—I11.9 (5)
C1—C2—C3—O1179.7 (5)C2—C3—C4—I1178.6 (3)
C1—C2—C3—C40.3 (7)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1ii0.932.943.824 (9)159
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H9IO2
Mr264.05
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)296
a, b, c (Å)12.5767 (13), 8.6788 (8), 8.4338 (9)
V3)920.55 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.23 × 0.19 × 0.16
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.500, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
2731, 850, 840
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.12
No. of reflections850
No. of parameters55
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.84
Absolute structureFlack (1983), 362 Friedel pairs
Absolute structure parameter0.05 (4)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.932.943.824 (9)159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Luoyang Normal University for supporting this work.

References

First citationAli, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1147–o1148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMyers, A. G., Tanaka, D. & Mannion, M. R. (2002). J. Am. Chem. Soc. 124, 11250-11251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135–154.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelvekar, V. N. & Chettiar, S. N. (2007). Tetrahedron Lett. 48, 4529-4532.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds