organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-4-oxo­pentan-2-aminium 2-sulfamoylbenzoate

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 July 2009; accepted 9 July 2009; online 18 July 2009)

In the title salt, C6H14NO+·C7H6NO4S, the 2-sulfamoylbenzoate anion has two intra­molecular hydrogen bonds, forming a five membered C—H⋯O and a seven-membered N—H⋯O twisted ring with ring motifs S(5) and S(7), respectively, while the 2-methyl-4-oxopentan-2-aminium cation also has a stabilizing intra­molecular N—H⋯O hydrogen bond with a twisted S(6) ring motif. The anions form inversion-related dimers with R22(8) ring motifs through inter­molecular N—H⋯O hydrogen bonding. The dimers and cations are further linked and stabilized through inter­molecular N—H⋯O and C—H⋯O bonds, forming zigzag-shaped layers that extend along the crystallographic a axis.

Related literature

For related structures, see: Akram et al. (2008[Akram, R., Siddiqui, W. A., Tahir, M. N., Siddiqui, H. L. & Iqbal, A. (2008). Acta Cryst. E64, m1293-m1294.]); Schmidt et al. (1997[Schmidt, M., Bauer, A. & Schmidbaur, H. (1997). Inorg. Chem. 36, 2047-2050.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.]). For the definition of hydrogen-bond patterns used for graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For applications of aldol condensation, see: Afonso & Crespo (2005[Afonso, C. A. M. & Crespo, J. P. (2005). Green Separation Processes: Fundamentals and Applications 1, p. 363. Basel: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14NO+·C7H6NO4S

  • Mr = 316.37

  • Orthorhombic, P b c a

  • a = 21.1917 (9) Å

  • b = 6.3897 (2) Å

  • c = 23.3751 (11) Å

  • V = 3165.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.28 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 32870 measured reflections

  • 4111 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.04

  • 4111 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.80 (2) 2.21 (2) 3.008 (2) 172 (2)
N1—H1B⋯O2 0.85 (2) 2.10 (2) 2.848 (2) 145.4 (18)
N2—H2A⋯O1 0.89 1.94 2.8124 (18) 167
N2—H2B⋯O2ii 0.89 1.87 2.7622 (18) 176
N2—H2C⋯O5 0.89 2.18 2.824 (2) 129
N2—H2C⋯O1iii 0.89 2.50 2.9878 (17) 115
C3—H3⋯O4 0.93 2.47 2.870 (2) 106
C6—H6⋯O2iii 0.93 2.52 3.444 (2) 170
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We reported the crystal structure of Tetraaquabis(2-sulfamoylbenzoato) manganese(II) (Akram et al., 2008). In continuation of synthesizing metal complexes of o-sulfamoylbenzoic acid (Siddiqui et al., 2007), the title compound (I), (Fig. 1) is prepared in a try of tin complex. The crystal structure of bis(2-Methyl-4-oxopent-2-yl)ammonium bis(phthalato) -beryllium(I) (Schmidt et al., 1997) contains the cation, 2-Methyl-4-oxopentan-2-aminium, of (I). The title compound is an example of aldol condensation which is routinely applied to prepare products used in the fields of biological sciences, industrial catalysis and green chemistry (Afonso & Crespo, 2005).

In the title compound, there are two moieties. In the anion, 2-sulfamoylbenzoate, two intramolecular H-bonds form five and seven membered twisted rings [S(5) and S(7)], while the cation, 2-methyl-4-oxopentan-2-aminium, has also an intramolecular H-bonding with a twisted ring S(6) (Bernstein et al., 1995) (Fig. 1). The cations and anions are connected with each other through H-bonding of the N—H···O type. The 2-sulfamoylbenzoate form dimers with R22(8) ring motifs through intermolecular H-bonding of type N1—H1A···O4i (Table 1) [symmetry code: i = -x, -y, -z + 1]. The dimers are linked to 2-methyl-4-oxopentan-2-aminium moietes through intermolecular H-bondings, (Table 1, Fig. 2), forming zigzag shaped layers that extend along the crystallographic a-axis.

Related literature top

For related crystal structures, see: Akram et al. (2008); Schmidt et al. (1997); Siddiqui et al. (2007). For the definition of hydrogen-bond patterns used for graph-set analysis, see: Bernstein et al. (1995). For applications of aldol condensation, see: Afonso & Crespo (2005).

Experimental top

A suspension of (1.0 g, 4.97 mmol) o-sulfamoylbenzoic acid (Siddiqui et al., 2007), tin(II) chloride dihydrate (0.561 g, 2.49 mmol) and sodium carbonate (0.3 g, 2.83 mmol) was subjected to reflux in a mixture of acetone, methanol, water (1:1:1) for 4 h. The volume of the reaction mixture was reduced to half on a rotary evaporator (11 torr) at room temperature and its pH was adjusted to 12, using aqueous ammonia solution and left over night at the same temperature. The white product was filtered, washed with cold distilled water and dried at room temperature. The product was recrystallized at 313 K from aqueous methanol to obtain colorless needle shaped crystals.

Refinement top

The coordinates of H-atoms of NH2 group were refined. The H-atoms were positioned geometrically, with N—H = 0.89 for NH3, C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and ethylenic H, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. Intramolecular H-bonds are shown by dotted lines.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers of 2-sulfamoylbenzoate and connected to 2-methyl-4-oxopentan-2-aminium through intermolecular H-bondings.
2-Methyl-4-oxopentan-2-aminium 2-sulfamoylbenzoate top
Crystal data top
C6H14NO+·C7H6NO4SF(000) = 1344
Mr = 316.37Dx = 1.328 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4111 reflections
a = 21.1917 (9) Åθ = 2.6–28.8°
b = 6.3897 (2) ŵ = 0.23 mm1
c = 23.3751 (11) ÅT = 296 K
V = 3165.2 (2) Å3Needle, colorless
Z = 80.28 × 0.10 × 0.08 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4111 independent reflections
Radiation source: fine-focus sealed tube2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 7.40 pixels mm-1θmax = 28.8°, θmin = 2.6°
ω scansh = 2728
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 85
Tmin = 0.975, Tmax = 0.983l = 3130
32870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.1665P]
where P = (Fo2 + 2Fc2)/3
4111 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H14NO+·C7H6NO4SV = 3165.2 (2) Å3
Mr = 316.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 21.1917 (9) ŵ = 0.23 mm1
b = 6.3897 (2) ÅT = 296 K
c = 23.3751 (11) Å0.28 × 0.10 × 0.08 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2961 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.032
32870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
4111 reflectionsΔρmin = 0.29 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.23168 (8)0.6184 (3)0.16582 (7)0.0740 (6)
N20.17797 (6)0.6721 (2)0.27542 (6)0.0367 (4)
C80.18387 (11)0.5283 (3)0.15179 (8)0.0534 (6)
C90.12913 (9)0.5023 (3)0.19207 (8)0.0451 (5)
C100.12064 (7)0.6719 (3)0.23730 (7)0.0368 (5)
C110.11386 (9)0.8877 (3)0.21123 (9)0.0504 (6)
C120.06400 (8)0.6216 (3)0.27479 (9)0.0523 (6)
C130.17685 (15)0.4323 (5)0.09405 (10)0.0902 (10)
S10.03137 (2)0.12048 (7)0.41313 (2)0.0366 (1)
O10.18858 (5)0.25236 (19)0.31033 (5)0.0426 (3)
O20.15851 (5)0.02972 (17)0.35914 (5)0.0413 (4)
O30.02610 (5)0.1446 (2)0.35274 (5)0.0482 (4)
O40.02263 (5)0.1683 (2)0.44799 (6)0.0519 (4)
N10.04974 (8)0.1189 (2)0.42641 (8)0.0464 (5)
C10.15011 (7)0.2984 (2)0.40450 (6)0.0307 (4)
C20.09432 (7)0.2818 (2)0.43663 (6)0.0317 (4)
C30.08632 (8)0.3954 (3)0.48632 (7)0.0408 (5)
C40.13337 (9)0.5284 (3)0.50512 (8)0.0465 (6)
C50.18748 (9)0.5514 (3)0.47338 (8)0.0473 (6)
C60.19563 (8)0.4383 (3)0.42347 (7)0.0405 (5)
C70.16605 (7)0.1638 (2)0.35297 (7)0.0324 (4)
H2A0.181960.547450.292020.0441*
H2B0.173650.770140.302180.0441*
H2C0.212180.698890.254580.0441*
H9A0.133770.369040.211480.0540*
H9B0.090760.495170.169520.0540*
H11A0.151600.922370.190570.0605*
H11B0.107170.988620.241050.0605*
H11C0.078520.889000.185540.0605*
H12A0.069550.486180.291860.0628*
H12B0.026410.621580.251880.0628*
H12C0.060290.725290.304320.0628*
H13A0.214960.452820.072570.1083*
H13B0.142220.497010.074360.1083*
H13C0.168840.285110.098030.1083*
H1A0.0454 (10)0.141 (3)0.4599 (10)0.0557*
H1B0.0843 (11)0.148 (3)0.4094 (9)0.0557*
H30.049170.382460.507210.0490*
H40.128420.602050.539140.0558*
H50.218750.643370.485500.0568*
H60.232330.456300.402210.0486*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0674 (10)0.0762 (11)0.0783 (11)0.0084 (8)0.0259 (8)0.0127 (9)
N20.0321 (6)0.0351 (7)0.0430 (8)0.0012 (5)0.0019 (6)0.0067 (6)
C80.0666 (13)0.0476 (10)0.0461 (10)0.0138 (10)0.0033 (9)0.0028 (9)
C90.0520 (10)0.0389 (8)0.0443 (10)0.0064 (8)0.0092 (8)0.0041 (7)
C100.0326 (8)0.0361 (8)0.0417 (9)0.0027 (6)0.0045 (7)0.0009 (7)
C110.0517 (10)0.0403 (9)0.0593 (12)0.0047 (8)0.0053 (9)0.0025 (9)
C120.0348 (9)0.0671 (12)0.0550 (11)0.0065 (8)0.0003 (8)0.0020 (10)
C130.110 (2)0.110 (2)0.0506 (13)0.0401 (18)0.0048 (13)0.0204 (14)
S10.0269 (2)0.0441 (2)0.0389 (2)0.0018 (2)0.0009 (2)0.0023 (2)
O10.0429 (6)0.0449 (6)0.0401 (6)0.0007 (5)0.0096 (5)0.0001 (5)
O20.0435 (6)0.0334 (6)0.0469 (7)0.0033 (5)0.0055 (5)0.0053 (5)
O30.0396 (6)0.0637 (8)0.0412 (7)0.0052 (6)0.0085 (5)0.0042 (6)
O40.0308 (6)0.0665 (8)0.0583 (8)0.0012 (5)0.0095 (5)0.0013 (7)
N10.0480 (8)0.0423 (8)0.0489 (9)0.0057 (7)0.0092 (7)0.0034 (7)
C10.0286 (7)0.0301 (7)0.0335 (8)0.0032 (5)0.0002 (6)0.0007 (6)
C20.0293 (7)0.0327 (7)0.0332 (8)0.0033 (6)0.0012 (6)0.0027 (6)
C30.0397 (8)0.0444 (9)0.0383 (9)0.0057 (7)0.0050 (7)0.0009 (7)
C40.0569 (11)0.0444 (9)0.0382 (9)0.0048 (8)0.0033 (8)0.0103 (8)
C50.0493 (10)0.0416 (9)0.0511 (10)0.0069 (8)0.0102 (8)0.0071 (8)
C60.0348 (8)0.0415 (8)0.0452 (10)0.0051 (7)0.0017 (7)0.0012 (7)
C70.0230 (6)0.0369 (8)0.0373 (8)0.0027 (6)0.0001 (6)0.0021 (6)
Geometric parameters (Å, º) top
S1—O41.4377 (13)C11—H11B0.9600
S1—N11.6086 (14)C11—H11C0.9600
S1—C21.7731 (15)C11—H11A0.9600
S1—O31.4244 (13)C12—H12A0.9600
O5—C81.211 (3)C12—H12C0.9600
O1—C71.2416 (19)C12—H12B0.9600
O2—C71.2551 (17)C13—H13A0.9600
N2—C101.507 (2)C13—H13B0.9600
N2—H2B0.8900C13—H13C0.9600
N2—H2C0.8900C1—C71.518 (2)
N2—H2A0.8900C1—C21.405 (2)
N1—H1B0.85 (2)C1—C61.388 (2)
N1—H1A0.80 (2)C2—C31.380 (2)
C8—C91.503 (3)C3—C41.382 (3)
C8—C131.490 (3)C4—C51.374 (3)
C9—C101.525 (3)C5—C61.383 (3)
C10—C111.514 (3)C3—H30.9300
C10—C121.521 (2)C4—H40.9300
C9—H9A0.9700C5—H50.9300
C9—H9B0.9700C6—H60.9300
S1···O23.1262 (12)H1A···O4iv2.21 (2)
O1···N22.8124 (18)H1A···C4ii3.01 (2)
O1···N2i2.9878 (17)H1B···O22.10 (2)
O2···N2ii2.7622 (18)H1B···C72.95 (2)
O2···S13.1262 (12)H2A···O11.9400
O2···N12.848 (2)H2A···H12A2.4100
O2···O33.0227 (15)H2A···C72.8600
O3···C72.9683 (18)H2A···H9A2.4300
O3···O23.0227 (15)H2B···O2vii1.8700
O4···C4iii3.235 (2)H2B···H11B2.4400
O4···N1iv3.008 (2)H2B···H12C2.4200
O5···C113.213 (3)H2B···C7vii2.7900
O5···C13v3.255 (3)H2C···O1v2.5000
O5···C8v3.189 (3)H2C···H11A2.4300
O5···N22.824 (2)H2C···O52.1800
O1···H9A2.6900H2C···C82.7100
O1···H2Ci2.5000H3···H3iii2.5900
O1···H2A1.9400H3···O42.4700
O1···H62.6800H4···O4iii2.7000
O1···H11Bii2.9000H5···C6v2.9900
O2···H2Bii1.8700H5···H13Aix2.5500
O2···H1B2.10 (2)H6···C7v2.7800
O2···H12Cii2.9000H6···O12.6800
O2···H6i2.5200H6···O2v2.5200
O3···H12Bvi2.6900H9A···O12.6900
O3···H11Cvi2.8600H9A···H2A2.4300
O3···H9Bvi2.7000H9A···H11Bii2.5900
O3···H12A2.7600H9A···H12A2.4400
O4···H13Bvi2.8100H9B···H13B2.4800
O4···H32.4700H9B···O3x2.7000
O4···H4iii2.7000H9B···H11C2.5600
O4···H1Aiv2.21 (2)H9B···H12B2.4900
O5···H11A2.6400H11A···O52.6400
O5···H2C2.1800H11A···H2C2.4300
O5···H11Ai2.8300H11A···O5v2.8300
O5···H13Cv2.8400H11A···C82.7600
N1···O22.848 (2)H11B···H9Avii2.5900
N1···C4ii3.407 (2)H11B···H12C2.4500
N1···O4iv3.008 (2)H11B···O1vii2.9000
N2···O12.8124 (18)H11B···H2B2.4400
N2···O1v2.9878 (17)H11C···H9B2.5600
N2···O2vii2.7622 (18)H11C···H12B2.5600
N2···O52.824 (2)H11C···O3x2.8600
C4···N1vii3.407 (2)H12A···H9A2.4400
C4···O4iii3.235 (2)H12A···H2A2.4100
C7···O32.9683 (18)H12A···O32.7600
C8···O5i3.189 (3)H12B···H9B2.4900
C11···O53.213 (3)H12B···O3x2.6900
C13···O5i3.255 (3)H12B···H11C2.5600
C4···H13Cviii3.0500H12C···O2vii2.9000
C4···H1Avii3.01 (2)H12C···H2B2.4200
C6···H5i2.9900H12C···H11B2.4500
C7···H1B2.95 (2)H13A···H5xi2.5500
C7···H2Bii2.7900H13B···H9B2.4800
C7···H2A2.8600H13B···O4x2.8100
C7···H6i2.7800H13C···O5i2.8400
C8···H2C2.7100H13C···C4xii3.0500
C8···H11A2.7600
O3—S1—C2107.65 (7)C10—C11—H11B109.00
O3—S1—O4118.44 (7)H12A—C12—H12C109.00
O3—S1—N1108.25 (9)H12A—C12—H12B109.00
N1—S1—C2108.12 (8)C10—C12—H12C109.00
O4—S1—N1106.58 (9)H12B—C12—H12C109.00
O4—S1—C2107.44 (7)C10—C12—H12A109.00
H2B—N2—H2C109.00C10—C12—H12B109.00
H2A—N2—H2C109.00C8—C13—H13A109.00
H2A—N2—H2B109.00H13A—C13—H13B109.00
C10—N2—H2A109.00C8—C13—H13B109.00
C10—N2—H2B109.00C8—C13—H13C109.00
C10—N2—H2C109.00H13B—C13—H13C109.00
H1A—N1—H1B121 (2)H13A—C13—H13C109.00
S1—N1—H1B109.0 (13)C6—C1—C7117.63 (13)
S1—N1—H1A109.2 (14)C2—C1—C7124.66 (12)
C9—C8—C13116.4 (2)C2—C1—C6117.57 (13)
O5—C8—C9121.92 (18)S1—C2—C1120.76 (10)
O5—C8—C13121.7 (2)S1—C2—C3118.30 (12)
C8—C9—C10116.54 (16)C1—C2—C3120.91 (14)
N2—C10—C9108.40 (13)C2—C3—C4120.16 (16)
C9—C10—C12110.03 (15)C3—C4—C5119.76 (17)
C11—C10—C12110.46 (15)C4—C5—C6120.26 (17)
N2—C10—C11108.28 (14)C1—C6—C5121.28 (16)
N2—C10—C12107.21 (13)O1—C7—O2126.17 (15)
C9—C10—C11112.29 (15)O1—C7—C1117.67 (12)
C8—C9—H9B108.00O2—C7—C1116.02 (13)
C8—C9—H9A108.00C2—C3—H3120.00
H9A—C9—H9B107.00C4—C3—H3120.00
C10—C9—H9A108.00C3—C4—H4120.00
C10—C9—H9B108.00C5—C4—H4120.00
C10—C11—H11C109.00C4—C5—H5120.00
H11B—C11—H11C109.00C6—C5—H5120.00
H11A—C11—H11B109.00C1—C6—H6119.00
H11A—C11—H11C109.00C5—C6—H6119.00
C10—C11—H11A109.00
O4—S1—C2—C1168.62 (11)C7—C1—C2—S18.69 (19)
O4—S1—C2—C39.43 (15)C7—C1—C2—C3173.31 (14)
N1—S1—C2—C176.71 (14)C2—C1—C6—C52.4 (2)
N1—S1—C2—C3105.24 (14)C7—C1—C6—C5173.44 (16)
O3—S1—C2—C140.02 (13)C2—C1—C7—O1135.91 (15)
O3—S1—C2—C3138.03 (13)C2—C1—C7—O248.2 (2)
O5—C8—C9—C1029.1 (3)C6—C1—C7—O148.5 (2)
C13—C8—C9—C10152.4 (2)C6—C1—C7—O2127.34 (15)
C8—C9—C10—C12179.37 (16)S1—C2—C3—C4177.83 (14)
C8—C9—C10—N262.4 (2)C1—C2—C3—C40.2 (2)
C8—C9—C10—C1157.2 (2)C2—C3—C4—C51.7 (3)
C6—C1—C2—S1175.74 (12)C3—C4—C5—C61.5 (3)
C6—C1—C2—C32.3 (2)C4—C5—C6—C10.6 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1/2, y+1/2, z; (vi) x, y1/2, z+1/2; (vii) x, y+1, z; (viii) x, y+1/2, z+1/2; (ix) x+1/2, y+1, z+1/2; (x) x, y+1/2, z+1/2; (xi) x+1/2, y+1, z1/2; (xii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4iv0.80 (2)2.21 (2)3.008 (2)172 (2)
N1—H1B···O20.85 (2)2.10 (2)2.848 (2)145.4 (18)
N2—H2A···O10.891.942.8124 (18)167
N2—H2B···O2vii0.891.872.7622 (18)176
N2—H2C···O50.892.182.824 (2)129
N2—H2C···O1v0.892.502.9878 (17)115
C3—H3···O40.932.472.870 (2)106
C6—H6···O2v0.932.523.444 (2)170
Symmetry codes: (iv) x, y, z+1; (v) x+1/2, y+1/2, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H14NO+·C7H6NO4S
Mr316.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)21.1917 (9), 6.3897 (2), 23.3751 (11)
V3)3165.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.28 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
32870, 4111, 2961
Rint0.032
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.04
No. of reflections4111
No. of parameters200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.80 (2)2.21 (2)3.008 (2)172 (2)
N1—H1B···O20.85 (2)2.10 (2)2.848 (2)145.4 (18)
N2—H2A···O10.891.942.8124 (18)167
N2—H2B···O2ii0.891.872.7622 (18)176
N2—H2C···O50.892.182.824 (2)129
N2—H2C···O1iii0.892.502.9878 (17)115
C3—H3···O40.932.472.870 (2)106
C6—H6···O2iii0.932.523.444 (2)170
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

References

First citationAfonso, C. A. M. & Crespo, J. P. (2005). Green Separation Processes: Fundamentals and Applications 1, p. 363. Basel: Wiley-VCH.  Google Scholar
First citationAkram, R., Siddiqui, W. A., Tahir, M. N., Siddiqui, H. L. & Iqbal, A. (2008). Acta Cryst. E64, m1293–m1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSchmidt, M., Bauer, A. & Schmidbaur, H. (1997). Inorg. Chem. 36, 2047–2050.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds