metal-organic compounds
Bis[triaqua(1H-1,2,4-triazole-3,5-dicarboxylato-κ2O3,N4)copper(II)] di-μ-aqua-bis[diaqua(1H-1,2,4-triazole-3,5-dicarboxylato-κ2O3,N4)copper(II)]
aCollege of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
*Correspondence e-mail: toxielix@163.com
In the title compound, [Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6], both monomeric and dimeric molecules are present in the solid state. In the monomeric compound, the CuII atom is five-coordinated in a square-pyramidal configuration by one O atom and one N atom from one 1H-1,2,4-triazole-3,5-dicarboxylate (TZDCA2−) ligand and three O atoms from water molecules. In the centrosymmetric binuclear complex, each CuII atom is six-coordinated in an octahedral geometry by one O atom and one N atom from one TZDCA2− ligand and four O atoms from water molecules, two of which bridge the CuII atoms. In the structure, there are intramolecular O—H⋯O and N—H⋯O hydrogen bonds, and in the crystal, intermolecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link symmetry-related molecules, forming a three-dimensional supramolecular structure.
Related literature
For related structures, see: Billing et al. (1970); Ouellette et al. (2006a,b, 2007); Zhai et al. (2007). For the preparation of 1,2,4,-triazole-3,5-dicarboxylic acid, see: Baitalik et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2000); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809026993/su2127sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026993/su2127Isup2.hkl
All solvents and chemicals were of analytical grade and were used without further purification. Ligand 1,2,4,-triazole-3,5-dicarboxylic acid was prepared by the literature method (Baitalik et al., 2004). The title compound was synthesized as follows: 1,2,4,-triazole-3,5-dicarboxylic acid (0.5 mmol) was added to 5 cm3 water and the resulting solution was adjusted to a pH of 7.0, using an aqueous solution of triethylamine. CuSO4(0.5 mmol) was then added to the above solution, and the mixture was stirred for 30 min and then filtered. The filtrate was left to evaporate slowly in air. After six days, blue single crystals suitable for X-ray analysis were obtained. Anal. Calcd (%) for C4H7CuN3O7: C, 17.62; H, 2.59; N, 15.41. Found (%): C, 17.73; H, 2.45; N, 15.52.
The H atoms were included in calculated positions and treated as riding atoms: O–H = 0.83 - 0.85 Å and N–H = 0.85 Å, with Uiso(H) = 1.5Ueq(parent O-atom) and 1.2Ueq(parent N-atom).
Data collection: CrystalClear (Rigaku, 2000); cell
CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering (Symmetry code: (A) = -x, -y, -z+1). | |
Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the hydrogen bonds as pale-blue dashed lines (see Table 1 for details). |
[Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6] | F(000) = 1096 |
Mr = 1090.70 | Dx = 2.111 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3290 reflections |
a = 12.056 (2) Å | θ = 2.0–31.0° |
b = 11.432 (2) Å | µ = 2.57 mm−1 |
c = 14.958 (3) Å | T = 293 K |
β = 123.65 (3)° | Prism, blue |
V = 1716.1 (5) Å3 | 0.10 × 0.10 × 0.08 mm |
Z = 2 |
Mercury CCD diffractometer | 3020 independent reflections |
Radiation source: fine-focus sealed tube | 2866 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | h = −14→14 |
Tmin = 0.783, Tmax = 0.821 | k = −13→13 |
16043 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0397P)2 + 6.4925P] where P = (Fo2 + 2Fc2)/3 |
3020 reflections | (Δ/σ)max < 0.001 |
272 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
[Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6] | V = 1716.1 (5) Å3 |
Mr = 1090.70 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.056 (2) Å | µ = 2.57 mm−1 |
b = 11.432 (2) Å | T = 293 K |
c = 14.958 (3) Å | 0.10 × 0.10 × 0.08 mm |
β = 123.65 (3)° |
Mercury CCD diffractometer | 3020 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | 2866 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 0.821 | Rint = 0.051 |
16043 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.64 e Å−3 |
3020 reflections | Δρmin = −0.54 e Å−3 |
272 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu2 | −0.00361 (5) | 0.00777 (4) | 0.38176 (4) | 0.0204 (2) | |
O5 | −0.0608 (3) | 0.1733 (3) | 0.3706 (3) | 0.0251 (10) | |
O6 | 0.0026 (3) | 0.3562 (3) | 0.3659 (3) | 0.0273 (10) | |
O7 | 0.2747 (4) | −0.1431 (3) | 0.3948 (3) | 0.0386 (13) | |
O8 | 0.4173 (3) | −0.0451 (3) | 0.3711 (3) | 0.0322 (11) | |
O12 | −0.1496 (3) | −0.0099 (3) | 0.1914 (3) | 0.0299 (10) | |
O13 | 0.0607 (3) | −0.1507 (3) | 0.4033 (3) | 0.0401 (13) | |
O14 | −0.1385 (3) | −0.0368 (3) | 0.4098 (2) | 0.0229 (9) | |
N4 | 0.2191 (4) | 0.2525 (3) | 0.3602 (3) | 0.0239 (11) | |
N5 | 0.2979 (4) | 0.1643 (3) | 0.3662 (3) | 0.0224 (11) | |
N6 | 0.1440 (3) | 0.0784 (3) | 0.3743 (3) | 0.0179 (10) | |
C5 | 0.1271 (4) | 0.1964 (4) | 0.3656 (3) | 0.0194 (12) | |
C6 | 0.0143 (4) | 0.2496 (4) | 0.3669 (3) | 0.0195 (12) | |
C7 | 0.2535 (4) | 0.0614 (4) | 0.3741 (3) | 0.0190 (12) | |
C8 | 0.3216 (4) | −0.0531 (4) | 0.3805 (4) | 0.0234 (12) | |
Cu1 | 0.51531 (5) | 0.10043 (5) | 0.13087 (5) | 0.0233 (2) | |
O1 | 0.5666 (3) | −0.0657 (3) | 0.1367 (3) | 0.0280 (10) | |
O2 | 0.4995 (3) | −0.2483 (3) | 0.1359 (3) | 0.0271 (10) | |
O3 | 0.2329 (3) | 0.2532 (3) | 0.1120 (3) | 0.0302 (10) | |
O4 | 0.0728 (3) | 0.1515 (3) | 0.1110 (3) | 0.0310 (10) | |
O9 | 0.6516 (3) | 0.1440 (3) | 0.1069 (3) | 0.0302 (10) | |
O10 | 0.6585 (3) | 0.1163 (3) | 0.3205 (3) | 0.0316 (10) | |
O11 | 0.4531 (3) | 0.2599 (3) | 0.1113 (3) | 0.0351 (10) | |
N1 | 0.2712 (4) | −0.1437 (3) | 0.1204 (3) | 0.0253 (11) | |
N2 | 0.1924 (3) | −0.0561 (3) | 0.1154 (3) | 0.0229 (11) | |
N3 | 0.3567 (3) | 0.0310 (3) | 0.1222 (3) | 0.0210 (11) | |
C1 | 0.3685 (4) | −0.0882 (4) | 0.1249 (4) | 0.0217 (12) | |
C2 | 0.4882 (4) | −0.1371 (4) | 0.1318 (3) | 0.0215 (11) | |
C3 | 0.2427 (4) | 0.0478 (4) | 0.1159 (3) | 0.0199 (12) | |
C4 | 0.1757 (4) | 0.1610 (4) | 0.1129 (4) | 0.0212 (12) | |
H5 | 0.36710 | 0.16420 | 0.36410 | 0.0270* | |
H12A | −0.09350 | −0.01230 | 0.17580 | 0.0450* | |
H12B | −0.19850 | −0.06340 | 0.18780 | 0.0450* | |
H13A | 0.01660 | −0.21390 | 0.38700 | 0.0600* | |
H13B | 0.12470 | −0.14650 | 0.39470 | 0.0600* | |
H14A | −0.21270 | −0.00110 | 0.37720 | 0.0340* | |
H14B | −0.16800 | −0.10650 | 0.39590 | 0.0340* | |
H2 | 0.12460 | −0.08260 | 0.11240 | 0.0280* | |
H9A | 0.61880 | 0.14370 | 0.03990 | 0.0460* | |
H9B | 0.68010 | 0.21210 | 0.13200 | 0.0460* | |
H10A | 0.60750 | 0.13340 | 0.34120 | 0.0480* | |
H10B | 0.70320 | 0.17910 | 0.33550 | 0.0480* | |
H11A | 0.50060 | 0.32140 | 0.13270 | 0.0530* | |
H11B | 0.38230 | 0.26930 | 0.11000 | 0.0530* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu2 | 0.0215 (3) | 0.0096 (3) | 0.0376 (3) | 0.0003 (2) | 0.0211 (3) | 0.0019 (2) |
O5 | 0.0252 (16) | 0.0143 (15) | 0.047 (2) | −0.0007 (12) | 0.0270 (15) | 0.0022 (13) |
O6 | 0.0313 (17) | 0.0137 (16) | 0.049 (2) | 0.0024 (13) | 0.0298 (17) | 0.0010 (14) |
O7 | 0.040 (2) | 0.0133 (16) | 0.082 (3) | 0.0048 (15) | 0.046 (2) | 0.0052 (17) |
O8 | 0.0322 (18) | 0.0224 (17) | 0.059 (2) | 0.0065 (14) | 0.0359 (18) | 0.0019 (16) |
O12 | 0.0283 (17) | 0.0197 (16) | 0.046 (2) | −0.0011 (13) | 0.0232 (16) | −0.0058 (14) |
O13 | 0.038 (2) | 0.0178 (17) | 0.084 (3) | 0.0009 (15) | 0.046 (2) | 0.0049 (17) |
O14 | 0.0207 (15) | 0.0112 (14) | 0.0397 (18) | −0.0004 (12) | 0.0185 (14) | 0.0021 (13) |
N4 | 0.0247 (19) | 0.0134 (18) | 0.042 (2) | 0.0041 (15) | 0.0237 (18) | 0.0021 (16) |
N5 | 0.0193 (17) | 0.0155 (18) | 0.041 (2) | 0.0007 (14) | 0.0221 (17) | −0.0007 (16) |
N6 | 0.0217 (18) | 0.0070 (16) | 0.0291 (19) | 0.0020 (13) | 0.0166 (16) | 0.0015 (14) |
C5 | 0.021 (2) | 0.013 (2) | 0.030 (2) | −0.0005 (16) | 0.0177 (19) | −0.0002 (17) |
C6 | 0.022 (2) | 0.012 (2) | 0.028 (2) | −0.0005 (17) | 0.0161 (19) | −0.0009 (17) |
C7 | 0.021 (2) | 0.013 (2) | 0.025 (2) | 0.0027 (17) | 0.0140 (18) | 0.0022 (16) |
C8 | 0.026 (2) | 0.015 (2) | 0.031 (2) | 0.0035 (18) | 0.017 (2) | −0.0009 (18) |
Cu1 | 0.0210 (3) | 0.0137 (3) | 0.0399 (4) | −0.0015 (2) | 0.0198 (3) | 0.0011 (2) |
O1 | 0.0277 (17) | 0.0152 (16) | 0.052 (2) | 0.0029 (13) | 0.0290 (16) | −0.0010 (14) |
O2 | 0.0264 (16) | 0.0140 (16) | 0.052 (2) | 0.0028 (13) | 0.0287 (16) | 0.0021 (14) |
O3 | 0.0283 (17) | 0.0115 (15) | 0.056 (2) | 0.0022 (13) | 0.0267 (17) | 0.0002 (14) |
O4 | 0.0278 (17) | 0.0203 (17) | 0.052 (2) | 0.0039 (13) | 0.0266 (17) | 0.0024 (15) |
O9 | 0.0302 (17) | 0.0166 (16) | 0.053 (2) | −0.0025 (13) | 0.0289 (17) | 0.0021 (15) |
O10 | 0.0275 (17) | 0.0252 (17) | 0.045 (2) | 0.0013 (14) | 0.0219 (16) | −0.0071 (15) |
O11 | 0.0296 (17) | 0.0144 (16) | 0.069 (2) | −0.0006 (13) | 0.0321 (18) | 0.0027 (16) |
N1 | 0.0240 (19) | 0.0114 (18) | 0.047 (2) | −0.0011 (14) | 0.0237 (19) | −0.0015 (16) |
N2 | 0.0178 (18) | 0.0157 (19) | 0.039 (2) | 0.0003 (14) | 0.0182 (17) | 0.0012 (16) |
N3 | 0.0189 (17) | 0.0170 (18) | 0.032 (2) | 0.0016 (14) | 0.0172 (16) | 0.0017 (15) |
C1 | 0.023 (2) | 0.013 (2) | 0.032 (2) | 0.0018 (17) | 0.017 (2) | 0.0003 (17) |
C2 | 0.0107 (19) | 0.026 (2) | 0.024 (2) | 0.0070 (17) | 0.0072 (18) | −0.0032 (18) |
C3 | 0.022 (2) | 0.013 (2) | 0.026 (2) | −0.0004 (17) | 0.0142 (19) | 0.0021 (17) |
C4 | 0.017 (2) | 0.018 (2) | 0.030 (2) | 0.0040 (17) | 0.0139 (19) | 0.0020 (18) |
Cu2—O5 | 1.989 (4) | O4—C4 | 1.230 (7) |
Cu2—O12 | 2.386 (4) | O9—H9A | 0.8500 |
Cu2—O13 | 1.926 (4) | O9—H9B | 0.8500 |
Cu2—O14 | 1.959 (4) | O10—H10B | 0.8500 |
Cu2—N6 | 2.013 (4) | O10—H10A | 0.8500 |
Cu2—O14i | 2.617 (3) | O11—H11A | 0.8500 |
Cu1—N3 | 2.007 (4) | O11—H11B | 0.8500 |
Cu1—O9 | 1.931 (4) | N4—N5 | 1.354 (6) |
Cu1—O10 | 2.373 (4) | N4—C5 | 1.322 (7) |
Cu1—O1 | 1.984 (4) | N5—C7 | 1.325 (6) |
Cu1—O11 | 1.931 (4) | N6—C7 | 1.336 (7) |
O5—C6 | 1.280 (6) | N6—C5 | 1.360 (6) |
O6—C6 | 1.226 (6) | N5—H5 | 0.8500 |
O7—C8 | 1.248 (6) | N1—N2 | 1.354 (6) |
O8—C8 | 1.241 (7) | N1—C1 | 1.302 (8) |
O12—H12B | 0.8300 | N2—C3 | 1.332 (6) |
O12—H12A | 0.8300 | N3—C1 | 1.368 (6) |
O13—H13A | 0.8500 | N3—C3 | 1.338 (7) |
O13—H13B | 0.8500 | N2—H2 | 0.8500 |
O14—H14A | 0.8500 | C5—C6 | 1.500 (7) |
O14—H14B | 0.8500 | C7—C8 | 1.520 (7) |
O1—C2 | 1.220 (6) | C1—C2 | 1.497 (8) |
O2—C2 | 1.276 (6) | C3—C4 | 1.513 (7) |
O3—C4 | 1.264 (6) | ||
O5—Cu2—O12 | 89.33 (14) | Cu1—O10—H10B | 108.00 |
O5—Cu2—O13 | 175.94 (16) | Cu1—O10—H10A | 105.00 |
O5—Cu2—O14 | 88.58 (17) | Cu1—O11—H11B | 115.00 |
O5—Cu2—N6 | 83.67 (16) | H11A—O11—H11B | 111.00 |
O5—Cu2—O14i | 86.96 (14) | Cu1—O11—H11A | 127.00 |
O12—Cu2—O13 | 94.73 (14) | N5—N4—C5 | 102.5 (4) |
O12—Cu2—O14 | 94.74 (13) | N4—N5—C7 | 111.3 (5) |
O12—Cu2—N6 | 93.33 (15) | Cu2—N6—C7 | 147.9 (3) |
O12—Cu2—O14i | 174.72 (14) | Cu2—N6—C5 | 108.3 (3) |
O13—Cu2—O14 | 91.41 (17) | C5—N6—C7 | 103.9 (4) |
O13—Cu2—N6 | 95.76 (17) | N4—N5—H5 | 132.00 |
O13—Cu2—O14i | 89.02 (14) | C7—N5—H5 | 117.00 |
O14—Cu2—N6 | 168.74 (14) | N2—N1—C1 | 103.1 (4) |
O14—Cu2—O14i | 81.43 (12) | N1—N2—C3 | 110.9 (4) |
O14i—Cu2—N6 | 90.00 (14) | Cu1—N3—C1 | 108.2 (3) |
O9—Cu1—N3 | 165.50 (16) | Cu1—N3—C3 | 148.5 (3) |
O1—Cu1—O9 | 88.77 (17) | C1—N3—C3 | 103.4 (4) |
O1—Cu1—O10 | 91.04 (14) | C3—N2—H2 | 138.00 |
O1—Cu1—O11 | 174.72 (16) | N1—N2—H2 | 111.00 |
O1—Cu1—N3 | 83.50 (17) | N4—C5—N6 | 113.6 (5) |
O9—Cu1—O10 | 94.13 (16) | N6—C5—C6 | 119.3 (4) |
O9—Cu1—O11 | 91.57 (17) | N4—C5—C6 | 127.0 (4) |
O11—Cu1—N3 | 95.02 (17) | O5—C6—O6 | 126.8 (5) |
O10—Cu1—O11 | 94.20 (14) | O5—C6—C5 | 113.1 (4) |
O10—Cu1—N3 | 98.25 (15) | O6—C6—C5 | 120.1 (5) |
Cu2—O5—C6 | 115.6 (4) | N5—C7—N6 | 108.6 (4) |
Cu2—O14—Cu2i | 98.57 (13) | N6—C7—C8 | 128.7 (4) |
Cu2—O12—H12A | 99.00 | N5—C7—C8 | 122.7 (5) |
Cu2—O12—H12B | 100.00 | O8—C8—C7 | 115.7 (4) |
H12A—O12—H12B | 128.00 | O7—C8—O8 | 128.2 (5) |
Cu2—O13—H13A | 129.00 | O7—C8—C7 | 116.1 (5) |
Cu2—O13—H13B | 104.00 | N1—C1—N3 | 114.1 (5) |
H13A—O13—H13B | 119.00 | N1—C1—C2 | 128.9 (4) |
Cu2—O14—H14B | 118.00 | N3—C1—C2 | 117.0 (5) |
H14A—O14—H14B | 98.00 | O1—C2—O2 | 127.2 (5) |
Cu2i—O14—H14A | 114.00 | O1—C2—C1 | 116.1 (4) |
Cu2—O14—H14A | 119.00 | O2—C2—C1 | 116.6 (5) |
Cu2i—O14—H14B | 109.00 | N3—C3—C4 | 129.5 (4) |
Cu1—O1—C2 | 115.2 (4) | N2—C3—N3 | 108.6 (4) |
Cu1—O9—H9B | 109.00 | N2—C3—C4 | 121.9 (5) |
H9A—O9—H9B | 110.00 | O3—C4—C3 | 115.4 (5) |
Cu1—O9—H9A | 109.00 | O4—C4—C3 | 116.1 (4) |
H10A—O10—H10B | 101.00 | O3—C4—O4 | 128.5 (5) |
O12—Cu2—O5—C6 | −95.3 (3) | C5—N6—C7—C8 | −179.2 (4) |
O14—Cu2—O5—C6 | 170.0 (3) | Cu2—N6—C5—N4 | 179.9 (3) |
N6—Cu2—O5—C6 | −1.9 (3) | C7—N6—C5—N4 | −0.1 (5) |
O14i—Cu2—O5—C6 | 88.5 (3) | C5—N6—C7—N5 | 0.3 (4) |
O5—Cu2—O14—Cu2i | −87.14 (15) | Cu2—N6—C5—C6 | 2.0 (4) |
O12—Cu2—O14—Cu2i | −176.35 (12) | Cu2—N6—C7—C8 | 0.9 (8) |
O13—Cu2—O14—Cu2i | 88.80 (15) | Cu2—N6—C7—N5 | −179.7 (4) |
O14i—Cu2—O14—Cu2i | −0.02 (13) | C7—N6—C5—C6 | −178.0 (3) |
O5—Cu2—N6—C5 | −0.2 (3) | C1—N1—N2—C3 | 0.6 (5) |
O5—Cu2—N6—C7 | 179.7 (6) | N2—N1—C1—N3 | −0.5 (5) |
O12—Cu2—N6—C5 | 88.8 (3) | N2—N1—C1—C2 | 179.9 (5) |
O12—Cu2—N6—C7 | −91.3 (6) | N1—N2—C3—N3 | −0.5 (5) |
O13—Cu2—N6—C5 | −176.2 (3) | N1—N2—C3—C4 | −178.9 (4) |
O13—Cu2—N6—C7 | 3.8 (6) | C3—N3—C1—C2 | 179.9 (4) |
O14i—Cu2—N6—C5 | −87.1 (3) | C3—N3—C1—N1 | 0.2 (5) |
O14i—Cu2—N6—C7 | 92.8 (6) | Cu1—N3—C1—N1 | 179.6 (3) |
O5—Cu2—O14i—Cu2i | 89.02 (17) | C1—N3—C3—C4 | 178.4 (4) |
O13—Cu2—O14i—Cu2i | −91.57 (18) | Cu1—N3—C3—C4 | −0.5 (9) |
O14—Cu2—O14i—Cu2i | 0.02 (16) | Cu1—N3—C1—C2 | −0.7 (5) |
N6—Cu2—O14i—Cu2i | 172.68 (16) | Cu1—N3—C3—N2 | −178.7 (4) |
O11—Cu1—N3—C3 | −6.2 (6) | C1—N3—C3—N2 | 0.2 (4) |
O9—Cu1—O1—C2 | −166.9 (3) | N6—C5—C6—O6 | 175.4 (4) |
O10—Cu1—O1—C2 | 99.0 (3) | N4—C5—C6—O6 | −2.2 (6) |
N3—Cu1—O1—C2 | 0.8 (3) | N6—C5—C6—O5 | −3.6 (5) |
O1—Cu1—N3—C1 | 0.0 (3) | N4—C5—C6—O5 | 178.8 (4) |
O1—Cu1—N3—C3 | 178.9 (6) | N6—C7—C8—O7 | −5.1 (7) |
O10—Cu1—N3—C1 | −90.1 (3) | N6—C7—C8—O8 | 175.1 (4) |
O10—Cu1—N3—C3 | 88.8 (6) | N5—C7—C8—O8 | −4.3 (6) |
O11—Cu1—N3—C1 | 174.9 (3) | N5—C7—C8—O7 | 175.5 (4) |
Cu2—O5—C6—O6 | −175.7 (4) | N1—C1—C2—O1 | −178.9 (5) |
Cu2—O5—C6—C5 | 3.3 (4) | N3—C1—C2—O1 | 1.5 (6) |
Cu1—O1—C2—C1 | −1.4 (5) | N3—C1—C2—O2 | 179.0 (4) |
Cu1—O1—C2—O2 | −178.6 (3) | N1—C1—C2—O2 | −1.4 (7) |
C5—N4—N5—C7 | 0.4 (4) | N2—C3—C4—O3 | −178.9 (4) |
N5—N4—C5—C6 | 177.5 (4) | N2—C3—C4—O4 | 0.7 (6) |
N5—N4—C5—N6 | −0.2 (5) | N3—C3—C4—O3 | 3.1 (7) |
N4—N5—C7—N6 | −0.4 (5) | N3—C3—C4—O4 | −177.4 (4) |
N4—N5—C7—C8 | 179.1 (4) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O6ii | 0.85 | 1.87 | 2.709 (6) | 169 |
N5—H5···O8 | 0.85 | 2.46 | 2.773 (5) | 103 |
N5—H5···O2iii | 0.85 | 1.89 | 2.655 (7) | 148 |
O9—H9A···O1iv | 0.85 | 2.50 | 3.221 (5) | 144 |
O9—H9A···O2iv | 0.85 | 2.49 | 3.256 (5) | 150 |
O9—H9B···O7iii | 0.85 | 1.85 | 2.596 (5) | 145 |
O10—H10A···O2iii | 0.85 | 2.02 | 2.798 (6) | 151 |
O10—H10B···O5v | 0.85 | 2.59 | 3.103 (6) | 120 |
O10—H10B···N1iii | 0.85 | 2.10 | 2.863 (5) | 149 |
O11—H11A···O8iii | 0.85 | 1.84 | 2.650 (5) | 160 |
O11—H11B···O3 | 0.85 | 1.83 | 2.662 (6) | 167 |
O12—H12A···O6ii | 0.83 | 2.15 | 2.811 (6) | 137 |
O12—H12B···O1vi | 0.83 | 2.49 | 3.111 (6) | 132 |
O12—H12B···N4ii | 0.83 | 2.19 | 2.821 (5) | 133 |
O13—H13A···O4ii | 0.85 | 1.89 | 2.714 (5) | 164 |
O13—H13B···O7 | 0.85 | 1.81 | 2.654 (7) | 172 |
O14—H14A···O10vi | 0.85 | 1.86 | 2.686 (5) | 163 |
O14—H14B···O3ii | 0.85 | 1.76 | 2.599 (5) | 169 |
Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y, −z; (v) x+1, y, z; (vi) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4HN3O4)(H2O)3]2[Cu2(C4HN3O4)2(H2O)6] |
Mr | 1090.70 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.056 (2), 11.432 (2), 14.958 (3) |
β (°) | 123.65 (3) |
V (Å3) | 1716.1 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.57 |
Crystal size (mm) | 0.10 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2000) |
Tmin, Tmax | 0.783, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16043, 3020, 2866 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.115, 1.17 |
No. of reflections | 3020 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.54 |
Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O6i | 0.85 | 1.87 | 2.709 (6) | 169 |
N5—H5···O8 | 0.85 | 2.46 | 2.773 (5) | 103 |
N5—H5···O2ii | 0.85 | 1.89 | 2.655 (7) | 148 |
O9—H9A···O1iii | 0.85 | 2.50 | 3.221 (5) | 144 |
O9—H9A···O2iii | 0.85 | 2.49 | 3.256 (5) | 150 |
O9—H9B···O7ii | 0.85 | 1.85 | 2.596 (5) | 145 |
O10—H10A···O2ii | 0.85 | 2.02 | 2.798 (6) | 151 |
O10—H10B···O5iv | 0.85 | 2.59 | 3.103 (6) | 120 |
O10—H10B···N1ii | 0.85 | 2.10 | 2.863 (5) | 149 |
O11—H11A···O8ii | 0.85 | 1.84 | 2.650 (5) | 160 |
O11—H11B···O3 | 0.85 | 1.83 | 2.662 (6) | 167 |
O12—H12A···O6i | 0.83 | 2.15 | 2.811 (6) | 137 |
O12—H12B···O1v | 0.83 | 2.49 | 3.111 (6) | 132 |
O12—H12B···N4i | 0.83 | 2.19 | 2.821 (5) | 133 |
O13—H13A···O4i | 0.85 | 1.89 | 2.714 (5) | 164 |
O13—H13B···O7 | 0.85 | 1.81 | 2.654 (7) | 172 |
O14—H14A···O10v | 0.85 | 1.86 | 2.686 (5) | 163 |
O14—H14B···O3i | 0.85 | 1.76 | 2.599 (5) | 169 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x−1, y, z. |
Acknowledgements
This work was sponsored by the start-up fund of Henan Agricultural University (grant No. 30700061).
References
Baitalik, S., Dutta, B. & Nag, K. (2004). Polyhedron, 23, 913–919. Web of Science CrossRef CAS Google Scholar
Billing, D. E., Hathaway, B. J. & Nivholls, P. J. (1970). J. Chem. Soc. A, pp. 1877–1881. CrossRef Google Scholar
Ouellette, W., Galan Mascaros, J. R., Dunbar, K. R. & Zubieta, J. (2006a). Inorg. Chem. 45, 1909–1911. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ouellette, W., Hudson, B. & Zubieta, J. (2007). Inorg. Chem. 46, 4887–4904. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ouellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006b). Inorg. Chem. 45, 9346–9366. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhai, Q. G., Lu, C. Z., Wu, X. Y. & Batten, S. R. (2007). Cryst. Growth Des. 7, 2332–2342. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a ligand with multiple coordination sites, 1,2,4-triazole has been shown to be good organic linker in the generation of structurally versatile metal-organic frameworks. It can bridge different metal centers to afford coordination polymers that exhibit extraordinary structural diversity and facile accessibility of functionalized new magnetic materials (Ouellette et al., 2006a; Ouellette et al., 2006b; Ouellette et al., 2007; Zhai et al., 2007). Furthermore, functional groups such as carboxylate, amino and pyridyl, can be introduced in 1,2,4-triazole, which makes its chemistry more abundant and complex. Encouraged by this aspect we selected a simple bifunctional ligand containing both 1,2,4-triazole and carboxylate groups, 1,2,4,-triazole-3,5-dicarboxylic acid, to study its coordination chemistry. As a result, we report herein on the crystal structure of the title compound.
The asymmetric unit of the title compound (Fig. 1) contains a monomeric complex (Scheme 1) and half of a centrosymmetric binuclear complex (Scheme 2). In the mononuclear complex atom Cu1 is five-coordinated, by one N atom and one O atom from one TZDCA2- ligand and three water molecules, and has a slightly distorted square pyramidal geometry. In the binuclear dimeric complex the Cu2 ions adopt an octahedral coordination geometry, where one N-atom and one O-atom from one TZDCA2- ligand and two water molecules are in the equatorial plane, while the apical positions are occupied by water molecules. Water O14 acts as a bridge to form a four-membered Cu2/O14/O14A/Cu2A ring (Symmetry code: (A)= -x, -y, -z+1). The bond length Cu2–O14A = 2.617 (3) Å, indicates a weak coordination interaction (Billing et al., 1970). Each TZDCA2- is deprotonated and acts as a bidentate ligand.
In the crystal structure there intra- and inter-molecular hydrogen bonds (Table 1), which consolidate the structure (Fig. 2).