organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1889-o1890

Tris{2-[4-(2-pyrid­yl)pyrimidin-2-ylsulfan­yl]eth­yl}amine

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 4 July 2009; accepted 13 July 2009; online 18 July 2009)

The tripodal character of the title compound, C33H30N10S3, arises from the three thio­ether arms surrounding a central amine N atom. The three arms have approximately the same conformation but distinct geometries in a trans–trans–cis conformation, resulting in a short pyridine–sulfanyl N⋯S distance of 4.320 (7) Å. The distances of the central N atom to the N atoms of three pyridine rings in the arms are 8.305 (7), 8.032 (7) and 5.076 (9)Å. In the crystal, mol­ecules are joined into a three-dimensional supra­molecular network via effective ππ stacking between adjacent heterocycles [centroid–centroid distances of 3.700 (3)–4.118 (4) Å between adjacent inter­layer pyrimidine rings and 3.676 (4) Å between the pyridine rings].

Related literature

For the use of tripodal ligands in crystal engineering, see: Hammes et al. (1998[Hammes, B. S., Ramos-Maldonado, D., Yap, G. P. A., Rheingold, A. L., Young, V. G. & Borovik, A. S. (1998). Coord. Chem. Rev. 174, 241-253.]); Hiraoka et al. (2005[Hiraoka, S., Harano, K., Shiro, M. & Shionoya, M. (2005). Angew. Chem. Int. Ed. 44, 2727-2731.]). For the use of thio­ether ligands in crystal engineering, see: Dong et al. (2008a[Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008a). Inorg. Chem. 47, 2913-2915.],b[Dong, H. Z., Zhu, H. B., Liu, X. & Gou, S. H. (2008b). Polyhedron, 27, 2167-2174.]); Zhang et al. (2008[Zhang, Y.-W., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, m868.]).

[Scheme 1]

Experimental

Crystal data
  • C33H30N10S3

  • Mr = 662.85

  • Orthorhombic, P n a 21

  • a = 16.169 (3) Å

  • b = 25.670 (5) Å

  • c = 7.6166 (14) Å

  • V = 3161.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.947

  • 16502 measured reflections

  • 6104 independent reflections

  • 3099 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.123

  • S = 1.06

  • 6104 reflections

  • 415 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2750 Friedel pairs

  • Flack parameter: −0.33 (12)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, tripodal ligands have attracted much attention because they can be used to construct interesting topologies such as moleular cages and boxes (Hammes et al. 1998, Hiraoka et al. 2005). Meanwhile, flexible thioethers have been well established ligands in coordination and metallosupramolecular chemistry because of their rich structural information (Dong et al. 2008a, b; Zhang et al. 2008). Herein, we report the crystal structure of the title compound, C33H30N10S3, based on a tripodal dithioether ligand -tris(2-(4-(pyridin-3-yl)pyrimidin-2-ylthio)ethyl)amine.

The tripodal character of the title compound arises from the three thioether arms surrounding a central amine nitrogen. The three arms have approximately the same conformation but distinct geometries, in a trans-trans-cis conformation (Fig. 1). The distances of the central nitrogen atom to the nitrogen atoms of three pyridine rings in the arms are 8.305 (7), 8.032 (7) and 5.076 (9)°, respectively. Two different heterocyclic rings in each arm are not coplanar with the angle of 18.0 (3), 11.9 (3) and 26.4 (2)°, respectively. The discrete molecules are joined into a three-dimensional supramolecular network via effective ππ stacking (Fig. 2) between the interlayer adjacent pyrimidine rings with the Cg3···Cg5i separation of 3.700 (3) to 4.118 (4) Å, with a torsion angle of 7.24°, and a Cg4···Cg6ii distance between pyridine rings of 3.676 (4) Å, with a torsion angle of 4.64°. Cg3 and Cg5 are the centroids of the pyrimidine rings (N5 C11 C12 C13 N4 C10) and (N8 C20 C21 C22 N7 C19), and Cg4 and Cg6 are the centroids of the pyridine rings (C14 C15 C16 C17 N6 C18) and (C23 C24 N9 C25 C26 C27). Symmetry codes: (i = 1 - x, 1 - y, 1/2 + z; ii = 1 - x, 1 - y, -1/2 + z).

Related literature top

For the use of tripodal ligands in crystal engineering, see: Hammes et al. (1998); Hiraoka et al. (2005). For the use of thioether ligands in crystal engineering, see: Dong et al. (2008a,b); Zhang et al. (2008).

Experimental top

An ethanol solution (50 ml) of tris(2-bromoethyl)amine (3.35 g, 10 mmol) was added to a dry ethanol solution (300 ml) containing 4-(pyridin-3-yl)pyrimidine-2-thiol (5.67 g, 30 mmol) and sodium hydroxide (1.20 g, 30 mmol). The solution was stirred and refluxed for 8 h. Yellow precipitates were filtered out, washed by water and ethanol, and dried in vacuum. Yield (3.24 g) 48.9%. The yellow crystals were obtained after the filter slowly evaporated.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labelled non-hydrogen atoms. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. A section of the three-dimensional supramolecular network of the title compound viewed down the c-axis.
Tris{2-[4-(2-pyridyl)pyrimidin-2-ylsulfanyl]ethyl}amine top
Crystal data top
C33H30N10S3F(000) = 1384
Mr = 662.85Dx = 1.393 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 787 reflections
a = 16.169 (3) Åθ = 2.4–28.0°
b = 25.670 (5) ŵ = 0.28 mm1
c = 7.6166 (14) ÅT = 295 K
V = 3161.3 (10) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
6104 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1918
Tmin = 0.922, Tmax = 0.947k = 2531
16502 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0045P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6104 reflectionsΔρmax = 0.41 e Å3
415 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 2750 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.33 (12)
Crystal data top
C33H30N10S3V = 3161.3 (10) Å3
Mr = 662.85Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.169 (3) ŵ = 0.28 mm1
b = 25.670 (5) ÅT = 295 K
c = 7.6166 (14) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
6104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3099 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.947Rint = 0.105
16502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.41 e Å3
S = 1.06Δρmin = 0.25 e Å3
6104 reflectionsAbsolute structure: Flack (1983), 2750 Friedel pairs
415 parametersAbsolute structure parameter: 0.33 (12)
1 restraint
Special details top

Experimental. A trial to refine the structure by interchanging the C16 and N6 atoms resulted in slightly worse R-values and larger anisotropic displacement parameters. A further trial to treat the N6 pyridine as a rotational disordered group, using EADP and PART instructions did not show any improvement. The large negative Flack parameter may result from an unresolved twinning problem or from tiny intergrown material that contribute to additional intensities in the data set. This may also explain the relatively large Rint and R(sigma) values after absorption correction and data reduction.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.83661 (8)0.33092 (6)0.0846 (3)0.0824 (6)
S20.41967 (9)0.46398 (6)0.0662 (3)0.0677 (5)
S30.78712 (8)0.58482 (6)0.0894 (3)0.0695 (5)
C10.9379 (3)0.3547 (2)0.1233 (9)0.0600 (19)
C21.0620 (3)0.3334 (3)0.2283 (10)0.071 (2)
H21.09850.30990.27950.085*
C31.0900 (4)0.3824 (2)0.1879 (9)0.0692 (19)
H31.14500.39150.20620.083*
C41.0356 (3)0.4172 (2)0.1206 (7)0.0461 (15)
C51.0572 (3)0.4721 (2)0.0830 (10)0.0564 (15)
C61.1378 (3)0.4874 (3)0.0554 (11)0.077 (2)
H61.17870.46190.05390.092*
C71.1010 (4)0.5729 (3)0.0369 (11)0.093 (3)
H71.11570.60780.02360.112*
C81.0201 (4)0.5610 (2)0.0618 (11)0.080 (2)
H80.98010.58700.06000.096*
C90.9983 (3)0.5105 (2)0.0894 (10)0.0723 (18)
H90.94350.50200.11260.087*
C100.3913 (4)0.4001 (2)0.0151 (8)0.0567 (18)
C110.2849 (4)0.3452 (3)0.0115 (9)0.074 (2)
H110.22880.33770.00330.089*
C120.3360 (4)0.3062 (3)0.0749 (9)0.0715 (19)
H120.31590.27390.10980.086*
C130.4198 (4)0.3189 (2)0.0827 (7)0.0521 (16)
C140.4821 (4)0.2805 (3)0.1415 (9)0.0622 (18)
C150.4630 (5)0.2367 (3)0.2312 (10)0.084 (2)
H150.40770.22980.25500.101*
C160.5189 (7)0.2033 (4)0.2863 (13)0.105 (3)
H160.50440.17410.35160.126*
C170.5973 (8)0.2132 (4)0.2445 (14)0.130 (4)
H170.63640.18890.28050.155*
C180.5641 (5)0.2892 (3)0.1054 (10)0.083 (2)
H180.57850.31940.04520.099*
C190.7194 (3)0.6319 (2)0.0044 (7)0.0524 (16)
C200.7130 (4)0.7117 (2)0.1116 (8)0.0663 (18)
H200.73840.74190.15170.080*
C210.6267 (3)0.7084 (2)0.1158 (8)0.0607 (17)
H210.59460.73560.15880.073*
C220.5919 (3)0.6642 (2)0.0549 (7)0.0412 (13)
C230.5002 (3)0.6563 (2)0.0429 (7)0.0412 (13)
C240.4472 (4)0.6917 (2)0.1183 (9)0.0606 (17)
H240.47030.71850.18420.073*
C250.3355 (3)0.6511 (3)0.0095 (9)0.069 (2)
H250.27840.64940.00510.082*
C260.3812 (3)0.6136 (2)0.0675 (9)0.0636 (17)
H260.35660.58660.13020.076*
C270.4666 (3)0.6166 (2)0.0496 (8)0.0523 (16)
H270.50040.59150.10080.063*
C280.7832 (3)0.3846 (2)0.0206 (9)0.0719 (19)
H28A0.82320.41020.06030.086*
H28B0.75320.37190.12220.086*
C290.7245 (3)0.4093 (2)0.1049 (9)0.0671 (17)
H29A0.69290.38240.16390.080*
H29B0.75540.42830.19320.080*
C300.5859 (3)0.4472 (2)0.1069 (8)0.0635 (17)
H30A0.56980.41270.14620.076*
H30B0.58930.46990.20850.076*
C310.5245 (3)0.4676 (2)0.0191 (8)0.0654 (19)
H31A0.52780.44780.12730.078*
H31B0.53760.50360.04610.078*
C320.7063 (3)0.4951 (2)0.0204 (7)0.0576 (17)
H32A0.67120.51400.10190.069*
H32B0.75870.48890.07870.069*
C330.7220 (3)0.5299 (2)0.1391 (8)0.066 (2)
H33A0.74790.50940.23090.079*
H33B0.66950.54250.18370.079*
N10.9562 (2)0.40316 (17)0.0839 (7)0.0566 (12)
N20.9844 (3)0.31788 (18)0.1973 (7)0.0644 (15)
N31.1603 (3)0.5370 (2)0.0307 (9)0.097 (2)
N40.4466 (3)0.36629 (19)0.0387 (6)0.0526 (13)
N50.3090 (3)0.39190 (19)0.0383 (7)0.0636 (15)
N60.6259 (4)0.2555 (3)0.1540 (10)0.121 (3)
N70.6377 (2)0.62430 (16)0.0073 (6)0.0452 (12)
N80.7597 (3)0.6734 (2)0.0528 (7)0.0618 (14)
N90.3649 (3)0.6902 (2)0.1038 (8)0.0729 (16)
N100.6680 (3)0.44486 (18)0.0158 (6)0.0588 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0393 (8)0.0613 (10)0.1466 (17)0.0050 (7)0.0129 (14)0.0014 (14)
S20.0528 (9)0.0678 (11)0.0827 (12)0.0013 (7)0.0077 (11)0.0170 (12)
S30.0376 (7)0.0688 (10)0.1021 (13)0.0047 (7)0.0071 (11)0.0067 (13)
C10.033 (3)0.055 (4)0.092 (6)0.002 (3)0.011 (3)0.011 (4)
C20.044 (4)0.057 (4)0.112 (6)0.012 (3)0.017 (4)0.015 (4)
C30.041 (4)0.067 (5)0.100 (6)0.000 (3)0.017 (4)0.009 (4)
C40.039 (3)0.051 (4)0.048 (4)0.008 (3)0.000 (3)0.005 (3)
C50.046 (3)0.057 (4)0.066 (4)0.007 (3)0.002 (4)0.005 (4)
C60.048 (4)0.074 (4)0.109 (6)0.004 (3)0.010 (5)0.027 (5)
C70.082 (5)0.064 (5)0.134 (8)0.002 (4)0.012 (5)0.028 (5)
C80.049 (4)0.063 (4)0.129 (7)0.011 (3)0.005 (5)0.019 (5)
C90.047 (3)0.067 (4)0.103 (5)0.001 (3)0.002 (4)0.027 (5)
C100.054 (4)0.051 (4)0.065 (5)0.006 (3)0.002 (3)0.004 (3)
C110.045 (4)0.070 (5)0.106 (6)0.005 (4)0.009 (4)0.012 (4)
C120.065 (5)0.055 (4)0.094 (6)0.001 (4)0.004 (4)0.007 (4)
C130.052 (4)0.060 (5)0.044 (4)0.013 (3)0.001 (3)0.014 (3)
C140.069 (5)0.055 (5)0.063 (5)0.007 (4)0.003 (4)0.014 (4)
C150.100 (6)0.053 (5)0.100 (7)0.008 (5)0.013 (5)0.002 (5)
C160.147 (9)0.075 (7)0.094 (7)0.015 (7)0.007 (8)0.004 (5)
C170.196 (12)0.086 (8)0.107 (9)0.075 (9)0.048 (9)0.005 (6)
C180.082 (5)0.068 (5)0.098 (6)0.034 (4)0.021 (5)0.008 (4)
C190.048 (4)0.050 (4)0.059 (5)0.001 (3)0.000 (3)0.007 (3)
C200.055 (4)0.046 (4)0.098 (5)0.014 (3)0.009 (4)0.006 (4)
C210.037 (3)0.054 (4)0.090 (5)0.004 (3)0.006 (3)0.012 (4)
C220.040 (3)0.043 (4)0.041 (4)0.001 (3)0.005 (3)0.001 (3)
C230.041 (3)0.044 (4)0.039 (4)0.002 (3)0.002 (3)0.001 (3)
C240.053 (4)0.042 (4)0.087 (5)0.006 (3)0.001 (4)0.010 (4)
C250.031 (3)0.087 (5)0.088 (6)0.000 (4)0.001 (3)0.008 (4)
C260.044 (3)0.071 (4)0.076 (5)0.010 (3)0.001 (4)0.005 (5)
C270.042 (3)0.058 (4)0.057 (4)0.000 (3)0.003 (3)0.005 (4)
C280.045 (3)0.082 (5)0.088 (5)0.009 (3)0.012 (4)0.001 (4)
C290.070 (4)0.059 (4)0.072 (5)0.008 (3)0.004 (4)0.004 (4)
C300.059 (4)0.073 (4)0.058 (4)0.012 (3)0.004 (4)0.008 (4)
C310.061 (4)0.066 (4)0.069 (5)0.005 (3)0.013 (4)0.002 (4)
C320.045 (4)0.081 (5)0.047 (4)0.020 (3)0.005 (3)0.003 (4)
C330.044 (4)0.068 (4)0.085 (6)0.004 (3)0.001 (3)0.020 (4)
N10.039 (2)0.053 (3)0.078 (4)0.003 (2)0.000 (3)0.018 (3)
N20.043 (3)0.049 (3)0.101 (4)0.007 (3)0.010 (3)0.007 (3)
N30.062 (4)0.081 (4)0.148 (7)0.002 (3)0.017 (4)0.030 (5)
N40.048 (3)0.054 (3)0.056 (3)0.006 (3)0.004 (3)0.000 (3)
N50.044 (3)0.065 (3)0.082 (5)0.003 (2)0.001 (3)0.006 (3)
N60.103 (5)0.120 (6)0.139 (7)0.053 (5)0.029 (5)0.007 (5)
N70.031 (2)0.040 (3)0.064 (4)0.001 (2)0.003 (2)0.001 (2)
N80.033 (3)0.056 (3)0.097 (4)0.008 (3)0.003 (3)0.004 (3)
N90.039 (3)0.071 (4)0.109 (5)0.009 (3)0.009 (3)0.002 (4)
N100.051 (3)0.052 (3)0.073 (4)0.009 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
S1—C11.773 (5)C17—H170.9300
S1—C281.812 (6)C18—N61.372 (8)
S2—C101.747 (6)C18—H180.9300
S2—C311.818 (6)C19—N81.324 (6)
S3—C191.754 (6)C19—N71.334 (6)
S3—C331.799 (5)C20—N81.318 (6)
C1—N11.312 (6)C20—C211.399 (7)
C1—N21.333 (7)C20—H200.9300
C2—N21.336 (6)C21—C221.348 (7)
C2—C31.372 (8)C21—H210.9300
C2—H20.9300C22—N71.350 (6)
C3—C41.356 (7)C22—C231.500 (7)
C3—H30.9300C23—C271.353 (7)
C4—N11.361 (6)C23—C241.373 (7)
C4—C51.479 (7)C24—N91.337 (7)
C5—C91.371 (7)C24—H240.9300
C5—C61.378 (7)C25—N91.323 (7)
C6—N31.338 (7)C25—C261.350 (7)
C6—H60.9300C25—H250.9300
C7—N31.331 (7)C26—C271.389 (6)
C7—C81.358 (8)C26—H260.9300
C7—H70.9300C27—H270.9300
C8—C91.359 (7)C28—C291.489 (7)
C8—H80.9300C28—H28A0.9700
C9—H90.9300C28—H28B0.9700
C10—N41.312 (6)C29—N101.459 (7)
C10—N51.358 (6)C29—H29A0.9700
C11—N51.317 (7)C29—H29B0.9700
C11—C121.385 (8)C30—C311.477 (7)
C11—H110.9300C30—N101.499 (6)
C12—C131.394 (7)C30—H30A0.9700
C12—H120.9300C30—H30B0.9700
C13—N41.335 (7)C31—H31A0.9700
C13—C141.479 (8)C31—H31B0.9700
C14—C151.352 (8)C32—N101.457 (7)
C14—C181.372 (8)C32—C331.530 (7)
C15—C161.314 (10)C32—H32A0.9700
C15—H150.9300C32—H32B0.9700
C16—C171.331 (12)C33—H33A0.9700
C16—H160.9300C33—H33B0.9700
C17—N61.367 (12)
C1—S1—C28104.5 (3)C21—C22—N7122.1 (5)
C10—S2—C31102.3 (3)C21—C22—C23123.2 (5)
C19—S3—C33104.6 (3)N7—C22—C23114.7 (5)
N1—C1—N2129.9 (5)C27—C23—C24117.8 (5)
N1—C1—S1119.8 (4)C27—C23—C22122.0 (5)
N2—C1—S1110.3 (5)C24—C23—C22120.1 (5)
N2—C2—C3122.9 (6)N9—C24—C23124.6 (6)
N2—C2—H2118.5N9—C24—H24117.7
C3—C2—H2118.5C23—C24—H24117.7
C4—C3—C2118.4 (5)N9—C25—C26125.5 (6)
C4—C3—H3120.8N9—C25—H25117.3
C2—C3—H3120.8C26—C25—H25117.3
C3—C4—N1120.9 (5)C25—C26—C27117.5 (6)
C3—C4—C5123.3 (5)C25—C26—H26121.2
N1—C4—C5115.8 (5)C27—C26—H26121.2
C9—C5—C6117.3 (5)C23—C27—C26119.5 (5)
C9—C5—C4120.9 (5)C23—C27—H27120.3
C6—C5—C4121.6 (5)C26—C27—H27120.3
N3—C6—C5123.3 (5)C29—C28—S1110.1 (5)
N3—C6—H6118.3C29—C28—H28A109.6
C5—C6—H6118.3S1—C28—H28A109.6
N3—C7—C8122.9 (6)C29—C28—H28B109.6
N3—C7—H7118.6S1—C28—H28B109.6
C8—C7—H7118.6H28A—C28—H28B108.2
C7—C8—C9119.1 (6)N10—C29—C28111.6 (6)
C7—C8—H8120.4N10—C29—H29A109.3
C9—C8—H8120.4C28—C29—H29A109.3
C8—C9—C5120.0 (5)N10—C29—H29B109.3
C8—C9—H9120.0C28—C29—H29B109.3
C5—C9—H9120.0H29A—C29—H29B108.0
N4—C10—N5127.4 (5)C31—C30—N10108.0 (5)
N4—C10—S2120.7 (4)C31—C30—H30A110.1
N5—C10—S2111.9 (4)N10—C30—H30A110.1
N5—C11—C12125.6 (6)C31—C30—H30B110.1
N5—C11—H11117.2N10—C30—H30B110.1
C12—C11—H11117.2H30A—C30—H30B108.4
C11—C12—C13115.2 (6)C30—C31—S2112.1 (4)
C11—C12—H12122.4C30—C31—H31A109.2
C13—C12—H12122.4S2—C31—H31A109.2
N4—C13—C12121.2 (5)C30—C31—H31B109.2
N4—C13—C14117.4 (5)S2—C31—H31B109.2
C12—C13—C14121.3 (6)H31A—C31—H31B107.9
C15—C14—C18117.2 (7)N10—C32—C33116.0 (4)
C15—C14—C13123.4 (7)N10—C32—H32A108.3
C18—C14—C13119.4 (6)C33—C32—H32A108.3
C16—C15—C14123.1 (8)N10—C32—H32B108.3
C16—C15—H15118.4C33—C32—H32B108.3
C14—C15—H15118.4H32A—C32—H32B107.4
C15—C16—C17117.0 (10)C32—C33—S3112.8 (4)
C15—C16—H16121.5C32—C33—H33A109.0
C17—C16—H16121.5S3—C33—H33A109.0
C16—C17—N6126.5 (10)C32—C33—H33B109.0
C16—C17—H17116.8S3—C33—H33B109.0
N6—C17—H17116.8H33A—C33—H33B107.8
C14—C18—N6123.1 (8)C1—N1—C4114.6 (5)
C14—C18—H18118.4C1—N2—C2113.1 (5)
N6—C18—H18118.4C7—N3—C6117.3 (5)
N8—C19—N7127.6 (5)C10—N4—C13117.3 (5)
N8—C19—S3111.6 (4)C11—N5—C10113.1 (5)
N7—C19—S3120.8 (4)C17—N6—C18113.0 (8)
N8—C20—C21122.4 (5)C19—N7—C22115.2 (5)
N8—C20—H20118.8C20—N8—C19115.5 (5)
C21—C20—H20118.8C25—N9—C24115.1 (6)
C22—C21—C20117.2 (5)C32—N10—C29112.0 (4)
C22—C21—H21121.4C32—N10—C30115.4 (4)
C20—C21—H21121.4C29—N10—C30111.4 (5)

Experimental details

Crystal data
Chemical formulaC33H30N10S3
Mr662.85
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)16.169 (3), 25.670 (5), 7.6166 (14)
V3)3161.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.922, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
16502, 6104, 3099
Rint0.105
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.123, 1.06
No. of reflections6104
No. of parameters415
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25
Absolute structureFlack (1983), 2750 Friedel pairs
Absolute structure parameter0.33 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008a). Inorg. Chem. 47, 2913–2915.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, H. Z., Zhu, H. B., Liu, X. & Gou, S. H. (2008b). Polyhedron, 27, 2167–2174.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHammes, B. S., Ramos-Maldonado, D., Yap, G. P. A., Rheingold, A. L., Young, V. G. & Borovik, A. S. (1998). Coord. Chem. Rev. 174, 241–253.  Web of Science CSD CrossRef CAS Google Scholar
First citationHiraoka, S., Harano, K., Shiro, M. & Shionoya, M. (2005). Angew. Chem. Int. Ed. 44, 2727–2731.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-W., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, m868.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1889-o1890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds