metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-benzoato-κ3O,O′:O;κ3O:O,O′-bis­­[(acetato-κO)(1,10-phenanthroline-κ2N,N′)lead(II)] dihydrate

aDepartment of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: xuanxiaopeng@126.com

(Received 22 June 2009; accepted 3 July 2009; online 11 July 2009)

The title compound, [Pb2(CH3COO)2(C7H5O2)2(C12H8N2)2]·2H2O, consists of dimeric units built up around a crystallographic centre of symmetry and two non-coordinating water mol­ecules. Each PbII unit is six-coordinated by a bidentate 1,10-phenanthroline (phen) ligand, a monodentate acetate anion and a bidentate benzoate anion, which also acts as a bridge linking the two PbII atoms. The crystal packing is stabilized by O—H⋯O hydrogen bonds and by ππ inter­actions between the phen rings of neighboring mol­ecules, with a centroid–centroid distance of 3.577 (3) Å.

Related literature

For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]). For related structures, see: Li & Yang (2004[Li, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.]); Xuan et al. (2008[Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2008). Acta Cryst. E64, m152-m153.]); Xuan & Zhao (2007[Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.]); Zhao et al. (2007[Zhao, P.-Z., Xuan, X.-P. & Tang, Q.-H. (2007). Acta Cryst. E63, m3042-m3043.]); Zhu et al. (2004[Zhu, N.-W., An, P. & Wang, X.-Z. (2004). Z. Kristallogr. New Cryst. Struct. 219, 271-272.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2]·2H2O

  • Mr = 1171.15

  • Monoclinic, P 21 /n

  • a = 11.809 (4) Å

  • b = 13.910 (5) Å

  • c = 12.290 (4) Å

  • β = 107.392 (4)°

  • V = 1926.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.79 mm−1

  • T = 294 K

  • 0.11 × 0.07 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.445, Tmax = 0.668

  • 16820 measured reflections

  • 4417 independent reflections

  • 3343 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.057

  • S = 1.03

  • 4417 reflections

  • 263 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O3 2.399 (3)
Pb1—O2 2.426 (3)
Pb1—O1 2.565 (3)
Pb1—O1i 2.828 (3)
Pb1—N2 2.619 (4)
Pb1—N1 2.688 (4)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H2W⋯O3ii 0.83 2.15 2.958 (5) 166
O5—H1W⋯O4 0.83 2.11 2.928 (5) 169
Symmetry code: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Because of the increasing impact of the toxic heavy metal lead on the natural environment, the coordination behavior of lead ion has received more and more attention. Lead(II) is capable of exhibiting a variable coordination number and geometry with or without a stereochemically active lone pair of electrons (Shimoni-Livny et al. 1998). Among such compounds, a number of centrosymmetric dinuclear lead(II) compounds with 1,10-phenanthroline (phen) or its derivatives and oxygen donor ligands have been structurally characterized (Li & Yang, 2004, Xuan et al. 2008, Xuan & Zhao, 2007, Zhao et al. 2007, Zhu et al. 2004,). Recently, we obtained the title lead(II) complex containing two different kinds of anions, by the reaction of lead acetate, sodium benzoate and phen in ethanol/water mixtures.

The crystal structure of the title compound consists of dimeric units [Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2], related by a crystallographic inversion centre (Fig. 1), and two uncoordinated water molecules. Both the acetate and benzoate anions are coordinated to each Pb(II) atom and a carboxylate oxygen of each benzoate anion forms a bridge between the two inversion related lead atoms. Each lead atom is chelated by the two N atoms of phen with Pb—N distances of 2.619 (4), and 2.688 (4) Å, three carbonyl oxygen atoms of two benzoate anions and one carbonyl oxygen atoms of an acetate anion. The weak Pb—O bridging interactions form a four-membered Pb2O2 quadrilateral with a Pb—Pb separation of 4.289 (5) Å.

The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Table 1 and Figure 2). The uncoordinated water molecules participate in hydrogen bonding to oxygen atoms of the acetate anions. The crystal packing is further stabilized by π-π stacking interactions between adjacent phen molecules. The centroid-centroid distance between Cg1 (N1/C8—C11/C19) and Cg2 (N2/C14—C18)[symmetry code: 1 - x, -y, 1 - z] is 3.575 (3) Å.

Related literature top

For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998). For related structures, see: Li & Yang (2004); Xuan et al. (2008); Xuan & Zhao (2007); Zhao et al. (2007); Zhu et al. (2004).

Experimental top

A solution (10 ml) of ethanol containing 1,10-phenanthroline (0.5 mmol) and sodium benzoate (1 mmol) was added slowly to a aqueous solution (10 ml) containing lead acetate trihydrate (0.5 mmol). The mixture was refluxed for 5 h and the resulting white precipitate was filtered. Block-like single crystals were obtained by slow evaporation of the filtrate at room temperature after five days.

Refinement top

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C aromatic). The water H atoms were restrained at O—H = 0.83 Å with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. [Symmetry code for atoms labelled A: -x, -y, 1 - z].
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the hydrogen-bonding (dashed lines) interactions.
[Figure 3] Fig. 3. π-π interactions between the aromatic rings of the title compound.
Di-µ-benzoato- κ3O,O':O;κ3O:O,O'- bis[(acetato-κO)(1,10-phenanthroline-κ2N,N')lead(II)] dihydrate top
Crystal data top
[Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2]·2H2OF(000) = 1120
Mr = 1171.15Dx = 2.019 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3638 reflections
a = 11.809 (4) Åθ = 2.3–23.1°
b = 13.910 (5) ŵ = 8.79 mm1
c = 12.290 (4) ÅT = 294 K
β = 107.392 (4)°Block, colourless
V = 1926.5 (11) Å30.11 × 0.07 × 0.05 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4417 independent reflections
Radiation source: fine-focus sealed tube3343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1515
Tmin = 0.445, Tmax = 0.668k = 1818
16820 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0213P)2]
where P = (Fo2 + 2Fc2)/3
4417 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.73 e Å3
18 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2]·2H2OV = 1926.5 (11) Å3
Mr = 1171.15Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.809 (4) ŵ = 8.79 mm1
b = 13.910 (5) ÅT = 294 K
c = 12.290 (4) Å0.11 × 0.07 × 0.05 mm
β = 107.392 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3343 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.668Rint = 0.044
16820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02918 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
4417 reflectionsΔρmin = 0.85 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.173727 (14)0.043850 (12)0.498903 (14)0.03372 (6)
N10.2720 (3)0.0825 (3)0.3883 (3)0.0359 (9)
N20.3507 (3)0.1041 (3)0.4296 (3)0.0311 (8)
O10.0112 (3)0.0419 (2)0.3725 (3)0.0457 (8)
O20.0805 (3)0.0648 (2)0.2958 (3)0.0423 (8)
O30.0861 (3)0.2009 (2)0.4678 (3)0.0518 (7)
O40.2321 (3)0.2249 (2)0.6272 (3)0.0544 (8)
O50.3305 (3)0.3221 (3)0.8466 (3)0.0727 (12)
H1W0.31190.29220.78520.109*
H2W0.40370.32470.87450.109*
C10.0917 (4)0.0099 (3)0.1737 (4)0.0316 (10)
C20.0902 (4)0.0467 (4)0.0825 (4)0.0496 (13)
H20.03400.09530.09230.059*
C30.1716 (5)0.0322 (4)0.0240 (4)0.0610 (16)
H30.17020.07100.08520.073*
C40.2551 (5)0.0405 (4)0.0383 (5)0.0591 (15)
H40.31010.05080.10940.071*
C50.2564 (4)0.0974 (4)0.0529 (4)0.0517 (14)
H50.31300.14570.04330.062*
C60.1751 (4)0.0836 (3)0.1580 (4)0.0408 (12)
H60.17570.12330.21870.049*
C70.0022 (4)0.0053 (3)0.2875 (4)0.0358 (11)
C80.2340 (5)0.1718 (4)0.3670 (4)0.0478 (13)
H80.16930.19090.39030.057*
C90.2844 (5)0.2388 (4)0.3123 (4)0.0555 (15)
H90.25380.30080.29920.067*
C100.3789 (5)0.2130 (4)0.2779 (4)0.0510 (14)
H100.41440.25720.24150.061*
C110.4235 (4)0.1176 (4)0.2979 (4)0.0408 (12)
C120.5245 (5)0.0854 (4)0.2670 (4)0.0493 (14)
H120.56280.12740.23070.059*
C130.5649 (4)0.0053 (4)0.2898 (4)0.0467 (13)
H130.63180.02420.27030.056*
C140.5072 (4)0.0736 (3)0.3438 (4)0.0342 (11)
C150.5469 (4)0.1678 (4)0.3670 (4)0.0426 (12)
H150.61250.18960.34710.051*
C160.4878 (4)0.2280 (4)0.4197 (4)0.0429 (12)
H160.51160.29170.43450.051*
C170.3918 (4)0.1927 (3)0.4507 (4)0.0367 (11)
H170.35420.23380.48850.044*
C180.4080 (4)0.0436 (3)0.3760 (4)0.0306 (10)
C190.3653 (4)0.0553 (3)0.3537 (4)0.0329 (10)
C200.1402 (5)0.2519 (4)0.5538 (4)0.0513 (7)
C210.0877 (5)0.3482 (4)0.5642 (4)0.0572 (11)
H21A0.02720.34110.60120.086*
H21B0.05350.37510.48960.086*
H21C0.14870.39020.60840.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02875 (9)0.04061 (11)0.03074 (10)0.00348 (9)0.00726 (7)0.00015 (9)
N10.036 (2)0.031 (2)0.038 (2)0.0030 (17)0.0064 (18)0.0009 (17)
N20.030 (2)0.033 (2)0.030 (2)0.0017 (17)0.0089 (16)0.0002 (16)
O10.0395 (19)0.065 (2)0.0321 (18)0.0089 (17)0.0104 (15)0.0032 (17)
O20.043 (2)0.039 (2)0.0392 (19)0.0107 (15)0.0051 (16)0.0036 (15)
O30.0595 (17)0.0502 (16)0.0416 (15)0.0045 (13)0.0091 (13)0.0036 (13)
O40.0521 (18)0.0559 (18)0.0500 (17)0.0017 (15)0.0074 (14)0.0008 (15)
O50.052 (2)0.087 (3)0.085 (3)0.006 (2)0.029 (2)0.008 (2)
C10.028 (2)0.035 (2)0.030 (2)0.004 (2)0.007 (2)0.001 (2)
C20.046 (3)0.056 (3)0.040 (3)0.010 (3)0.004 (2)0.007 (3)
C30.067 (4)0.073 (4)0.037 (3)0.004 (3)0.007 (3)0.010 (3)
C40.058 (4)0.062 (4)0.041 (3)0.003 (3)0.010 (3)0.006 (3)
C50.041 (3)0.047 (3)0.055 (3)0.005 (2)0.004 (3)0.007 (3)
C60.039 (3)0.038 (3)0.043 (3)0.000 (2)0.009 (2)0.003 (2)
C70.036 (3)0.038 (3)0.034 (3)0.004 (2)0.011 (2)0.004 (2)
C80.050 (3)0.043 (3)0.045 (3)0.011 (3)0.007 (3)0.000 (2)
C90.075 (4)0.033 (3)0.048 (3)0.002 (3)0.002 (3)0.007 (3)
C100.071 (4)0.045 (3)0.031 (3)0.013 (3)0.007 (3)0.008 (2)
C110.047 (3)0.046 (3)0.025 (2)0.015 (2)0.005 (2)0.002 (2)
C120.051 (3)0.059 (4)0.040 (3)0.025 (3)0.017 (3)0.005 (3)
C130.039 (3)0.068 (4)0.038 (3)0.018 (3)0.019 (2)0.017 (3)
C140.024 (2)0.050 (3)0.027 (2)0.006 (2)0.0062 (19)0.013 (2)
C150.029 (3)0.057 (3)0.039 (3)0.007 (2)0.007 (2)0.013 (2)
C160.038 (3)0.043 (3)0.047 (3)0.012 (2)0.011 (2)0.000 (2)
C170.034 (3)0.039 (3)0.036 (3)0.004 (2)0.009 (2)0.002 (2)
C180.027 (2)0.034 (2)0.027 (2)0.003 (2)0.0023 (18)0.002 (2)
C190.035 (2)0.035 (3)0.023 (2)0.007 (2)0.0002 (19)0.005 (2)
C200.0571 (16)0.0509 (16)0.0431 (15)0.0041 (13)0.0105 (13)0.0033 (12)
C210.062 (2)0.055 (2)0.049 (2)0.0080 (19)0.0087 (18)0.0094 (18)
Geometric parameters (Å, º) top
Pb1—O32.399 (3)C5—H50.9300
Pb1—O22.426 (3)C6—H60.9300
Pb1—O12.565 (3)C8—C91.384 (7)
Pb1—O1i2.828 (3)C8—H80.9300
Pb1—N22.619 (4)C9—C101.355 (7)
Pb1—N12.688 (4)C9—H90.9300
Pb1—C72.851 (5)C10—C111.421 (7)
N1—C81.320 (6)C10—H100.9300
N1—C191.349 (6)C11—C191.405 (6)
N2—C171.321 (5)C11—C121.428 (7)
N2—C181.366 (5)C12—C131.348 (7)
O1—C71.264 (5)C12—H120.9300
O2—C71.261 (5)C13—C141.442 (7)
O3—C201.273 (6)C13—H130.9300
O4—C201.244 (6)C14—C151.393 (6)
O5—H1W0.8317C14—C181.407 (6)
O5—H2W0.8295C15—C161.370 (6)
C1—C21.375 (6)C15—H150.9300
C1—C61.394 (6)C16—C171.390 (6)
C1—C71.495 (6)C16—H160.9300
C2—C31.387 (7)C17—H170.9300
C2—H20.9300C18—C191.463 (6)
C3—C41.387 (7)C20—C211.498 (7)
C3—H30.9300C21—H21A0.9600
C4—C51.377 (7)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C5—C61.373 (6)
O3—Pb1—O271.68 (11)O1—C7—Pb164.1 (2)
O3—Pb1—O194.51 (11)C1—C7—Pb1176.6 (4)
O2—Pb1—O152.41 (10)N1—C8—C9124.1 (5)
O3—Pb1—N290.27 (12)N1—C8—H8118.0
O2—Pb1—N277.74 (11)C9—C8—H8118.0
O1—Pb1—N2124.72 (10)C10—C9—C8119.2 (5)
O3—Pb1—N1138.24 (11)C10—C9—H9120.4
O2—Pb1—N171.93 (11)C8—C9—H9120.4
O1—Pb1—N178.91 (11)C9—C10—C11119.3 (5)
N2—Pb1—N162.48 (11)C9—C10—H10120.3
O3—Pb1—C782.19 (12)C11—C10—H10120.3
O2—Pb1—C726.08 (12)C19—C11—C10116.8 (5)
O1—Pb1—C726.33 (11)C19—C11—C12120.4 (5)
N2—Pb1—C7101.47 (13)C10—C11—C12122.8 (5)
N1—Pb1—C773.94 (12)C13—C12—C11120.7 (5)
C8—N1—C19117.6 (4)C13—C12—H12119.7
C8—N1—Pb1122.9 (3)C11—C12—H12119.7
C19—N1—Pb1119.5 (3)C12—C13—C14121.8 (5)
C17—N2—C18117.6 (4)C12—C13—H13119.1
C17—N2—Pb1121.1 (3)C14—C13—H13119.1
C18—N2—Pb1121.2 (3)C15—C14—C18118.6 (4)
C7—O1—Pb189.6 (3)C15—C14—C13122.6 (5)
C7—O2—Pb196.1 (3)C18—C14—C13118.8 (5)
C20—O3—Pb1106.8 (3)C16—C15—C14119.0 (4)
H1W—O5—H2W110.9C16—C15—H15120.5
C2—C1—C6119.3 (4)C14—C15—H15120.5
C2—C1—C7120.2 (4)C15—C16—C17119.1 (5)
C6—C1—C7120.5 (4)C15—C16—H16120.5
C1—C2—C3120.8 (5)C17—C16—H16120.5
C1—C2—H2119.6N2—C17—C16124.0 (4)
C3—C2—H2119.6N2—C17—H17118.0
C4—C3—C2119.4 (5)C16—C17—H17118.0
C4—C3—H3120.3N2—C18—C14121.8 (4)
C2—C3—H3120.3N2—C18—C19118.5 (4)
C5—C4—C3119.7 (5)C14—C18—C19119.7 (4)
C5—C4—H4120.1N1—C19—C11123.1 (4)
C3—C4—H4120.1N1—C19—C18118.2 (4)
C6—C5—C4120.8 (5)C11—C19—C18118.7 (4)
C6—C5—H5119.6O4—C20—O3123.1 (5)
C4—C5—H5119.6O4—C20—C21120.1 (5)
C5—C6—C1119.9 (5)O3—C20—C21116.8 (5)
C5—C6—H6120.0C20—C21—H21A109.5
C1—C6—H6120.0C20—C21—H21B109.5
O2—C7—O1121.9 (4)H21A—C21—H21B109.5
O2—C7—C1118.9 (4)C20—C21—H21C109.5
O1—C7—C1119.2 (4)H21A—C21—H21C109.5
O2—C7—Pb157.8 (2)H21B—C21—H21C109.5
O3—Pb1—N1—C8124.4 (3)C6—C1—C7—O18.0 (7)
O2—Pb1—N1—C893.9 (4)O3—Pb1—C7—O263.8 (3)
O1—Pb1—N1—C840.1 (3)O1—Pb1—C7—O2179.1 (5)
N2—Pb1—N1—C8179.2 (4)N2—Pb1—C7—O224.9 (3)
C7—Pb1—N1—C866.7 (4)N1—Pb1—C7—O281.6 (3)
O3—Pb1—N1—C1956.5 (4)O3—Pb1—C7—O1117.1 (3)
O2—Pb1—N1—C1987.0 (3)O2—Pb1—C7—O1179.1 (5)
O1—Pb1—N1—C19140.8 (3)N2—Pb1—C7—O1154.2 (3)
N2—Pb1—N1—C191.7 (3)N1—Pb1—C7—O197.5 (3)
C7—Pb1—N1—C19114.2 (3)C19—N1—C8—C90.4 (7)
O3—Pb1—N2—C1734.5 (3)Pb1—N1—C8—C9178.7 (4)
O2—Pb1—N2—C17105.7 (3)N1—C8—C9—C100.2 (8)
O1—Pb1—N2—C17130.2 (3)C8—C9—C10—C110.5 (7)
N1—Pb1—N2—C17178.5 (3)C9—C10—C11—C190.2 (7)
C7—Pb1—N2—C17116.6 (3)C9—C10—C11—C12178.4 (5)
O3—Pb1—N2—C18149.1 (3)C19—C11—C12—C130.6 (7)
O2—Pb1—N2—C1877.9 (3)C10—C11—C12—C13178.6 (4)
O1—Pb1—N2—C1853.4 (3)C11—C12—C13—C141.3 (7)
N1—Pb1—N2—C182.1 (3)C12—C13—C14—C15179.3 (4)
C7—Pb1—N2—C1867.0 (3)C12—C13—C14—C181.7 (7)
O3—Pb1—O1—C762.2 (3)C18—C14—C15—C160.3 (6)
O2—Pb1—O1—C70.5 (3)C13—C14—C15—C16179.3 (4)
N2—Pb1—O1—C731.3 (3)C14—C15—C16—C171.5 (7)
N1—Pb1—O1—C776.1 (3)C18—N2—C17—C161.3 (6)
O3—Pb1—O2—C7110.5 (3)Pb1—N2—C17—C16177.8 (3)
O1—Pb1—O2—C70.5 (3)C15—C16—C17—N22.0 (7)
N2—Pb1—O2—C7155.0 (3)C17—N2—C18—C140.1 (6)
N1—Pb1—O2—C790.3 (3)Pb1—N2—C18—C14176.5 (3)
O2—Pb1—O3—C20157.3 (4)C17—N2—C18—C19178.9 (4)
O1—Pb1—O3—C20154.8 (3)Pb1—N2—C18—C192.5 (5)
N2—Pb1—O3—C2080.3 (3)C15—C14—C18—N20.4 (6)
N1—Pb1—O3—C20126.8 (3)C13—C14—C18—N2178.6 (4)
C7—Pb1—O3—C20178.1 (4)C15—C14—C18—C19179.4 (4)
C6—C1—C2—C31.0 (8)C13—C14—C18—C190.3 (6)
C7—C1—C2—C3178.9 (5)C8—N1—C19—C110.7 (6)
C1—C2—C3—C40.2 (9)Pb1—N1—C19—C11178.4 (3)
C2—C3—C4—C50.0 (9)C8—N1—C19—C18179.6 (4)
C3—C4—C5—C60.6 (9)Pb1—N1—C19—C181.2 (5)
C4—C5—C6—C11.4 (8)C10—C11—C19—N10.4 (6)
C2—C1—C6—C51.6 (7)C12—C11—C19—N1177.7 (4)
C7—C1—C6—C5179.5 (4)C10—C11—C19—C18180.0 (4)
Pb1—O2—C7—O11.0 (5)C12—C11—C19—C181.9 (6)
Pb1—O2—C7—C1179.3 (4)N2—C18—C19—N10.8 (6)
Pb1—O1—C7—O20.9 (5)C14—C18—C19—N1178.2 (4)
Pb1—O1—C7—C1179.4 (4)N2—C18—C19—C11179.6 (4)
C2—C1—C7—O26.3 (7)C14—C18—C19—C111.4 (6)
C6—C1—C7—O2171.7 (4)Pb1—O3—C20—O410.0 (7)
C2—C1—C7—O1174.0 (4)Pb1—O3—C20—C21169.7 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2W···O3ii0.832.152.958 (5)166
O5—H1W···O40.832.112.928 (5)169
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2]·2H2O
Mr1171.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)11.809 (4), 13.910 (5), 12.290 (4)
β (°) 107.392 (4)
V3)1926.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)8.79
Crystal size (mm)0.11 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.445, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
16820, 4417, 3343
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.057, 1.03
No. of reflections4417
No. of parameters263
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.85

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Pb1—O32.399 (3)Pb1—O1i2.828 (3)
Pb1—O22.426 (3)Pb1—N22.619 (4)
Pb1—O12.565 (3)Pb1—N12.688 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2W···O3ii0.832.152.958 (5)165.7
O5—H1W···O40.832.112.928 (5)169.2
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Youth Natural Science Foundation of Henan Normal University for financial support.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423–m425.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2008). Acta Cryst. E64, m152–m153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z., Xuan, X.-P. & Tang, Q.-H. (2007). Acta Cryst. E63, m3042–m3043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, N.-W., An, P. & Wang, X.-Z. (2004). Z. Kristallogr. New Cryst. Struct. 219, 271–272.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds