metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m928-m929

Bis[tri­aqua­(1H-1,2,4-triazole-3,5-di­carboxyl­ato-κ2O3,N4)copper(II)] di-μ-aqua-bis­­[di­aqua­(1H-1,2,4-triazole-3,5-di­carboxyl­ato-κ2O3,N4)copper(II)]

aCollege of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
*Correspondence e-mail: toxielix@163.com

(Received 5 July 2009; accepted 9 July 2009; online 15 July 2009)

In the title compound, [Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6], both monomeric and dimeric mol­ecules are present in the solid state. In the monomeric compound, the CuII atom is five-coordinated in a square-pyramidal configuration by one O atom and one N atom from one 1H-1,2,4-triazole-3,5-dicarboxyl­ate (TZDCA2−) ligand and three O atoms from water mol­ecules. In the centrosymmetric binuclear complex, each CuII atom is six-coordinated in an octa­hedral geometry by one O atom and one N atom from one TZDCA2− ligand and four O atoms from water mol­ecules, two of which bridge the CuII atoms. In the structure, there are intra­molecular O—H⋯O and N—H⋯O hydrogen bonds, and in the crystal, inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link symmetry-related mol­ecules, forming a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Billing et al. (1970[Billing, D. E., Hathaway, B. J. & Nivholls, P. J. (1970). J. Chem. Soc. A, pp. 1877-1881.]); Ouellette et al. (2006a[Ouellette, W., Galan Mascaros, J. R., Dunbar, K. R. & Zubieta, J. (2006a). Inorg. Chem. 45, 1909-1911.],b[Ouellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006b). Inorg. Chem. 45, 9346-9366.], 2007[Ouellette, W., Hudson, B. & Zubieta, J. (2007). Inorg. Chem. 46, 4887-4904.]); Zhai et al. (2007[Zhai, Q. G., Lu, C. Z., Wu, X. Y. & Batten, S. R. (2007). Cryst. Growth Des. 7, 2332-2342.]). For the preparation of 1,2,4,-triazole-3,5-dicarboxylic acid, see: Baitalik et al. (2004[Baitalik, S., Dutta, B. & Nag, K. (2004). Polyhedron, 23, 913-919.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6]

  • Mr = 1090.70

  • Monoclinic, P 21 /c

  • a = 12.056 (2) Å

  • b = 11.432 (2) Å

  • c = 14.958 (3) Å

  • β = 123.65 (3)°

  • V = 1716.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.783, Tmax = 0.821

  • 16043 measured reflections

  • 3020 independent reflections

  • 2866 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 1.17

  • 3020 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6i 0.85 1.87 2.709 (6) 169
N5—H5⋯O8 0.85 2.46 2.773 (5) 103
N5—H5⋯O2ii 0.85 1.89 2.655 (7) 148
O9—H9A⋯O1iii 0.85 2.50 3.221 (5) 144
O9—H9A⋯O2iii 0.85 2.49 3.256 (5) 150
O9—H9B⋯O7ii 0.85 1.85 2.596 (5) 145
O10—H10A⋯O2ii 0.85 2.02 2.798 (6) 151
O10—H10B⋯O5iv 0.85 2.59 3.103 (6) 120
O10—H10B⋯N1ii 0.85 2.10 2.863 (5) 149
O11—H11A⋯O8ii 0.85 1.84 2.650 (5) 160
O11—H11B⋯O3 0.85 1.83 2.662 (6) 167
O12—H12A⋯O6i 0.83 2.15 2.811 (6) 137
O12—H12B⋯O1v 0.83 2.49 3.111 (6) 132
O12—H12B⋯N4i 0.83 2.19 2.821 (5) 133
O13—H13A⋯O4i 0.85 1.89 2.714 (5) 164
O13—H13B⋯O7 0.85 1.81 2.654 (7) 172
O14—H14A⋯O10v 0.85 1.86 2.686 (5) 163
O14—H14B⋯O3i 0.85 1.76 2.599 (5) 169
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) x+1, y, z; (v) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a ligand with multiple coordination sites, 1,2,4-triazole has been shown to be good organic linker in the generation of structurally versatile metal-organic frameworks. It can bridge different metal centers to afford coordination polymers that exhibit extraordinary structural diversity and facile accessibility of functionalized new magnetic materials (Ouellette et al., 2006a; Ouellette et al., 2006b; Ouellette et al., 2007; Zhai et al., 2007). Furthermore, functional groups such as carboxylate, amino and pyridyl, can be introduced in 1,2,4-triazole, which makes its chemistry more abundant and complex. Encouraged by this aspect we selected a simple bifunctional ligand containing both 1,2,4-triazole and carboxylate groups, 1,2,4,-triazole-3,5-dicarboxylic acid, to study its coordination chemistry. As a result, we report herein on the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains a monomeric complex (Scheme 1) and half of a centrosymmetric binuclear complex (Scheme 2). In the mononuclear complex atom Cu1 is five-coordinated, by one N atom and one O atom from one TZDCA2- ligand and three water molecules, and has a slightly distorted square pyramidal geometry. In the binuclear dimeric complex the Cu2 ions adopt an octahedral coordination geometry, where one N-atom and one O-atom from one TZDCA2- ligand and two water molecules are in the equatorial plane, while the apical positions are occupied by water molecules. Water O14 acts as a bridge to form a four-membered Cu2/O14/O14A/Cu2A ring (Symmetry code: (A)= -x, -y, -z+1). The bond length Cu2–O14A = 2.617 (3) Å, indicates a weak coordination interaction (Billing et al., 1970). Each TZDCA2- is deprotonated and acts as a bidentate ligand.

In the crystal structure there intra- and inter-molecular hydrogen bonds (Table 1), which consolidate the structure (Fig. 2).

Related literature top

For related structures, see: Billing et al. (1970); Ouellette et al. (2006a,b, 2007); Zhai et al. (2007). For the preparation of 1,2,4,-triazole-3,5-dicarboxylic acid, see: Baitalik et al. (2004).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. Ligand 1,2,4,-triazole-3,5-dicarboxylic acid was prepared by the literature method (Baitalik et al., 2004). The title compound was synthesized as follows: 1,2,4,-triazole-3,5-dicarboxylic acid (0.5 mmol) was added to 5 cm3 water and the resulting solution was adjusted to a pH of 7.0, using an aqueous solution of triethylamine. CuSO4(0.5 mmol) was then added to the above solution, and the mixture was stirred for 30 min and then filtered. The filtrate was left to evaporate slowly in air. After six days, blue single crystals suitable for X-ray analysis were obtained. Anal. Calcd (%) for C4H7CuN3O7: C, 17.62; H, 2.59; N, 15.41. Found (%): C, 17.73; H, 2.45; N, 15.52.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: O–H = 0.83 - 0.85 Å and N–H = 0.85 Å, with Uiso(H) = 1.5Ueq(parent O-atom) and 1.2Ueq(parent N-atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering (Symmetry code: (A) = -x, -y, -z+1).
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the hydrogen bonds as pale-blue dashed lines (see Table 1 for details).
Bis[triaqua(1H-1,2,4-triazole-3,5-dicarboxylato- κ2O3,N4)copper(II)] di-µ-aqua-bis[diaqua(1H-1,2,4-triazole-3,5-dicarboxylato- κ2O3,N4)copper(II)] top
Crystal data top
[Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6]F(000) = 1096
Mr = 1090.70Dx = 2.111 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3290 reflections
a = 12.056 (2) Åθ = 2.0–31.0°
b = 11.432 (2) ŵ = 2.57 mm1
c = 14.958 (3) ÅT = 293 K
β = 123.65 (3)°Prism, blue
V = 1716.1 (5) Å30.10 × 0.10 × 0.08 mm
Z = 2
Data collection top
Mercury CCD
diffractometer
3020 independent reflections
Radiation source: fine-focus sealed tube2866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 1414
Tmin = 0.783, Tmax = 0.821k = 1313
16043 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0397P)2 + 6.4925P]
where P = (Fo2 + 2Fc2)/3
3020 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6]V = 1716.1 (5) Å3
Mr = 1090.70Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.056 (2) ŵ = 2.57 mm1
b = 11.432 (2) ÅT = 293 K
c = 14.958 (3) Å0.10 × 0.10 × 0.08 mm
β = 123.65 (3)°
Data collection top
Mercury CCD
diffractometer
3020 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2866 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.821Rint = 0.051
16043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.17Δρmax = 0.64 e Å3
3020 reflectionsΔρmin = 0.54 e Å3
272 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.00361 (5)0.00777 (4)0.38176 (4)0.0204 (2)
O50.0608 (3)0.1733 (3)0.3706 (3)0.0251 (10)
O60.0026 (3)0.3562 (3)0.3659 (3)0.0273 (10)
O70.2747 (4)0.1431 (3)0.3948 (3)0.0386 (13)
O80.4173 (3)0.0451 (3)0.3711 (3)0.0322 (11)
O120.1496 (3)0.0099 (3)0.1914 (3)0.0299 (10)
O130.0607 (3)0.1507 (3)0.4033 (3)0.0401 (13)
O140.1385 (3)0.0368 (3)0.4098 (2)0.0229 (9)
N40.2191 (4)0.2525 (3)0.3602 (3)0.0239 (11)
N50.2979 (4)0.1643 (3)0.3662 (3)0.0224 (11)
N60.1440 (3)0.0784 (3)0.3743 (3)0.0179 (10)
C50.1271 (4)0.1964 (4)0.3656 (3)0.0194 (12)
C60.0143 (4)0.2496 (4)0.3669 (3)0.0195 (12)
C70.2535 (4)0.0614 (4)0.3741 (3)0.0190 (12)
C80.3216 (4)0.0531 (4)0.3805 (4)0.0234 (12)
Cu10.51531 (5)0.10043 (5)0.13087 (5)0.0233 (2)
O10.5666 (3)0.0657 (3)0.1367 (3)0.0280 (10)
O20.4995 (3)0.2483 (3)0.1359 (3)0.0271 (10)
O30.2329 (3)0.2532 (3)0.1120 (3)0.0302 (10)
O40.0728 (3)0.1515 (3)0.1110 (3)0.0310 (10)
O90.6516 (3)0.1440 (3)0.1069 (3)0.0302 (10)
O100.6585 (3)0.1163 (3)0.3205 (3)0.0316 (10)
O110.4531 (3)0.2599 (3)0.1113 (3)0.0351 (10)
N10.2712 (4)0.1437 (3)0.1204 (3)0.0253 (11)
N20.1924 (3)0.0561 (3)0.1154 (3)0.0229 (11)
N30.3567 (3)0.0310 (3)0.1222 (3)0.0210 (11)
C10.3685 (4)0.0882 (4)0.1249 (4)0.0217 (12)
C20.4882 (4)0.1371 (4)0.1318 (3)0.0215 (11)
C30.2427 (4)0.0478 (4)0.1159 (3)0.0199 (12)
C40.1757 (4)0.1610 (4)0.1129 (4)0.0212 (12)
H50.367100.164200.364100.0270*
H12A0.093500.012300.175800.0450*
H12B0.198500.063400.187800.0450*
H13A0.016600.213900.387000.0600*
H13B0.124700.146500.394700.0600*
H14A0.212700.001100.377200.0340*
H14B0.168000.106500.395900.0340*
H20.124600.082600.112400.0280*
H9A0.618800.143700.039900.0460*
H9B0.680100.212100.132000.0460*
H10A0.607500.133400.341200.0480*
H10B0.703200.179100.335500.0480*
H11A0.500600.321400.132700.0530*
H11B0.382300.269300.110000.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0215 (3)0.0096 (3)0.0376 (3)0.0003 (2)0.0211 (3)0.0019 (2)
O50.0252 (16)0.0143 (15)0.047 (2)0.0007 (12)0.0270 (15)0.0022 (13)
O60.0313 (17)0.0137 (16)0.049 (2)0.0024 (13)0.0298 (17)0.0010 (14)
O70.040 (2)0.0133 (16)0.082 (3)0.0048 (15)0.046 (2)0.0052 (17)
O80.0322 (18)0.0224 (17)0.059 (2)0.0065 (14)0.0359 (18)0.0019 (16)
O120.0283 (17)0.0197 (16)0.046 (2)0.0011 (13)0.0232 (16)0.0058 (14)
O130.038 (2)0.0178 (17)0.084 (3)0.0009 (15)0.046 (2)0.0049 (17)
O140.0207 (15)0.0112 (14)0.0397 (18)0.0004 (12)0.0185 (14)0.0021 (13)
N40.0247 (19)0.0134 (18)0.042 (2)0.0041 (15)0.0237 (18)0.0021 (16)
N50.0193 (17)0.0155 (18)0.041 (2)0.0007 (14)0.0221 (17)0.0007 (16)
N60.0217 (18)0.0070 (16)0.0291 (19)0.0020 (13)0.0166 (16)0.0015 (14)
C50.021 (2)0.013 (2)0.030 (2)0.0005 (16)0.0177 (19)0.0002 (17)
C60.022 (2)0.012 (2)0.028 (2)0.0005 (17)0.0161 (19)0.0009 (17)
C70.021 (2)0.013 (2)0.025 (2)0.0027 (17)0.0140 (18)0.0022 (16)
C80.026 (2)0.015 (2)0.031 (2)0.0035 (18)0.017 (2)0.0009 (18)
Cu10.0210 (3)0.0137 (3)0.0399 (4)0.0015 (2)0.0198 (3)0.0011 (2)
O10.0277 (17)0.0152 (16)0.052 (2)0.0029 (13)0.0290 (16)0.0010 (14)
O20.0264 (16)0.0140 (16)0.052 (2)0.0028 (13)0.0287 (16)0.0021 (14)
O30.0283 (17)0.0115 (15)0.056 (2)0.0022 (13)0.0267 (17)0.0002 (14)
O40.0278 (17)0.0203 (17)0.052 (2)0.0039 (13)0.0266 (17)0.0024 (15)
O90.0302 (17)0.0166 (16)0.053 (2)0.0025 (13)0.0289 (17)0.0021 (15)
O100.0275 (17)0.0252 (17)0.045 (2)0.0013 (14)0.0219 (16)0.0071 (15)
O110.0296 (17)0.0144 (16)0.069 (2)0.0006 (13)0.0321 (18)0.0027 (16)
N10.0240 (19)0.0114 (18)0.047 (2)0.0011 (14)0.0237 (19)0.0015 (16)
N20.0178 (18)0.0157 (19)0.039 (2)0.0003 (14)0.0182 (17)0.0012 (16)
N30.0189 (17)0.0170 (18)0.032 (2)0.0016 (14)0.0172 (16)0.0017 (15)
C10.023 (2)0.013 (2)0.032 (2)0.0018 (17)0.017 (2)0.0003 (17)
C20.0107 (19)0.026 (2)0.024 (2)0.0070 (17)0.0072 (18)0.0032 (18)
C30.022 (2)0.013 (2)0.026 (2)0.0004 (17)0.0142 (19)0.0021 (17)
C40.017 (2)0.018 (2)0.030 (2)0.0040 (17)0.0139 (19)0.0020 (18)
Geometric parameters (Å, º) top
Cu2—O51.989 (4)O4—C41.230 (7)
Cu2—O122.386 (4)O9—H9A0.8500
Cu2—O131.926 (4)O9—H9B0.8500
Cu2—O141.959 (4)O10—H10B0.8500
Cu2—N62.013 (4)O10—H10A0.8500
Cu2—O14i2.617 (3)O11—H11A0.8500
Cu1—N32.007 (4)O11—H11B0.8500
Cu1—O91.931 (4)N4—N51.354 (6)
Cu1—O102.373 (4)N4—C51.322 (7)
Cu1—O11.984 (4)N5—C71.325 (6)
Cu1—O111.931 (4)N6—C71.336 (7)
O5—C61.280 (6)N6—C51.360 (6)
O6—C61.226 (6)N5—H50.8500
O7—C81.248 (6)N1—N21.354 (6)
O8—C81.241 (7)N1—C11.302 (8)
O12—H12B0.8300N2—C31.332 (6)
O12—H12A0.8300N3—C11.368 (6)
O13—H13A0.8500N3—C31.338 (7)
O13—H13B0.8500N2—H20.8500
O14—H14A0.8500C5—C61.500 (7)
O14—H14B0.8500C7—C81.520 (7)
O1—C21.220 (6)C1—C21.497 (8)
O2—C21.276 (6)C3—C41.513 (7)
O3—C41.264 (6)
O5—Cu2—O1289.33 (14)Cu1—O10—H10B108.00
O5—Cu2—O13175.94 (16)Cu1—O10—H10A105.00
O5—Cu2—O1488.58 (17)Cu1—O11—H11B115.00
O5—Cu2—N683.67 (16)H11A—O11—H11B111.00
O5—Cu2—O14i86.96 (14)Cu1—O11—H11A127.00
O12—Cu2—O1394.73 (14)N5—N4—C5102.5 (4)
O12—Cu2—O1494.74 (13)N4—N5—C7111.3 (5)
O12—Cu2—N693.33 (15)Cu2—N6—C7147.9 (3)
O12—Cu2—O14i174.72 (14)Cu2—N6—C5108.3 (3)
O13—Cu2—O1491.41 (17)C5—N6—C7103.9 (4)
O13—Cu2—N695.76 (17)N4—N5—H5132.00
O13—Cu2—O14i89.02 (14)C7—N5—H5117.00
O14—Cu2—N6168.74 (14)N2—N1—C1103.1 (4)
O14—Cu2—O14i81.43 (12)N1—N2—C3110.9 (4)
O14i—Cu2—N690.00 (14)Cu1—N3—C1108.2 (3)
O9—Cu1—N3165.50 (16)Cu1—N3—C3148.5 (3)
O1—Cu1—O988.77 (17)C1—N3—C3103.4 (4)
O1—Cu1—O1091.04 (14)C3—N2—H2138.00
O1—Cu1—O11174.72 (16)N1—N2—H2111.00
O1—Cu1—N383.50 (17)N4—C5—N6113.6 (5)
O9—Cu1—O1094.13 (16)N6—C5—C6119.3 (4)
O9—Cu1—O1191.57 (17)N4—C5—C6127.0 (4)
O11—Cu1—N395.02 (17)O5—C6—O6126.8 (5)
O10—Cu1—O1194.20 (14)O5—C6—C5113.1 (4)
O10—Cu1—N398.25 (15)O6—C6—C5120.1 (5)
Cu2—O5—C6115.6 (4)N5—C7—N6108.6 (4)
Cu2—O14—Cu2i98.57 (13)N6—C7—C8128.7 (4)
Cu2—O12—H12A99.00N5—C7—C8122.7 (5)
Cu2—O12—H12B100.00O8—C8—C7115.7 (4)
H12A—O12—H12B128.00O7—C8—O8128.2 (5)
Cu2—O13—H13A129.00O7—C8—C7116.1 (5)
Cu2—O13—H13B104.00N1—C1—N3114.1 (5)
H13A—O13—H13B119.00N1—C1—C2128.9 (4)
Cu2—O14—H14B118.00N3—C1—C2117.0 (5)
H14A—O14—H14B98.00O1—C2—O2127.2 (5)
Cu2i—O14—H14A114.00O1—C2—C1116.1 (4)
Cu2—O14—H14A119.00O2—C2—C1116.6 (5)
Cu2i—O14—H14B109.00N3—C3—C4129.5 (4)
Cu1—O1—C2115.2 (4)N2—C3—N3108.6 (4)
Cu1—O9—H9B109.00N2—C3—C4121.9 (5)
H9A—O9—H9B110.00O3—C4—C3115.4 (5)
Cu1—O9—H9A109.00O4—C4—C3116.1 (4)
H10A—O10—H10B101.00O3—C4—O4128.5 (5)
O12—Cu2—O5—C695.3 (3)C5—N6—C7—C8179.2 (4)
O14—Cu2—O5—C6170.0 (3)Cu2—N6—C5—N4179.9 (3)
N6—Cu2—O5—C61.9 (3)C7—N6—C5—N40.1 (5)
O14i—Cu2—O5—C688.5 (3)C5—N6—C7—N50.3 (4)
O5—Cu2—O14—Cu2i87.14 (15)Cu2—N6—C5—C62.0 (4)
O12—Cu2—O14—Cu2i176.35 (12)Cu2—N6—C7—C80.9 (8)
O13—Cu2—O14—Cu2i88.80 (15)Cu2—N6—C7—N5179.7 (4)
O14i—Cu2—O14—Cu2i0.02 (13)C7—N6—C5—C6178.0 (3)
O5—Cu2—N6—C50.2 (3)C1—N1—N2—C30.6 (5)
O5—Cu2—N6—C7179.7 (6)N2—N1—C1—N30.5 (5)
O12—Cu2—N6—C588.8 (3)N2—N1—C1—C2179.9 (5)
O12—Cu2—N6—C791.3 (6)N1—N2—C3—N30.5 (5)
O13—Cu2—N6—C5176.2 (3)N1—N2—C3—C4178.9 (4)
O13—Cu2—N6—C73.8 (6)C3—N3—C1—C2179.9 (4)
O14i—Cu2—N6—C587.1 (3)C3—N3—C1—N10.2 (5)
O14i—Cu2—N6—C792.8 (6)Cu1—N3—C1—N1179.6 (3)
O5—Cu2—O14i—Cu2i89.02 (17)C1—N3—C3—C4178.4 (4)
O13—Cu2—O14i—Cu2i91.57 (18)Cu1—N3—C3—C40.5 (9)
O14—Cu2—O14i—Cu2i0.02 (16)Cu1—N3—C1—C20.7 (5)
N6—Cu2—O14i—Cu2i172.68 (16)Cu1—N3—C3—N2178.7 (4)
O11—Cu1—N3—C36.2 (6)C1—N3—C3—N20.2 (4)
O9—Cu1—O1—C2166.9 (3)N6—C5—C6—O6175.4 (4)
O10—Cu1—O1—C299.0 (3)N4—C5—C6—O62.2 (6)
N3—Cu1—O1—C20.8 (3)N6—C5—C6—O53.6 (5)
O1—Cu1—N3—C10.0 (3)N4—C5—C6—O5178.8 (4)
O1—Cu1—N3—C3178.9 (6)N6—C7—C8—O75.1 (7)
O10—Cu1—N3—C190.1 (3)N6—C7—C8—O8175.1 (4)
O10—Cu1—N3—C388.8 (6)N5—C7—C8—O84.3 (6)
O11—Cu1—N3—C1174.9 (3)N5—C7—C8—O7175.5 (4)
Cu2—O5—C6—O6175.7 (4)N1—C1—C2—O1178.9 (5)
Cu2—O5—C6—C53.3 (4)N3—C1—C2—O11.5 (6)
Cu1—O1—C2—C11.4 (5)N3—C1—C2—O2179.0 (4)
Cu1—O1—C2—O2178.6 (3)N1—C1—C2—O21.4 (7)
C5—N4—N5—C70.4 (4)N2—C3—C4—O3178.9 (4)
N5—N4—C5—C6177.5 (4)N2—C3—C4—O40.7 (6)
N5—N4—C5—N60.2 (5)N3—C3—C4—O33.1 (7)
N4—N5—C7—N60.4 (5)N3—C3—C4—O4177.4 (4)
N4—N5—C7—C8179.1 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6ii0.851.872.709 (6)169
N5—H5···O80.852.462.773 (5)103
N5—H5···O2iii0.851.892.655 (7)148
O9—H9A···O1iv0.852.503.221 (5)144
O9—H9A···O2iv0.852.493.256 (5)150
O9—H9B···O7iii0.851.852.596 (5)145
O10—H10A···O2iii0.852.022.798 (6)151
O10—H10B···O5v0.852.593.103 (6)120
O10—H10B···N1iii0.852.102.863 (5)149
O11—H11A···O8iii0.851.842.650 (5)160
O11—H11B···O30.851.832.662 (6)167
O12—H12A···O6ii0.832.152.811 (6)137
O12—H12B···O1vi0.832.493.111 (6)132
O12—H12B···N4ii0.832.192.821 (5)133
O13—H13A···O4ii0.851.892.714 (5)164
O13—H13B···O70.851.812.654 (7)172
O14—H14A···O10vi0.851.862.686 (5)163
O14—H14B···O3ii0.851.762.599 (5)169
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6]
Mr1090.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.056 (2), 11.432 (2), 14.958 (3)
β (°) 123.65 (3)
V3)1716.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerMercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.783, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
16043, 3020, 2866
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.17
No. of reflections3020
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.54

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.851.872.709 (6)169
N5—H5···O80.852.462.773 (5)103
N5—H5···O2ii0.851.892.655 (7)148
O9—H9A···O1iii0.852.503.221 (5)144
O9—H9A···O2iii0.852.493.256 (5)150
O9—H9B···O7ii0.851.852.596 (5)145
O10—H10A···O2ii0.852.022.798 (6)151
O10—H10B···O5iv0.852.593.103 (6)120
O10—H10B···N1ii0.852.102.863 (5)149
O11—H11A···O8ii0.851.842.650 (5)160
O11—H11B···O30.851.832.662 (6)167
O12—H12A···O6i0.832.152.811 (6)137
O12—H12B···O1v0.832.493.111 (6)132
O12—H12B···N4i0.832.192.821 (5)133
O13—H13A···O4i0.851.892.714 (5)164
O13—H13B···O70.851.812.654 (7)172
O14—H14A···O10v0.851.862.686 (5)163
O14—H14B···O3i0.851.762.599 (5)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z; (v) x1, y, z.
 

Acknowledgements

This work was sponsored by the start-up fund of Henan Agricultural University (grant No. 30700061).

References

First citationBaitalik, S., Dutta, B. & Nag, K. (2004). Polyhedron, 23, 913–919.  Web of Science CrossRef CAS Google Scholar
First citationBilling, D. E., Hathaway, B. J. & Nivholls, P. J. (1970). J. Chem. Soc. A, pp. 1877–1881.  CrossRef Google Scholar
First citationOuellette, W., Galan Mascaros, J. R., Dunbar, K. R. & Zubieta, J. (2006a). Inorg. Chem. 45, 1909–1911.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuellette, W., Hudson, B. & Zubieta, J. (2007). Inorg. Chem. 46, 4887–4904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006b). Inorg. Chem. 45, 9346–9366.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhai, Q. G., Lu, C. Z., Wu, X. Y. & Batten, S. R. (2007). Cryst. Growth Des. 7, 2332–2342.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m928-m929
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds