metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η5-Cyclo­penta­dien­yl)(η6-1,2-dipyrrolidin-1-ylbenzene)iron(II) hexa­fluoridophosphate

aDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: adam.piorko@smu.ca

(Received 7 July 2009; accepted 16 July 2009; online 22 July 2009)

Both complexed rings in the iron(II) complex cation of the title salt, [Fe(C5H5)(C14H20N2)]PF6, are almost parallel [dihedral angle between planes = 5.34 (13)°]. Among the C atoms of the complexed arene ring, the quaternary C atoms are located at the longest, albeit unequal, distances from the Fe atom [2.252 (2) and 2.168 (2) Å].

Related literature

For the synthesis of the title compound and related structures, see: Lee et al. (1989[Lee, C. C., Zhang, C. H., Abd-El-Aziz, A. S., Piórko, A. & Sutherland, R. G. (1989). J. Organomet. Chem. 364, 217-229.]). For the crystal structures of {(η5-Cp)(η6-arene) Fe(II)}+ salts, see: Nesmeyanov et al. (1977[Nesmeyanov, A. N., Tolstaya, M. V., Rybinskaya, M. I., Shul'pin, G. B., Bokii, N. G., Batsanov, A. S. & Struchkov, Yu. T. (1977). J. Organomet. Chem. 142, 89-93.]); Dubois et al. (1989[Dubois, R. H., Zaworotko, M. J. & White, P. S. (1989). J. Organomet. Chem. 362, 155-161.]); Piórko et al. (1995[Piórko, A., Christie, S. & Zaworotko, M. J. (1995). Acta Cryst. C51, 26-29.]); Manzur et al. (2000[Manzur, C., Baeza, E., Millan, L., Fuentealba, M., Hamon, P., Hamon, J.-R., Boys, D. & Carrillo, D. (2000). J. Organomet. Chem. 608, 126-132.]); Fuente­alba et al. (2007[Fuentealba, M., Toupet, L., Manzur, C., Carrillo, D., Ledoux-Rak, I. & Hamon, J.-R. (2007). J. Organomet. Chem. 692, 1099-1109.]); Manzur et al. (2009[Manzur, C., Millan, L., Fuentealba, M., Trujillo, A. & Carrillo, D. (2009). J. Organomet. Chem. 694, 2043-2046.]) and literature cited therein.

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H20N2)]PF6

  • Mr = 482.23

  • Triclinic, [P \overline 1]

  • a = 9.7303 (6) Å

  • b = 10.6021 (6) Å

  • c = 10.6548 (6) Å

  • α = 93.845 (1)°

  • β = 113.259 (1)°

  • γ = 95.822 (1)°

  • V = 997.7 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 223 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.742, Tmax = 0.866

  • 7374 measured reflections

  • 3501 independent reflections

  • 2493 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 0.92

  • 3501 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, along with similar mono- and/or di-N-butylamino- and cyano-arenes complexed with a cyclopentadienyliron(II) moiety, were reported in the study of nucleophilic aromatic mono- and di-substitution reactions using 1,2-, 1,3-, and 1,4-dichlorobenzene FeCp complexes (Lee et al., 1989). The ORTEP of the title compound is shown in Figure 1. The two aromatic rings are not planar, with an angle of 5.34 (13)° between the planes formed by C1···C6 and C21···C25. This is the largest value among those reported previously by our group, although lower than the values 7° reported for 1,1'-trimethylenebenzene-CpFe cation (Nesmeyanov et al., 1977), and 5.4° reported for hexaethylbenzene-CpFe complex (Dubois et al., 1989). No standard uncertainties were given by these authors.

The Fe ion is located at the distances 1.6601 (12) Å from the Cp and 1.5680 (11) Å from the phenyl ring, and these values are close to those reported in the literature for similar complexes (see for example Piórko et al., 1995; Fuentealba et al., 2007; Manzur et al., 2009; and literature cited therein). The Fe - C1 distance at 2.252 (2) Å (where C1 is one of the quaternary carbon atoms in the phenyl ring bonding N1 of pyrrolidinyl substituent), is the longest among the distances Fe to C atoms of this ring. The distance Fe - C2 (where C2 is another quaternary carbon atom of the complexed phenyl ring) is significantly shorter at 2.168 (2) Å. While this second value is typical for an aromatic C atom (in a FeCp or Fe-pentamethylCp complexed phenyl ring) to Fe distance (see for example Piórko et al., 1995; Manzur et al., 2000; Fuentealba et al., 2007; Manzur et al., 2009, and literature cited therein), the Fe - C1 distance is the longest one reported, to the best of our knowledge, for similar iron complexes. In a complexed arene ring, the longest bond between carbon atoms of this ring is found for C1 - C2 quaternary carbon atoms at 1.444 (3) Å, while all other similar bonds are found in the range 1.398 (4) to 1.427 (3) Å. Both nitrogen atoms show similar bond lengths toward aromatic ring carbon atoms [1.377 (3) Å for a ring N1 - C7···C10 and 1.386 (3) Å for a ring N2 - C11···C14], and toward methylene carbon atoms of pyrrolidinyl rings [range 1.453 (3) to 1.467 (3) Å]. One of the pyrrolidinyl rings (N2 - C11···C14) appears to be quite symmetrical and located in and below the plane of the metal-complexed phenyl ring, while another one (N1 - C7···C10) shows distorted both interatomic distances and angles, and is located above the plane of the complexed phenyl ring. The planes defined by the carbon atoms of both pyrrolidinyl rings are tilted with respect to the phenyl ring plane by 32.12(0.17)° for a plane C11···C14 and 29.40(0.13)° for the plane C7···C10.

Related literature top

For the synthesis of the title compound and related structures, see: Lee et al. (1989). For the crystal structures of {(η5-Cp)(η6-arene) Fe(II)}+ salts, see: Nesmeyanov et al. (1977); Dubois et al. (1989); Piórko et al. (1995); Manzur et al. (2000); Fuentealba et al. (2007); Manzur et al. (2009) and literature cited therein.

Experimental top

The title compound was prepared following the method of Lee et al. (1989). A crystal used for data collection was grown by slow evaporation of solvents from a solution of the complex in acetone-diethyl ether-dichloromethane mixture at 280 K.

Refinement top

The H atoms were placed in geometrically idealized positions with C-H distances of 0.99Å (aromatic) and 0.98Å (methylene) and constrained to ride on the parent C atom with Uiso(H) = 1.2Ueq(C) for aromatic and methylene protons.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the cation showing the labelling of non-H atoms with the thermal ellipsoids shown at 50% probability levels.
(η5-Cyclopentadienyl)(η6-1,2-dipyrrolidin-1-ylbenzene)iron(II) hexafluoridophosphate top
Crystal data top
[Fe(C5H5)(C14H20N2)]PF6Z = 2
Mr = 482.23F(000) = 496
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7303 (6) ÅCell parameters from 2668 reflections
b = 10.6021 (6) Åθ = 23.7–2.8°
c = 10.6548 (6) ŵ = 0.90 mm1
α = 93.845 (1)°T = 223 K
β = 113.259 (1)°Block, orange
γ = 95.822 (1)°0.23 × 0.20 × 0.16 mm
V = 997.7 (1) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3501 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.742, Tmax = 0.866k = 1212
7374 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0452P)2]
where P = (Fo2 + 2Fc2)/3
3501 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Fe(C5H5)(C14H20N2)]PF6γ = 95.822 (1)°
Mr = 482.23V = 997.7 (1) Å3
Triclinic, P1Z = 2
a = 9.7303 (6) ÅMo Kα radiation
b = 10.6021 (6) ŵ = 0.90 mm1
c = 10.6548 (6) ÅT = 223 K
α = 93.845 (1)°0.23 × 0.20 × 0.16 mm
β = 113.259 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2493 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.866Rint = 0.017
7374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.92Δρmax = 0.30 e Å3
3501 reflectionsΔρmin = 0.21 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.67408 (4)0.24243 (4)0.77597 (4)0.03565 (13)
N10.3474 (2)0.07175 (19)0.7496 (2)0.0355 (5)
N20.3557 (2)0.34299 (19)0.7376 (2)0.0369 (5)
C10.4793 (3)0.1542 (2)0.8193 (2)0.0352 (6)
C20.4827 (3)0.2905 (2)0.8161 (2)0.0346 (6)
C30.6194 (3)0.3704 (3)0.8986 (3)0.0434 (7)
H3A0.62790.46180.88440.052*
C40.7521 (3)0.3211 (3)0.9780 (3)0.0512 (8)
H4A0.84950.37871.01970.061*
C50.7520 (3)0.1888 (3)0.9703 (3)0.0493 (7)
H5A0.84910.15391.00730.059*
C60.6191 (3)0.1074 (3)0.8890 (3)0.0425 (7)
H6A0.62590.01670.86680.051*
C70.3512 (3)0.0664 (2)0.7431 (3)0.0454 (7)
H7A0.39830.09260.83540.055*
H7B0.40650.09300.68860.055*
C80.1851 (3)0.1220 (3)0.6735 (3)0.0562 (8)
H8A0.15300.13860.57370.067*
H8B0.16610.20200.70870.067*
C90.1023 (3)0.0212 (3)0.7086 (4)0.0620 (9)
H9A0.01860.00440.62540.074*
H9B0.06120.04980.77390.074*
C100.2115 (3)0.0940 (3)0.7695 (4)0.0764 (11)
H10A0.23450.11080.86770.092*
H10B0.17100.16780.72440.092*
C110.3514 (3)0.4792 (3)0.7581 (4)0.0679 (10)
H11A0.43260.52840.74200.081*
H11B0.36170.50530.85170.081*
C120.2003 (4)0.4983 (3)0.6547 (4)0.0713 (10)
H12A0.12810.50170.69760.086*
H12B0.20750.57820.61490.086*
C130.1514 (4)0.3865 (3)0.5463 (4)0.0756 (11)
H13A0.13700.41490.45690.091*
H13B0.05610.33900.53870.091*
C140.2751 (3)0.3043 (3)0.5904 (3)0.0631 (9)
H14A0.23330.21370.57180.076*
H14B0.34190.31980.54250.076*
C210.8544 (3)0.2220 (4)0.7290 (3)0.0636 (9)
H21A0.95440.20320.79240.076*
C220.7286 (4)0.1314 (3)0.6439 (3)0.0589 (9)
H22A0.72380.03730.63600.071*
C230.6132 (4)0.2020 (4)0.5693 (3)0.0625 (9)
H23A0.51120.16530.50090.075*
C240.6654 (5)0.3286 (4)0.6074 (4)0.0705 (10)
H24A0.60730.39930.57150.085*
C250.8119 (5)0.3425 (3)0.7035 (4)0.0712 (10)
H25A0.87670.42490.74790.085*
P10.22457 (8)0.25827 (7)0.16756 (8)0.0460 (2)
F10.3570 (2)0.2424 (2)0.1210 (2)0.1058 (8)
F20.1610 (2)0.35070 (18)0.0551 (2)0.0988 (7)
F30.2889 (2)0.16555 (17)0.2805 (2)0.1010 (8)
F40.0910 (2)0.27354 (19)0.2133 (2)0.0860 (6)
F50.12317 (19)0.14086 (16)0.05954 (19)0.0766 (6)
F60.32525 (19)0.37579 (15)0.27729 (18)0.0713 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0302 (2)0.0442 (3)0.0345 (2)0.00790 (17)0.01440 (17)0.00601 (17)
N10.0326 (12)0.0336 (12)0.0445 (13)0.0067 (10)0.0194 (11)0.0058 (10)
N20.0322 (12)0.0343 (13)0.0428 (13)0.0092 (10)0.0131 (10)0.0007 (10)
C10.0345 (15)0.0473 (17)0.0299 (14)0.0096 (13)0.0180 (12)0.0070 (12)
C20.0329 (15)0.0423 (16)0.0321 (14)0.0044 (12)0.0177 (12)0.0008 (12)
C30.0415 (17)0.0507 (17)0.0375 (15)0.0010 (14)0.0185 (14)0.0051 (13)
C40.0342 (16)0.080 (2)0.0318 (16)0.0004 (16)0.0086 (13)0.0041 (15)
C50.0366 (17)0.075 (2)0.0382 (16)0.0164 (16)0.0132 (14)0.0172 (16)
C60.0389 (16)0.0540 (18)0.0416 (16)0.0140 (14)0.0203 (14)0.0163 (14)
C70.0524 (18)0.0412 (17)0.0498 (17)0.0138 (14)0.0257 (15)0.0100 (14)
C80.060 (2)0.0476 (19)0.060 (2)0.0034 (16)0.0261 (17)0.0046 (16)
C90.0458 (18)0.0486 (19)0.093 (3)0.0076 (16)0.0270 (18)0.0188 (18)
C100.0490 (19)0.060 (2)0.132 (3)0.0054 (17)0.056 (2)0.015 (2)
C110.052 (2)0.049 (2)0.088 (3)0.0189 (16)0.0138 (19)0.0108 (18)
C120.065 (2)0.056 (2)0.097 (3)0.0278 (18)0.031 (2)0.015 (2)
C130.067 (2)0.067 (2)0.074 (2)0.0283 (19)0.0037 (19)0.009 (2)
C140.054 (2)0.071 (2)0.0473 (19)0.0312 (17)0.0009 (16)0.0007 (17)
C210.0356 (18)0.113 (3)0.056 (2)0.0284 (19)0.0284 (16)0.017 (2)
C220.087 (3)0.0439 (19)0.071 (2)0.0201 (18)0.056 (2)0.0065 (17)
C230.053 (2)0.101 (3)0.0357 (17)0.009 (2)0.0230 (16)0.0054 (18)
C240.093 (3)0.080 (3)0.072 (2)0.039 (2)0.058 (2)0.035 (2)
C250.086 (3)0.061 (2)0.090 (3)0.009 (2)0.067 (2)0.002 (2)
P10.0372 (4)0.0382 (4)0.0523 (5)0.0053 (3)0.0078 (4)0.0025 (4)
F10.0534 (12)0.1385 (19)0.1172 (18)0.0023 (12)0.0375 (12)0.0366 (15)
F20.1071 (17)0.0761 (14)0.0849 (15)0.0096 (12)0.0053 (13)0.0378 (12)
F30.1097 (17)0.0581 (12)0.0898 (15)0.0137 (11)0.0105 (13)0.0263 (11)
F40.0559 (12)0.1074 (16)0.0916 (15)0.0012 (11)0.0342 (11)0.0184 (12)
F50.0623 (12)0.0644 (12)0.0777 (13)0.0119 (9)0.0115 (10)0.0220 (10)
F60.0672 (12)0.0488 (10)0.0784 (13)0.0098 (9)0.0158 (10)0.0095 (9)
Geometric parameters (Å, º) top
Fe1—C222.035 (3)C9—C101.459 (4)
Fe1—C212.032 (3)C9—H9A0.9800
Fe1—C252.039 (3)C9—H9B0.9800
Fe1—C232.044 (3)C10—H10A0.9800
Fe1—C242.046 (3)C10—H10B0.9800
Fe1—C52.047 (3)C11—C121.492 (4)
Fe1—C42.061 (3)C11—H11A0.9800
Fe1—C32.071 (3)C11—H11B0.9800
Fe1—C62.090 (2)C12—C131.495 (4)
Fe1—C22.168 (2)C12—H12A0.9800
Fe1—C12.252 (2)C12—H12B0.9800
N1—C11.377 (3)C13—C141.500 (4)
N1—C101.458 (3)C13—H13A0.9800
N1—C71.467 (3)C13—H13B0.9800
N2—C21.386 (3)C14—H14A0.9800
N2—C111.453 (3)C14—H14B0.9800
N2—C141.456 (3)C21—C251.394 (4)
C1—C61.427 (3)C21—C221.418 (4)
C1—C21.444 (3)C21—H21A0.9900
C2—C31.417 (3)C22—C231.414 (4)
C3—C41.411 (4)C22—H22A0.9900
C3—H3A0.9900C23—C241.361 (4)
C4—C51.400 (4)C23—H23A0.9900
C4—H4A0.9900C24—C251.374 (5)
C5—C61.398 (4)C24—H24A0.9900
C5—H5A0.9900C25—H25A0.9900
C6—H6A0.9900P1—F11.572 (2)
C7—C81.520 (4)P1—F21.5731 (19)
C7—H7A0.9800P1—F41.5762 (19)
C7—H7B0.9800P1—F31.5791 (19)
C8—C91.514 (4)P1—F51.5841 (17)
C8—H8A0.9800P1—F61.5910 (17)
C8—H8B0.9800
C22—Fe1—C2140.80 (12)C1—C6—H6A118.5
C22—Fe1—C2567.36 (12)Fe1—C6—H6A118.5
C21—Fe1—C2540.05 (13)N1—C7—C8103.2 (2)
C22—Fe1—C2340.55 (12)N1—C7—H7A111.1
C21—Fe1—C2367.63 (12)C8—C7—H7A111.1
C25—Fe1—C2366.04 (14)N1—C7—H7B111.1
C22—Fe1—C2467.07 (13)C8—C7—H7B111.1
C21—Fe1—C2467.07 (13)H7A—C7—H7B109.1
C25—Fe1—C2439.29 (13)C9—C8—C7104.9 (2)
C23—Fe1—C2438.88 (12)C9—C8—H8A110.8
C22—Fe1—C5112.92 (13)C7—C8—H8A110.8
C21—Fe1—C5100.20 (12)C9—C8—H8B110.8
C25—Fe1—C5122.30 (15)C7—C8—H8B110.8
C23—Fe1—C5150.64 (14)H8A—C8—H8B108.8
C24—Fe1—C5161.28 (15)C10—C9—C8107.1 (2)
C22—Fe1—C4142.85 (13)C10—C9—H9A110.3
C21—Fe1—C4108.64 (12)C8—C9—H9A110.3
C25—Fe1—C4103.36 (13)C10—C9—H9B110.3
C23—Fe1—C4167.81 (14)C8—C9—H9B110.3
C24—Fe1—C4128.99 (15)H9A—C9—H9B108.6
C5—Fe1—C439.85 (11)C9—C10—N1106.9 (2)
C22—Fe1—C3174.17 (12)C9—C10—H10A110.3
C21—Fe1—C3137.04 (13)N1—C10—H10A110.3
C25—Fe1—C3107.72 (12)C9—C10—H10B110.3
C23—Fe1—C3135.23 (13)N1—C10—H10B110.3
C24—Fe1—C3107.17 (13)H10A—C10—H10B108.6
C5—Fe1—C372.16 (11)N2—C11—C12104.5 (2)
C4—Fe1—C339.95 (10)N2—C11—H11A110.9
C22—Fe1—C6101.81 (11)C12—C11—H11A110.9
C21—Fe1—C6117.43 (12)N2—C11—H11B110.9
C25—Fe1—C6155.33 (14)C12—C11—H11B110.9
C23—Fe1—C6120.86 (13)H11A—C11—H11B108.9
C24—Fe1—C6158.35 (15)C13—C12—C11106.0 (2)
C5—Fe1—C639.48 (10)C13—C12—H12A110.5
C4—Fe1—C671.30 (11)C11—C12—H12A110.5
C3—Fe1—C683.94 (11)C13—C12—H12B110.5
C22—Fe1—C2142.09 (12)C11—C12—H12B110.5
C21—Fe1—C2171.95 (12)H12A—C12—H12B108.7
C25—Fe1—C2131.90 (13)C12—C13—C14106.3 (3)
C23—Fe1—C2110.32 (11)C12—C13—H13A110.5
C24—Fe1—C2106.23 (12)C14—C13—H13A110.5
C5—Fe1—C285.14 (10)C12—C13—H13B110.5
C4—Fe1—C271.66 (10)C14—C13—H13B110.5
C3—Fe1—C238.97 (9)H13A—C13—H13B108.7
C6—Fe1—C270.48 (10)N2—C14—C13104.1 (2)
C22—Fe1—C1114.95 (11)N2—C14—H14A110.9
C21—Fe1—C1149.61 (13)C13—C14—H14A110.9
C25—Fe1—C1166.39 (14)N2—C14—H14B110.9
C23—Fe1—C1106.37 (11)C13—C14—H14B110.9
C24—Fe1—C1127.86 (14)H14A—C14—H14B109.0
C5—Fe1—C170.06 (10)C25—C21—C22106.9 (3)
C4—Fe1—C182.71 (10)C25—C21—Fe170.24 (17)
C3—Fe1—C169.04 (10)C22—C21—Fe169.70 (16)
C6—Fe1—C138.16 (9)C25—C21—H21A126.5
C2—Fe1—C138.09 (9)C22—C21—H21A126.5
C1—N1—C10119.5 (2)Fe1—C21—H21A126.5
C1—N1—C7119.5 (2)C21—C22—C23106.5 (3)
C10—N1—C7107.0 (2)C21—C22—Fe169.50 (16)
C2—N2—C11120.5 (2)C23—C22—Fe170.05 (16)
C2—N2—C14121.6 (2)C21—C22—H22A126.7
C11—N2—C14106.2 (2)C23—C22—H22A126.7
N1—C1—C6121.1 (2)Fe1—C22—H22A126.7
N1—C1—C2121.1 (2)C24—C23—C22108.7 (3)
C6—C1—C2117.7 (2)C24—C23—Fe170.64 (18)
N1—C1—Fe1137.22 (17)C22—C23—Fe169.40 (16)
C6—C1—Fe164.79 (13)C24—C23—H23A125.7
C2—C1—Fe167.82 (13)C22—C23—H23A125.7
N2—C2—C3120.3 (2)Fe1—C23—H23A125.7
N2—C2—C1121.6 (2)C23—C24—C25108.9 (3)
C3—C2—C1118.1 (2)C23—C24—Fe170.48 (18)
N2—C2—Fe1131.77 (17)C25—C24—Fe170.11 (19)
C3—C2—Fe166.82 (14)C23—C24—H24A125.5
C1—C2—Fe174.09 (14)C25—C24—H24A125.5
C4—C3—C2122.3 (3)Fe1—C24—H24A125.5
C4—C3—Fe169.64 (15)C24—C25—C21109.0 (3)
C2—C3—Fe174.21 (14)C24—C25—Fe170.60 (19)
C4—C3—H3A118.2C21—C25—Fe169.71 (17)
C2—C3—H3A118.2C24—C25—H25A125.5
Fe1—C3—H3A118.2C21—C25—H25A125.5
C5—C4—C3119.2 (3)Fe1—C25—H25A125.5
C5—C4—Fe169.55 (16)F1—P1—F289.96 (13)
C3—C4—Fe170.42 (15)F1—P1—F4179.60 (12)
C5—C4—H4A119.5F2—P1—F489.95 (12)
C3—C4—H4A119.5F1—P1—F389.87 (13)
Fe1—C4—H4A119.5F2—P1—F3179.82 (14)
C6—C5—C4119.7 (3)F4—P1—F390.22 (12)
C6—C5—Fe171.92 (15)F1—P1—F590.17 (11)
C4—C5—Fe170.60 (16)F2—P1—F589.60 (11)
C6—C5—H5A119.6F4—P1—F589.45 (10)
C4—C5—H5A119.6F3—P1—F590.45 (10)
Fe1—C5—H5A119.6F1—P1—F690.50 (11)
C5—C6—C1122.2 (3)F2—P1—F690.75 (10)
C5—C6—Fe168.60 (15)F4—P1—F689.89 (10)
C1—C6—Fe177.05 (15)F3—P1—F689.20 (10)
C5—C6—H6A118.5F5—P1—F6179.25 (12)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H20N2)]PF6
Mr482.23
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.7303 (6), 10.6021 (6), 10.6548 (6)
α, β, γ (°)93.845 (1), 113.259 (1), 95.822 (1)
V3)997.7 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.742, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
7374, 3501, 2493
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 0.92
No. of reflections3501
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors thank Saint Mary's University for financial support.

References

First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubois, R. H., Zaworotko, M. J. & White, P. S. (1989). J. Organomet. Chem. 362, 155–161.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFuentealba, M., Toupet, L., Manzur, C., Carrillo, D., Ledoux-Rak, I. & Hamon, J.-R. (2007). J. Organomet. Chem. 692, 1099–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, C. C., Zhang, C. H., Abd-El-Aziz, A. S., Piórko, A. & Sutherland, R. G. (1989). J. Organomet. Chem. 364, 217–229.  CrossRef CAS Web of Science Google Scholar
First citationManzur, C., Baeza, E., Millan, L., Fuentealba, M., Hamon, P., Hamon, J.-R., Boys, D. & Carrillo, D. (2000). J. Organomet. Chem. 608, 126–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationManzur, C., Millan, L., Fuentealba, M., Trujillo, A. & Carrillo, D. (2009). J. Organomet. Chem. 694, 2043–2046.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesmeyanov, A. N., Tolstaya, M. V., Rybinskaya, M. I., Shul'pin, G. B., Bokii, N. G., Batsanov, A. S. & Struchkov, Yu. T. (1977). J. Organomet. Chem. 142, 89–93.  CSD CrossRef CAS Web of Science Google Scholar
First citationPiórko, A., Christie, S. & Zaworotko, M. J. (1995). Acta Cryst. C51, 26–29.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds