organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1878-o1879

Stemofoline ethyl acetate solvate

aSchool of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, bDepartment of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia, cDepartment of Biology, Chang Mai University, Chang Mai 50202, Thailand, and dResearch School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
*Correspondence e-mail: spyne@uow.edu.au, willis@rsc.anu.edu.au

(Received 1 July 2009; accepted 9 July 2009; online 18 July 2009)

Crystals of the title compound, C22H29NO5·C4H8O2, {[systematic name: (2R,3R,5R,5aS,6R,8aR,9S)-(5Z)-5-[3-butyl­tetra­hydro-6-methyl-2,5-methano-4,3,8a-[1]propan­yl[3]yl­idene­furo[3,2-f][1,4]oxazepin-7(5H)-yl­idene]-4-meth­oxy-3-methyl­furan-2(5H)-one ethyl acetate solvate} were isolated from the root extracts of Stemona aphylla (Stemonaceae). The structure closely resembles those of stemofoline derivatives which have previously been reported. Inter­molecular contacts are observed between some C-bonded H atoms and nearby O atoms, perhaps indicating weak inter­actions which could influence the packing of species within the unit cell.

Related literature

For the single-crystal X-ray structure and absolute configuration of stemofoline as the hydro­bromide monohydrate, see: Irie et al. (1970[Irie, H., Masaki, N., Ohno, K., Osaki, K., Taga, T. & Uyeo, S. (1970). J. Chem. Soc. Chem. Commun. p. 1066.]). For two stemofoline alkaloids with structural modifications in the butyl side chain, see: Seger et al. (2004[Seger, C., Mereiter, K., Kaltenegger, E., Pacher, T., Greger, H. & Hofer, O. (2004). Chem. Biodivers. 1, 265-279.]). For the isolation of stemofoline from the root extracts of Stemona aphylla (Stemonaceae), see: Mungkornasawakul et al. (2009[Mungkornasawakul, P., Chaiyong, S., Sastraruji, T., Jatisatienr, A., Jatisatienr, C., Pyne, S. G., Ung, A. T., Korth, J. & Lie, W. (2009). J. Nat. Prod. 72, 848-851.]). For details of the weighting scheme used, see: Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]); Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • C22H29NO5·C4H8O2

  • Mr = 475.58

  • Orthorhombic, P 21 21 21

  • a = 10.3908 (1) Å

  • b = 10.6549 (2) Å

  • c = 22.4143 (4) Å

  • V = 2481.55 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.45 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: integration via Gaussian method (Coppens, 1970[Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis, in Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) implemented in maXus (Mackay et al., 2000[Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (2000). maXus. Nonius BV, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.]) Tmin = 0.976, Tmax = 0.996

  • 41745 measured reflections

  • 3209 independent reflections

  • 2149 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.119

  • S = 0.91

  • 3208 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H171⋯O4 0.97 2.33 3.046 (4) 130
C22—H222⋯O5i 0.97 2.43 3.374 (4) 165
C1—H11⋯O6 0.98 2.66 3.485 (4) 142
C10—H101⋯O6 0.97 2.70 3.477 (3) 138
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) in TEXSAN (Molecular Structure Corporation, 1997[Molecular Structure Corporation (1997). TEXSAN. MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The crystallographic asymmetric unit consists of one C22H29NO5 molecule and one ethyl acetate molecule of crystallization. Examination of distances and angles around the N atom shows N4—C5 to be slightly shorter than the other two distances and for C5—N4—C9a to be significantly larger than the other two angles. These features were also observed in the closely related compounds reported by Seger et al. (2004). Unfortunately, coordinates are not available for the structure of stemofoline hydrobromide hydrate (Irie et al., 1970).

Related literature top

For the single-crystal X-ray structure and absolute configuration of stemofoline as the hydrobromide monohydrate, see: Irie et al. (1970). For two stemofoline alkaloids with structural modifications in the butyl side chain, see: Seger et al. (2004). For the isolation of stemofoline from the root extracts of Stemona aphylla (Stemonaceae), see: Mungkornasawakul et al. (2009). For details of the weighting scheme used, see: Watkin (1994); Prince (1982).

Experimental top

Stemofoline was isolated from the root extracts of Stemona aphylla (Stemonaceae) as reported earlier (Mungkornasawakul et al., 2009) and was crystallized from ethyl acetate/40–60°C petroleum ether. The sample had m.p. 71.5–73.2 °C (lit., Irie et al. (1970), 87–89 °C) and [α]D23 269.1 (c 0.18, CHCl3) (lit., Irie et al. (1970), [α]D 273 (MeOH)).

Refinement top

The compound is enantiometrically pure but the anomolous dispersion terms are very low for all elements in the structure and so the absolute configuration can not be determined in this experiment. Consequently Friedel-pair reflections have been averaged and the Flack parameter has not been refined. The molecule is presented with the same absolute configuration as that determined by X-ray crystallography for a closely related compound (Seger et al., 2004). It is also consistent with that reported for stemofoline.HBr.H2O (Irie et al., 1970), though the absolute structure determination performed there could possibly be regarded as not totally reliable.

All hydrogen atoms were observed in difference electron density maps prior to their inclusion in the structure. They were included at calculated positions and then were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and with Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom, after which the positions were refined with riding constraints.

One strong reflection with poor agreement between Fo and Fc was removed from the refinement as being unreliably measured.

The largest features in the final difference electron density map are located along C—C bonds.

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of stemofoline ethyl acetate solvate, with the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram of stemofoline ethyl acetate solvate.
(2R,3R,5R,5aS, 6R,8aR,9S)-(5Z)-5-[3-butyltetrahydro-6-methyl- 2,5-methano-4,3,8a-[1]propanyl[3]ylidenefuro[3,2-f][1,4]oxazepin-7(5H)- ylidene]-4-methoxy-3-methylfuran-2(5H)-one ethyl acetate solvate top
Crystal data top
C22H29NO5·C4H8O2F(000) = 1024
Mr = 475.58Dx = 1.273 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 36203 reflections
a = 10.3908 (1) Åθ = 2.6–27.5°
b = 10.6549 (2) ŵ = 0.09 mm1
c = 22.4143 (4) ÅT = 200 K
V = 2481.55 (7) Å3Needle, colourless
Z = 40.45 × 0.08 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: integration
via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 2000)
h = 1113
Tmin = 0.976, Tmax = 0.996k = 1313
41745 measured reflectionsl = 2925
3209 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.119 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 38.7 60.5 31.2 8.38
S = 0.91(Δ/σ)max = 0.002
3208 reflectionsΔρmax = 0.30 e Å3
307 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C22H29NO5·C4H8O2V = 2481.55 (7) Å3
Mr = 475.58Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.3908 (1) ŵ = 0.09 mm1
b = 10.6549 (2) ÅT = 200 K
c = 22.4143 (4) Å0.45 × 0.08 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3209 independent reflections
Absorption correction: integration
via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 2000)
2149 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.996Rint = 0.060
41745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.91Δρmax = 0.30 e Å3
3208 reflectionsΔρmin = 0.25 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43611 (16)0.73200 (17)0.47018 (7)0.0301
O20.27062 (18)0.79684 (16)0.52966 (7)0.0295
O30.30052 (17)0.82685 (17)0.64855 (8)0.0315
O40.3242 (2)0.49666 (18)0.65754 (9)0.0430
O50.3409 (2)0.9075 (2)0.73957 (9)0.0469
O60.4158 (3)0.2904 (2)0.50427 (12)0.0612
O70.4878 (2)0.1608 (2)0.57490 (9)0.0427
N40.25605 (19)0.6497 (2)0.35879 (8)0.0278
C10.4196 (3)0.5479 (3)0.40840 (11)0.0331
C20.4559 (2)0.6861 (2)0.41002 (10)0.0302
C30.3504 (2)0.7525 (2)0.37202 (10)0.0287
C50.1296 (2)0.7117 (3)0.35629 (11)0.0344
C60.1362 (3)0.8327 (3)0.39472 (11)0.0355
C70.2744 (2)0.8344 (2)0.41800 (10)0.0286
C80.2994 (2)0.7520 (2)0.47146 (10)0.0265
C90.2300 (2)0.6269 (2)0.46769 (10)0.0257
C9a0.2729 (2)0.5612 (2)0.40984 (10)0.0290
C100.2550 (2)0.5713 (2)0.53031 (10)0.0268
C110.2737 (2)0.6909 (2)0.56580 (10)0.0267
C120.2931 (2)0.7068 (2)0.62431 (11)0.0280
C130.3204 (2)0.6191 (3)0.67198 (11)0.0326
C140.3440 (3)0.6821 (3)0.72309 (11)0.0347
C150.3298 (2)0.8144 (3)0.70898 (11)0.0346
C160.3825 (3)0.6425 (3)0.78503 (12)0.0495
C170.1423 (3)0.4895 (3)0.55107 (12)0.0376
C180.3966 (3)0.8207 (3)0.31649 (11)0.0357
C190.4653 (3)0.7364 (3)0.27164 (11)0.0377
C200.5063 (3)0.8045 (3)0.21512 (12)0.0452
C210.5627 (4)0.7165 (4)0.16876 (13)0.0574
C220.3592 (4)0.4074 (3)0.70266 (16)0.0556
C230.6093 (4)0.3409 (4)0.55692 (18)0.0651
C240.4940 (3)0.2645 (3)0.54151 (14)0.0416
C250.3810 (3)0.0762 (3)0.56316 (15)0.0440
C260.2641 (3)0.1114 (3)0.59907 (17)0.0558
H110.45190.50130.44320.0396*
H120.44790.50810.37150.0395*
H210.54500.70600.39620.0365*
H9110.22700.48110.40320.0338*
H510.06330.65340.37020.0410*
H520.11090.73550.31440.0413*
H610.07450.82830.42780.0416*
H620.11950.90670.37060.0420*
H710.31010.91830.42230.0337*
H910.13690.64450.46560.0306*
H1010.33450.52430.53130.0325*
H1610.38340.71650.81000.0738*
H1620.32070.58190.80130.0742*
H1630.46640.60370.78570.0738*
H1710.15540.46020.59140.0551*
H1720.06250.53820.54950.0547*
H1730.13410.41630.52490.0551*
H1810.45560.88790.32830.0420*
H1820.31990.85770.29610.0419*
H1910.54200.70100.29070.0449*
H1920.40800.66530.26150.0455*
H2010.56990.86960.22530.0540*
H2020.42870.84390.19840.0544*
H2110.58340.76390.13220.0857*
H2120.64150.67570.18280.0859*
H2130.49960.65210.15860.0860*
H2210.35180.32310.68440.0821*
H2220.44730.42190.71530.0819*
H2230.30030.41310.73670.0818*
H2310.60810.41930.53510.0959*
H2320.61140.35810.59970.0961*
H2330.68780.29430.54640.0963*
H2510.40910.01020.57470.0533*
H2520.36010.07960.51970.0528*
H2610.19590.05070.59190.0841*
H2620.28430.11220.64210.0837*
H2630.23420.19630.58740.0839*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (7)0.0391 (9)0.0275 (8)0.0033 (7)0.0031 (7)0.0015 (7)
O20.0370 (8)0.0293 (8)0.0223 (7)0.0010 (7)0.0001 (7)0.0000 (7)
O30.0339 (9)0.0344 (9)0.0263 (8)0.0039 (7)0.0009 (7)0.0017 (7)
O40.0571 (12)0.0361 (10)0.0359 (9)0.0023 (9)0.0096 (9)0.0058 (8)
O50.0530 (12)0.0514 (12)0.0363 (10)0.0041 (10)0.0027 (9)0.0099 (9)
O60.0657 (15)0.0521 (14)0.0658 (15)0.0054 (12)0.0062 (13)0.0190 (12)
O70.0420 (10)0.0406 (10)0.0456 (10)0.0051 (9)0.0037 (8)0.0086 (9)
N40.0241 (9)0.0348 (10)0.0246 (9)0.0017 (8)0.0019 (7)0.0005 (8)
C10.0330 (12)0.0360 (13)0.0304 (11)0.0083 (10)0.0025 (10)0.0004 (10)
C20.0248 (11)0.0404 (14)0.0255 (10)0.0014 (10)0.0004 (9)0.0027 (10)
C30.0278 (11)0.0322 (11)0.0262 (10)0.0006 (9)0.0008 (9)0.0007 (10)
C50.0268 (11)0.0450 (13)0.0314 (11)0.0020 (10)0.0069 (9)0.0007 (11)
C60.0355 (12)0.0406 (13)0.0303 (11)0.0113 (11)0.0043 (10)0.0025 (11)
C70.0318 (12)0.0289 (11)0.0253 (10)0.0009 (10)0.0016 (9)0.0019 (10)
C80.0257 (10)0.0286 (11)0.0252 (10)0.0002 (9)0.0017 (9)0.0030 (10)
C90.0238 (10)0.0282 (11)0.0250 (10)0.0008 (9)0.0009 (8)0.0005 (9)
C9a0.0304 (12)0.0301 (11)0.0265 (10)0.0016 (9)0.0023 (9)0.0003 (9)
C100.0262 (10)0.0275 (11)0.0267 (10)0.0010 (9)0.0006 (9)0.0006 (9)
C110.0217 (10)0.0307 (11)0.0275 (10)0.0019 (9)0.0012 (8)0.0023 (9)
C120.0245 (10)0.0326 (11)0.0269 (11)0.0017 (9)0.0009 (9)0.0013 (10)
C130.0274 (11)0.0401 (13)0.0304 (11)0.0012 (10)0.0006 (9)0.0026 (10)
C140.0305 (12)0.0492 (15)0.0245 (10)0.0014 (11)0.0005 (9)0.0041 (10)
C150.0278 (12)0.0490 (15)0.0271 (11)0.0034 (11)0.0020 (9)0.0010 (11)
C160.0594 (19)0.0608 (19)0.0281 (12)0.0049 (16)0.0091 (12)0.0073 (13)
C170.0400 (14)0.0379 (13)0.0350 (12)0.0111 (11)0.0010 (11)0.0053 (11)
C180.0366 (13)0.0434 (14)0.0270 (11)0.0039 (12)0.0030 (10)0.0071 (11)
C190.0356 (13)0.0450 (15)0.0325 (12)0.0036 (12)0.0009 (10)0.0062 (11)
C200.0440 (15)0.0642 (18)0.0275 (11)0.0026 (14)0.0045 (11)0.0076 (13)
C210.0618 (19)0.076 (2)0.0344 (14)0.0067 (18)0.0077 (14)0.0012 (15)
C220.071 (2)0.0446 (16)0.0517 (17)0.0004 (16)0.0158 (17)0.0136 (14)
C230.073 (2)0.0541 (19)0.068 (2)0.0221 (19)0.0059 (19)0.0021 (18)
C240.0468 (16)0.0331 (13)0.0451 (14)0.0039 (12)0.0067 (12)0.0018 (12)
C250.0415 (15)0.0349 (13)0.0558 (17)0.0041 (12)0.0001 (13)0.0016 (13)
C260.0461 (17)0.0518 (18)0.070 (2)0.0022 (15)0.0117 (16)0.0055 (16)
Geometric parameters (Å, º) top
O1—C21.449 (3)C10—H1010.966
O1—C81.436 (3)C11—C121.338 (3)
O2—C81.421 (3)C12—C131.447 (3)
O2—C111.389 (3)C13—C141.350 (4)
O3—C121.392 (3)C14—C151.452 (4)
O3—C151.394 (3)C14—C161.505 (3)
O4—C131.345 (3)C16—H1610.967
O4—C221.435 (3)C16—H1620.980
O5—C151.212 (3)C16—H1630.965
O6—C241.197 (4)C17—H1710.965
O7—C241.336 (4)C17—H1720.978
O7—C251.453 (3)C17—H1730.980
N4—C31.499 (3)C18—C191.525 (4)
N4—C51.471 (3)C18—H1810.980
N4—C9a1.493 (3)C18—H1821.000
C1—C21.520 (4)C19—C201.521 (4)
C1—C9a1.531 (3)C19—H1910.980
C1—H110.984C19—H1920.990
C1—H120.976C20—C211.518 (5)
C2—C31.559 (3)C20—H2010.985
C2—H210.998C20—H2020.983
C3—C71.565 (3)C21—H2110.987
C3—C181.520 (3)C21—H2120.979
C5—C61.552 (4)C21—H2130.975
C5—H510.978C22—H2210.991
C5—H520.993C22—H2220.970
C6—C71.528 (3)C22—H2230.981
C6—H610.981C23—C241.489 (5)
C6—H620.971C23—H2310.968
C7—C81.508 (3)C23—H2320.977
C7—H710.972C23—H2330.984
C8—C91.519 (3)C25—C261.504 (4)
C9—C9a1.539 (3)C25—H2511.000
C9—C101.545 (3)C25—H2520.999
C9—H910.986C26—H2610.973
C9a—H9110.989C26—H2620.987
C10—C111.515 (3)C26—H2630.991
C10—C171.532 (3)
O1···O2i3.489 (2)O5···C22iv3.375 (5)
O2···C25ii3.277 (4)O6···C103.477 (3)
O2···C2iii3.543 (3)O6···C13.485 (4)
O3···C26ii3.250 (4)O7···C16v3.422 (3)
O3···C25ii3.379 (4)C2···C11i3.594 (3)
O3···C5i3.446 (3)C5···C15iii3.453 (3)
C2—O1—C8102.09 (17)C11—C12—C13132.2 (2)
C8—O2—C11104.91 (18)C12—C13—O4117.0 (2)
C12—O3—C15107.7 (2)C12—C13—C14109.9 (2)
C13—O4—C22118.7 (2)O4—C13—C14133.0 (2)
C24—O7—C25116.6 (2)C13—C14—C15106.2 (2)
C3—N4—C5105.30 (19)C13—C14—C16133.7 (3)
C3—N4—C9a103.48 (17)C15—C14—C16120.0 (2)
C5—N4—C9a114.66 (18)C14—C15—O3109.1 (2)
C2—C1—C9a99.0 (2)C14—C15—O5131.5 (2)
C2—C1—H11112.7O3—C15—O5119.5 (3)
C9a—C1—H11111.7C14—C16—H161107.8
C2—C1—H12111.5C14—C16—H162110.6
C9a—C1—H12111.0H161—C16—H162109.2
H11—C1—H12110.5C14—C16—H163112.0
C1—C2—O1108.29 (19)H161—C16—H163109.4
C1—C2—C3104.6 (2)H162—C16—H163107.8
O1—C2—C3104.78 (18)C10—C17—H171111.1
C1—C2—H21115.4C10—C17—H172109.6
O1—C2—H21110.4H171—C17—H172109.0
C3—C2—H21112.8C10—C17—H173109.7
C2—C3—N4103.71 (19)H171—C17—H173108.3
C2—C3—C7104.38 (18)H172—C17—H173109.1
N4—C3—C7102.02 (18)C3—C18—C19114.0 (2)
C2—C3—C18116.2 (2)C3—C18—H181109.0
N4—C3—C18113.22 (19)C19—C18—H181108.5
C7—C3—C18115.6 (2)C3—C18—H182108.1
N4—C5—C6108.20 (19)C19—C18—H182107.7
N4—C5—H51109.4H181—C18—H182109.5
C6—C5—H51112.4C18—C19—C20113.5 (2)
N4—C5—H52109.0C18—C19—H191108.6
C6—C5—H52108.7C20—C19—H191108.6
H51—C5—H52109.1C18—C19—H192108.7
C5—C6—C7103.9 (2)C20—C19—H192110.0
C5—C6—H61110.5H191—C19—H192107.1
C7—C6—H61110.9C19—C20—C21112.6 (3)
C5—C6—H62111.0C19—C20—H201109.3
C7—C6—H62110.3C21—C20—H201109.6
H61—C6—H62110.0C19—C20—H202106.9
C6—C7—C3104.02 (19)C21—C20—H202108.7
C6—C7—C8115.2 (2)H201—C20—H202109.7
C3—C7—C896.39 (18)C20—C21—H211109.6
C6—C7—H71113.8C20—C21—H212112.1
C3—C7—H71112.7H211—C21—H212108.2
C8—C7—H71113.0C20—C21—H213109.6
C7—C8—O1103.93 (19)H211—C21—H213108.2
C7—C8—O2119.8 (2)H212—C21—H213108.9
O1—C8—O2106.06 (17)O4—C22—H221106.9
C7—C8—C9112.66 (18)O4—C22—H222109.8
O1—C8—C9109.78 (19)H221—C22—H222109.7
O2—C8—C9104.25 (18)O4—C22—H223110.5
C8—C9—C9a107.95 (18)H221—C22—H223109.2
C8—C9—C10101.88 (18)H222—C22—H223110.6
C9a—C9—C10122.82 (19)C24—C23—H231110.1
C8—C9—H91107.6C24—C23—H232110.4
C9a—C9—H91109.3H231—C23—H232109.6
C10—C9—H91106.4C24—C23—H233109.6
C9—C9a—C1110.4 (2)H231—C23—H233108.9
C9—C9a—N4108.94 (19)H232—C23—H233108.1
C1—C9a—N499.16 (19)C23—C24—O7111.2 (3)
C9—C9a—H911112.3C23—C24—O6125.6 (3)
C1—C9a—H911113.4O7—C24—O6123.3 (3)
N4—C9a—H911111.9O7—C25—C26111.4 (3)
C9—C10—C11100.13 (17)O7—C25—H251107.5
C9—C10—C17111.4 (2)C26—C25—H251109.1
C11—C10—C17114.6 (2)O7—C25—H252108.7
C9—C10—H101111.4C26—C25—H252109.7
C11—C10—H101108.3H251—C25—H252110.3
C17—C10—H101110.6C25—C26—H261109.6
C10—C11—O2111.99 (19)C25—C26—H262110.7
C10—C11—C12129.8 (2)H261—C26—H262108.8
O2—C11—C12118.2 (2)C25—C26—H263109.8
O3—C12—C11120.5 (2)H261—C26—H263109.5
O3—C12—C13107.1 (2)H262—C26—H263108.4
O1—C2—C1—C9a75.1 (2)C2—C3—N4—C5147.5 (2)
O1—C2—C3—N4107.2 (2)C2—C3—N4—C9a26.8 (2)
O1—C2—C3—C70.7 (2)C2—C3—C7—C6146.3 (2)
O1—C2—C3—C18127.9 (2)C2—C3—C7—C828.3 (2)
O1—C8—O2—C1177.4 (2)C2—C3—C18—C1959.5 (3)
O1—C8—C7—C349.8 (2)C3—N4—C5—C625.4 (2)
O1—C8—C7—C6158.7 (2)C3—N4—C9a—C965.3 (2)
O1—C8—C9—C1072.6 (2)C3—C2—O1—C831.6 (2)
O1—C8—C9—C9a57.9 (2)C3—C2—C1—C9a36.3 (2)
O2—C8—O1—C2179.6 (2)C3—C7—C6—C523.2 (2)
O2—C8—C7—C3167.9 (2)C3—C7—C8—C968.9 (2)
O2—C8—C7—C683.2 (3)C3—C18—C19—C20177.6 (2)
O2—C8—C9—C1040.6 (2)C5—N4—C3—C739.3 (2)
O2—C8—C9—C9a171.2 (2)C5—N4—C3—C1885.6 (2)
O2—C11—C10—C94.1 (2)C5—N4—C9a—C948.8 (2)
O2—C11—C10—C17123.5 (2)C5—C6—C7—C881.0 (2)
O2—C11—C12—O34.6 (3)C6—C5—N4—C9a87.6 (2)
O2—C11—C12—C13169.4 (2)C6—C7—C3—C1884.6 (2)
O3—C12—C11—C10176.2 (2)C6—C7—C8—C939.9 (3)
O3—C12—C13—O4177.0 (2)C7—C3—N4—C9a81.4 (2)
O3—C12—C13—C140.2 (3)C7—C3—C18—C19177.6 (2)
O3—C15—C14—C131.4 (3)C7—C8—O2—C11165.6 (2)
O3—C15—C14—C16176.9 (2)C7—C8—C9—C10172.1 (2)
O4—C13—C12—C112.4 (4)C7—C8—C9—C9a57.4 (2)
O4—C13—C14—C15177.0 (2)C8—O2—C11—C1021.4 (2)
O4—C13—C14—C160.9 (5)C8—O2—C11—C12157.9 (2)
O5—C15—O3—C12179.8 (2)C8—C7—C3—C18157.3 (2)
O5—C15—C14—C13179.9 (3)C8—C9—C10—C1126.1 (2)
O5—C15—C14—C161.9 (4)C8—C9—C10—C17147.8 (2)
O6—C24—O7—C251.4 (4)C9—C8—O2—C1138.5 (2)
N4—C3—C2—C16.7 (2)C9—C10—C11—C12176.6 (2)
N4—C3—C7—C638.7 (2)C10—C11—C12—C139.8 (4)
N4—C3—C7—C879.4 (2)C11—C10—C9—C9a146.8 (2)
N4—C3—C18—C1960.4 (3)C11—C12—O3—C15176.0 (2)
N4—C5—C6—C70.6 (3)C11—C12—C13—C14174.4 (3)
N4—C9a—C1—C252.8 (2)C12—O3—C15—C141.2 (2)
N4—C9a—C9—C851.8 (2)C12—C11—C10—C1757.2 (3)
N4—C9a—C9—C10169.7 (2)C12—C13—O4—C22176.0 (2)
C1—C2—O1—C879.7 (2)C12—C13—C14—C150.9 (3)
C1—C2—C3—C7113.1 (2)C12—C13—C14—C16177.0 (3)
C1—C2—C3—C18118.2 (2)C13—C12—O3—C150.6 (2)
C1—C9a—N4—C350.1 (2)C14—C13—O4—C220.1 (4)
C1—C9a—N4—C5164.2 (2)C17—C10—C9—C9a91.5 (2)
C1—C9a—C9—C856.1 (2)C18—C3—N4—C9a153.7 (2)
C1—C9a—C9—C1061.8 (3)C18—C19—C20—C21174.5 (3)
C2—O1—C8—C753.2 (2)C23—C24—O7—C25178.5 (3)
C2—O1—C8—C967.5 (2)C24—O7—C25—C2687.9 (3)
C2—C1—C9a—C961.4 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x1/2, y+3/2, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H171···O40.972.333.046 (4)130
C22—H222···O5v0.972.433.374 (4)165
C1—H11···O60.982.663.485 (4)142
C10—H101···O60.972.703.477 (3)138
Symmetry code: (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H29NO5·C4H8O2
Mr475.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)10.3908 (1), 10.6549 (2), 22.4143 (4)
V3)2481.55 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.08 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionIntegration
via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 2000)
Tmin, Tmax0.976, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
41745, 3209, 2149
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.119, 0.91
No. of reflections3208
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: COLLECT (Nonius, 2001)., DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H171···O40.972.333.046 (4)130
C22—H222···O5i0.972.433.374 (4)165
C1—H11···O60.982.663.485 (4)142
C10—H101···O60.972.703.477 (3)138
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Australian Research Council and the Endeavour Fellowship Scheme for supporting this research.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCoppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis, in Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationIrie, H., Masaki, N., Ohno, K., Osaki, K., Taga, T. & Uyeo, S. (1970). J. Chem. Soc. Chem. Commun. p. 1066.  CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (2000). maXus. Nonius BV, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.  Google Scholar
First citationMolecular Structure Corporation (1997). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMungkornasawakul, P., Chaiyong, S., Sastraruji, T., Jatisatienr, A., Jatisatienr, C., Pyne, S. G., Ung, A. T., Korth, J. & Lie, W. (2009). J. Nat. Prod. 72, 848–851.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSeger, C., Mereiter, K., Kaltenegger, E., Pacher, T., Greger, H. & Hofer, O. (2004). Chem. Biodivers. 1, 265–279.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1878-o1879
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds