organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1884-o1885

2-[(E)-2-(4-Chloro­phen­yl)ethen­yl]-1-methyl­pyridinium 4-bromo­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 16 June 2009; accepted 9 July 2009; online 18 July 2009)

In the title compound, C14H13ClN+·C6H4BrO3S, the cation exists in an E configuration with respect to the ethenyl bond and is almost planar, the dihedral angle between the pyridinium and the benzene rings being 2.80 (7)°. The dihedral angles between the benzene ring of the anion and the pyridinium and benzene rings of the cation are 80.88 (7) and 79.05 (7)°, respectively. In the crystal, the cations are stacked into columns along the a axis as a result of ππ inter­actions between the pyridinium and chloro­benzene rings with a CgCg distance of 3.6976 (8) Å. The anions are linked into chains along the a axis by weak C—H⋯O inter­actions. These anion chains are linked to adjacent cations by additional weak C—H⋯O and C—H⋯Br inter­actions, forming a two-dimensional network parallel to the ab plane. There are also short O⋯Br [3.2567 (11) Å] and C⋯O [2.9917 (18) Å] contacts. The crystal structure is further stabilized by C—H⋯π inter­actions involving the aromatic ring of the anion.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Andreu et al. (1999[Andreu, R., Malfant, I., Lacroix, P. G., Gornitzka, H. & Nakatani, K. (1999). Chem. Mater. 11, 840-848.]); Jagannathan et al. (2007[Jagannathan, K., Kalainathan, S., Gnanasekaran, T., Vijayan, N. & Bhagavannarayana, G. (2007). Cryst. Res. Technol. 42, 483-487.]); Cho et al. (2002[Cho, B. R., Chajara, K., Oh, H. J., Son, K. H. & Jeon, S. J. (2002). Org. Lett. 4, 1703-1706.]); Lakshmanaperumal et al. (2003[Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2003). J. Cryst. Growth, 265, 260-265.]); Veiros (2001[Veiros, L. F. (2001). J. Organomet. Chem. 632, 3-10.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]; 2009[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o1549-o1550.]); Chantrapromma et al. (2006[Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494-o5496.]); Fun et al. (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1554-o1555.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN+·C6H4BrO3S

  • Mr = 466.77

  • Monoclinic, P 21 /c

  • a = 7.9476 (1) Å

  • b = 18.6099 (3) Å

  • c = 12.7173 (2) Å

  • β = 93.467 (1)°

  • V = 1877.50 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 100 K

  • 0.51 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.368, Tmax = 0.586 (expected range = 0.348–0.554)

  • 36425 measured reflections

  • 8227 independent reflections

  • 6744 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.02

  • 8227 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br1i 0.93 2.89 3.6585 (14) 141
C3—H3A⋯O3ii 0.93 2.53 3.4285 (17) 163
C6—H6A⋯O2iii 0.93 2.55 3.4702 (17) 172
C7—H7A⋯O1iv 0.93 2.51 3.4057 (17) 161
C13—H13A⋯O2iii 0.93 2.49 3.4205 (17) 180
C14—H14A⋯O1 0.96 2.49 3.3383 (17) 148
C14—H14C⋯O2iii 0.96 2.48 2.9917 (18) 113
C17—H17A⋯O1v 0.93 2.28 3.2110 (17) 175
C20—H20A⋯O1 0.93 2.55 2.9157 (17) 104
C10—H10ACg3vi 0.93 2.77 3.6831 (16) 169
C12—H12ACg3iii 0.93 2.79 3.6402 (16) 153
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) -x+1, -y+1, -z. Cg3 is the centroid of the C15–C20 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Stilbazolium is a competitive candidate for organic nonlinear optical (NLO) materials and yields high optical nonlinearities including large second harmonic generation (SHG) (Andreu et al., 1999; Jagannathan et al., 2007). Molecules with large π systems have been extensively used in attempts to obtain NLO materials (Veiros, 2001). This hypothesis led to a popular approach towards such materials which are synthesized from compounds with extended π conjugated systems to ensure large second-molecular hyperpolarizability (β) (Lakshmanaperumal et al., 2003). However, this approach will not be effective if the molecules of these compounds are arranged in centrosymmetric space groups (Cho et al., 2002). The title compound (I) has been synthesized and its crystal structure was undertaken in order to establish the orientation of molecules in the solid state. It was found that (I) crystallized in centrosymmetric space group P21/c so no second-order nonlinear optical properties are observed.

In the molecule of the title compound, C14H13ClN+. C6H4BrO3S- (Fig. 1), the cation exists in an E configuration with respect to the ethenyl C6C7 bond [1.3393 (19) Å] and the torsion angle of C5–C6–C7–C8 = 178.74 (14)°. The cation is almost planar with the dihedral angle between the pyridinium and benzene rings of the cation being 2.80 (7)°. The anion is inclined to the cation which is reflected by the dihedral angles between the benzene ring of the anion and the pyridinium and benzene rings of the cation being 80.88 (7) and 79.05 (7)°. The Br substituents are coplanar with the attached benzene rings. The bond distances in both cation and anion have normal values (Allen et al., 1987) and are comparable with the closely related compounds (Chanawanno et al., 2008; 2009; Chantrapromma et al., 2006; Fun et al., 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations are stacked into columns along the a axis as a result of ππ interactions with a Cg1···Cg2 distance of 3.6976 (8) Å (symmetry code 2-x, 1-y, -z); Cg1 and Cg2 are the centroids of the C1–C5/N1 and C8–C13 rings, respectively. The anions are linked into chains along the a axis by a weak C—H···O interaction (Table 1). The anions are linked to the adjacent cations by weak C—H···O and C—H···Br interactions forming a 2D network parallel to the ab plane. There are also O···Br [3.2567 (11) Å; symmetry codes: 1+x, 3/2-y, 1/2+z and -1+x, 3/2-y, -1/2+z] and C···O [2.9917 (18) Å; symmetry code: x, 3/2-y, z] short contacts. The crystal structure is further stabilized by C—H···π interactions involving the C15–C20 ring of the anion. .

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Andreu et al. (1999); Jagannathan et al. (2007); Cho et al. (2002); Lakshmanaperumal et al. (2003); Veiros (2001). For related structures, see: Chanawanno et al. (2008; 2009); Chantrapromma et al. (2006); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986). Cg3 is the centroid of the

C15–C20 ring.

Experimental top

2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium iodide (0.24 g, 0.67 mmol) which was prepared according to a previous report (Chanawanno et al., 2008) was mixed (1:1 molar ratio) with silver(I) 4-bromobenzenesulfonate (0.23 g, 0.67 mmol) (Chantrapromma et al., 2006) in methanol solution (100 ml). The mixture solution was stirred for 30 min, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as an orange solid. Brown block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a month, Mp. 508-509 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from Cl1 and the deepest hole is located at 0.50 Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c axis. Weak C—H···O and C—H···Br interactions are shown as dashed lines.
2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate top
Crystal data top
C14H13ClN+·C6H4BrO3SF(000) = 944
Mr = 466.77Dx = 1.651 Mg m3
Monoclinic, P21/cMelting point = 508–509 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9476 (1) ÅCell parameters from 8227 reflections
b = 18.6099 (3) Åθ = 2.2–35.0°
c = 12.7173 (2) ŵ = 2.46 mm1
β = 93.467 (1)°T = 100 K
V = 1877.50 (5) Å3Block, brown
Z = 40.51 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8227 independent reflections
Radiation source: sealed tube6744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.368, Tmax = 0.586k = 2930
36425 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0355P)2 + 1.227P]
where P = (Fo2 + 2Fc2)/3
8227 reflections(Δ/σ)max = 0.002
245 parametersΔρmax = 1.30 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C14H13ClN+·C6H4BrO3SV = 1877.50 (5) Å3
Mr = 466.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9476 (1) ŵ = 2.46 mm1
b = 18.6099 (3) ÅT = 100 K
c = 12.7173 (2) Å0.51 × 0.26 × 0.24 mm
β = 93.467 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8227 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6744 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.586Rint = 0.026
36425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 1.30 e Å3
8227 reflectionsΔρmin = 0.73 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.233790 (18)0.807999 (8)0.089929 (11)0.01901 (4)
Cl10.39854 (5)0.44980 (2)0.33199 (3)0.02829 (8)
S10.87153 (4)0.769209 (17)0.42302 (2)0.01344 (6)
N11.03961 (15)0.57489 (6)0.26973 (9)0.0163 (2)
O11.01963 (13)0.79162 (6)0.36935 (9)0.01957 (19)
O20.83179 (15)0.81603 (6)0.50948 (8)0.0220 (2)
O30.87526 (14)0.69338 (5)0.45166 (8)0.01917 (19)
C11.1310 (2)0.57574 (8)0.36310 (11)0.0206 (3)
H1A1.17030.61940.39040.025*
C21.1670 (2)0.51371 (8)0.41839 (11)0.0219 (3)
H2A1.23020.51500.48230.026*
C31.1070 (2)0.44893 (8)0.37682 (11)0.0214 (3)
H3A1.12790.40630.41340.026*
C41.01612 (19)0.44842 (8)0.28073 (11)0.0195 (2)
H4A0.97800.40500.25210.023*
C50.98054 (17)0.51241 (7)0.22572 (11)0.0163 (2)
C60.88146 (18)0.51613 (7)0.12614 (11)0.0180 (2)
H6A0.85780.56120.09730.022*
C70.82227 (19)0.45815 (7)0.07362 (11)0.0191 (2)
H7A0.84880.41340.10270.023*
C80.71911 (18)0.45944 (7)0.02595 (11)0.0166 (2)
C90.6540 (2)0.39406 (7)0.06589 (11)0.0207 (3)
H9A0.67900.35180.02930.025*
C100.5528 (2)0.39117 (8)0.15891 (12)0.0225 (3)
H10A0.50820.34770.18360.027*
C110.51988 (19)0.45417 (8)0.21391 (11)0.0193 (2)
C120.58160 (19)0.52002 (8)0.17711 (11)0.0193 (2)
H12A0.55720.56190.21490.023*
C130.68025 (18)0.52247 (7)0.08315 (11)0.0184 (2)
H13A0.72110.56640.05780.022*
C141.0017 (2)0.64493 (7)0.21800 (11)0.0202 (3)
H14A1.05470.68280.25910.030*
H14B0.88200.65240.21260.030*
H14C1.04390.64490.14880.030*
C150.69849 (16)0.77983 (7)0.32849 (10)0.0132 (2)
C160.53518 (17)0.77816 (7)0.36296 (10)0.0166 (2)
H16A0.51880.77070.43390.020*
C170.39682 (17)0.78748 (7)0.29222 (11)0.0162 (2)
H17A0.28790.78590.31500.019*
C180.42424 (17)0.79926 (7)0.18665 (10)0.0146 (2)
C190.58535 (18)0.80181 (7)0.15040 (10)0.0150 (2)
H19A0.60120.81020.07960.018*
C200.72348 (17)0.79154 (7)0.22238 (10)0.0139 (2)
H20A0.83230.79250.19930.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01657 (7)0.02094 (6)0.01858 (6)0.00174 (5)0.00664 (5)0.00000 (5)
Cl10.02706 (18)0.0357 (2)0.02110 (15)0.00237 (15)0.00652 (13)0.00412 (14)
S10.01243 (13)0.01367 (12)0.01385 (12)0.00116 (10)0.00235 (10)0.00005 (9)
N10.0170 (5)0.0155 (5)0.0163 (5)0.0024 (4)0.0002 (4)0.0001 (4)
O10.0124 (4)0.0235 (5)0.0225 (5)0.0018 (4)0.0013 (4)0.0022 (4)
O20.0244 (5)0.0241 (5)0.0169 (4)0.0055 (4)0.0041 (4)0.0065 (4)
O30.0203 (5)0.0150 (4)0.0215 (4)0.0013 (4)0.0043 (4)0.0040 (3)
C10.0247 (7)0.0205 (6)0.0162 (5)0.0026 (5)0.0010 (5)0.0015 (4)
C20.0251 (7)0.0248 (6)0.0154 (5)0.0050 (5)0.0009 (5)0.0015 (5)
C30.0249 (7)0.0205 (6)0.0190 (6)0.0057 (5)0.0023 (5)0.0034 (5)
C40.0209 (6)0.0164 (5)0.0212 (6)0.0017 (5)0.0007 (5)0.0013 (4)
C50.0153 (6)0.0161 (5)0.0173 (5)0.0026 (4)0.0003 (4)0.0000 (4)
C60.0196 (6)0.0169 (5)0.0171 (5)0.0012 (5)0.0020 (5)0.0007 (4)
C70.0226 (6)0.0170 (6)0.0176 (5)0.0008 (5)0.0003 (5)0.0013 (4)
C80.0169 (6)0.0146 (5)0.0183 (5)0.0003 (4)0.0001 (4)0.0001 (4)
C90.0261 (7)0.0141 (5)0.0217 (6)0.0008 (5)0.0021 (5)0.0002 (4)
C100.0278 (7)0.0174 (6)0.0220 (6)0.0026 (5)0.0016 (5)0.0034 (5)
C110.0186 (6)0.0221 (6)0.0170 (5)0.0015 (5)0.0004 (5)0.0023 (4)
C120.0197 (6)0.0176 (6)0.0203 (6)0.0012 (5)0.0014 (5)0.0018 (4)
C130.0182 (6)0.0144 (5)0.0223 (6)0.0009 (4)0.0008 (5)0.0004 (4)
C140.0268 (7)0.0143 (5)0.0191 (6)0.0023 (5)0.0032 (5)0.0006 (4)
C150.0131 (5)0.0127 (5)0.0137 (5)0.0005 (4)0.0008 (4)0.0000 (4)
C160.0145 (5)0.0206 (6)0.0146 (5)0.0016 (5)0.0002 (4)0.0018 (4)
C170.0126 (5)0.0194 (5)0.0166 (5)0.0012 (4)0.0004 (4)0.0010 (4)
C180.0136 (5)0.0140 (5)0.0156 (5)0.0011 (4)0.0036 (4)0.0003 (4)
C190.0175 (6)0.0146 (5)0.0127 (5)0.0004 (4)0.0011 (4)0.0006 (4)
C200.0132 (5)0.0143 (5)0.0141 (5)0.0006 (4)0.0003 (4)0.0002 (4)
Geometric parameters (Å, º) top
Br1—C181.8988 (13)C8—C91.4052 (19)
Cl1—C111.7368 (14)C9—C101.390 (2)
S1—O21.4525 (11)C9—H9A0.9300
S1—O11.4569 (11)C10—C111.382 (2)
S1—O31.4572 (10)C10—H10A0.9300
S1—C151.7820 (13)C11—C121.390 (2)
N1—C11.3540 (18)C12—C131.390 (2)
N1—C51.3615 (18)C12—H12A0.9300
N1—C141.4828 (17)C13—H13A0.9300
C1—C21.373 (2)C14—H14A0.9600
C1—H1A0.9300C14—H14B0.9600
C2—C31.389 (2)C14—H14C0.9600
C2—H2A0.9300C15—C201.3930 (18)
C3—C41.381 (2)C15—C161.3952 (19)
C3—H3A0.9300C16—C171.3889 (18)
C4—C51.4013 (19)C16—H16A0.9300
C4—H4A0.9300C17—C181.3905 (19)
C5—C61.4518 (19)C17—H17A0.9300
C6—C71.3393 (19)C18—C191.3877 (19)
C6—H6A0.9300C19—C201.3993 (18)
C7—C81.4665 (19)C19—H19A0.9300
C7—H7A0.9300C20—H20A0.9300
C8—C131.4048 (19)
O2—S1—O1113.69 (7)C11—C10—C9118.67 (13)
O2—S1—O3113.19 (7)C11—C10—H10A120.7
O1—S1—O3112.92 (7)C9—C10—H10A120.7
O2—S1—C15104.47 (6)C10—C11—C12121.67 (13)
O1—S1—C15105.34 (6)C10—C11—Cl1118.43 (11)
O3—S1—C15106.22 (6)C12—C11—Cl1119.90 (11)
C1—N1—C5121.59 (12)C13—C12—C11119.18 (13)
C1—N1—C14117.56 (12)C13—C12—H12A120.4
C5—N1—C14120.84 (11)C11—C12—H12A120.4
N1—C1—C2121.57 (14)C12—C13—C8120.85 (13)
N1—C1—H1A119.2C12—C13—H13A119.6
C2—C1—H1A119.2C8—C13—H13A119.6
C1—C2—C3118.61 (13)N1—C14—H14A109.5
C1—C2—H2A120.7N1—C14—H14B109.5
C3—C2—H2A120.7H14A—C14—H14B109.5
C4—C3—C2119.44 (13)N1—C14—H14C109.5
C4—C3—H3A120.3H14A—C14—H14C109.5
C2—C3—H3A120.3H14B—C14—H14C109.5
C3—C4—C5120.98 (13)C20—C15—C16119.85 (12)
C3—C4—H4A119.5C20—C15—S1121.43 (10)
C5—C4—H4A119.5C16—C15—S1118.70 (9)
N1—C5—C4117.80 (12)C17—C16—C15120.59 (12)
N1—C5—C6118.24 (12)C17—C16—H16A119.7
C4—C5—C6123.95 (13)C15—C16—H16A119.7
C7—C6—C5123.52 (13)C16—C17—C18118.74 (13)
C7—C6—H6A118.2C16—C17—H17A120.6
C5—C6—H6A118.2C18—C17—H17A120.6
C6—C7—C8125.35 (13)C19—C18—C17121.86 (12)
C6—C7—H7A117.3C19—C18—Br1119.82 (10)
C8—C7—H7A117.3C17—C18—Br1118.27 (10)
C13—C8—C9118.10 (12)C18—C19—C20118.76 (12)
C13—C8—C7123.69 (12)C18—C19—H19A120.6
C9—C8—C7118.20 (12)C20—C19—H19A120.6
C10—C9—C8121.50 (13)C15—C20—C19120.19 (12)
C10—C9—H9A119.3C15—C20—H20A119.9
C8—C9—H9A119.3C19—C20—H20A119.9
C5—N1—C1—C20.7 (2)C10—C11—C12—C130.6 (2)
C14—N1—C1—C2177.66 (14)Cl1—C11—C12—C13179.20 (11)
N1—C1—C2—C30.2 (2)C11—C12—C13—C80.6 (2)
C1—C2—C3—C41.2 (2)C9—C8—C13—C120.7 (2)
C2—C3—C4—C51.4 (2)C7—C8—C13—C12179.97 (14)
C1—N1—C5—C40.5 (2)O2—S1—C15—C20132.62 (11)
C14—N1—C5—C4177.77 (13)O1—S1—C15—C2012.55 (12)
C1—N1—C5—C6179.13 (13)O3—S1—C15—C20107.47 (11)
C14—N1—C5—C60.8 (2)O2—S1—C15—C1645.68 (12)
C3—C4—C5—N10.5 (2)O1—S1—C15—C16165.75 (11)
C3—C4—C5—C6178.01 (14)O3—S1—C15—C1674.23 (12)
N1—C5—C6—C7177.40 (14)C20—C15—C16—C170.5 (2)
C4—C5—C6—C74.1 (2)S1—C15—C16—C17178.87 (11)
C5—C6—C7—C8178.74 (14)C15—C16—C17—C180.7 (2)
C6—C7—C8—C135.2 (2)C16—C17—C18—C190.1 (2)
C6—C7—C8—C9174.16 (15)C16—C17—C18—Br1177.48 (10)
C13—C8—C9—C100.4 (2)C17—C18—C19—C200.59 (19)
C7—C8—C9—C10178.93 (14)Br1—C18—C19—C20176.75 (9)
C8—C9—C10—C111.6 (2)C16—C15—C20—C190.17 (19)
C9—C10—C11—C121.7 (2)S1—C15—C20—C19178.11 (10)
C9—C10—C11—Cl1178.16 (12)C18—C19—C20—C150.72 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.932.893.6585 (14)141
C3—H3A···O3ii0.932.533.4285 (17)163
C6—H6A···O2iii0.932.553.4702 (17)172
C7—H7A···O1iv0.932.513.4057 (17)161
C13—H13A···O2iii0.932.493.4205 (17)180
C14—H14A···O10.962.493.3383 (17)148
C14—H14C···O2iii0.962.482.9917 (18)113
C17—H17A···O1v0.932.283.2110 (17)175
C20—H20A···O10.932.552.9157 (17)104
C10—H10A···Cg3vi0.932.773.6831 (16)169
C12—H12A···Cg3iii0.932.793.6402 (16)153
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13ClN+·C6H4BrO3S
Mr466.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9476 (1), 18.6099 (3), 12.7173 (2)
β (°) 93.467 (1)
V3)1877.50 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.51 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.368, 0.586
No. of measured, independent and
observed [I > 2σ(I)] reflections
36425, 8227, 6744
Rint0.026
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.02
No. of reflections8227
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 0.73

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.932.893.6585 (14)141
C3—H3A···O3ii0.932.533.4285 (17)163
C6—H6A···O2iii0.932.553.4702 (17)172
C7—H7A···O1iv0.932.513.4057 (17)161
C13—H13A···O2iii0.932.493.4205 (17)180
C14—H14A···O10.962.493.3383 (17)148
C14—H14C···O2iii0.962.482.9917 (18)113
C17—H17A···O1v0.932.283.2110 (17)175
C20—H20A···O10.932.552.9157 (17)104
C10—H10A···Cg3vi0.932.773.6831 (16)169
C12—H12A···Cg3iii0.932.793.6402 (16)153
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant and the Graduate School, Prince of Songkla University, for partial financial support. The authors also thank Prince of Songkla University for financial support through the Crystal Materials Research Unit and the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAndreu, R., Malfant, I., Lacroix, P. G., Gornitzka, H. & Nakatani, K. (1999). Chem. Mater. 11, 840-848.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o1549–o1550.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCho, B. R., Chajara, K., Oh, H. J., Son, K. H. & Jeon, S. J. (2002). Org. Lett. 4, 1703–1706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1554–o1555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, K., Kalainathan, S., Gnanasekaran, T., Vijayan, N. & Bhagavannarayana, G. (2007). Cryst. Res. Technol. 42, 483–487.  Web of Science CrossRef CAS Google Scholar
First citationLakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2003). J. Cryst. Growth, 265, 260–265.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeiros, L. F. (2001). J. Organomet. Chem. 632, 3–10.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1884-o1885
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds