metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Di­bromo-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}copper(II)

aDepartment of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 13 June 2009; accepted 23 June 2009; online 11 July 2009)

In the title compound, [Cu(C16H12Br2N2O2)], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O and two N atoms of the tetra­dentate dianionic 4,4′-dibromo-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphen­olate Schiff base ligand.

Related literature

For background to complexes of Schiff bases, see: Arnold et al. (1998[Arnold, M., Brown, D. A., Deeg, O., Errington, W., Haase, W., Herlihy, K., Kemp, T. J., Nimir, H. & Werner, R. (1998). Inorg. Chem. 37, 2920-2924.]); Jabri et al. (1995[Jabri, E., Carr, M. B. & Hausinger, R. P. (1995). Science, 268, 998-1002.]); Jiang et al. (2003[Jiang, Y.-M., Zhang, S.-H., Xu, Q. & Xiao, Y. (2003). Huaxue Xuebao, 61, 573-577.]). For a related structure, see: Feng et al. (2007[Feng, X., Du, Z.-X., Ye, B.-X. & Cui, F.-N. (2007). Chin. J. Struct. Chem. 26, 1033-1038.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H12Br2N2O2)]

  • Mr = 487.68

  • Triclinic, [P \overline 1]

  • a = 8.2848 (4) Å

  • b = 9.6302 (5) Å

  • c = 10.9984 (6) Å

  • α = 115.601 (6)°

  • β = 92.866 (4)°

  • γ = 101.527 (5)°

  • V = 766.10 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.65 mm−1

  • T = 173 K

  • 0.4 × 0.1 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.715, Tmax = 1 (expected range = 0.368–0.514)

  • 6303 measured reflections

  • 2641 independent reflections

  • 2128 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.01

  • 2641 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes continue to attract attention owing to their anti-bacterial, anti-viral and other biological activities (Arnold et al., 1998; Jabri et al., 1995; Jiang et al., 2003). In order to extend the study of these compounds, the title complex (I) was synthesized and its crystal structure determined.

The copper atom in the mononuclear complex, Fig. 1, assumes a N2O2 coordination geometry provided by the dinegative, tetradentate Schiff base ligand. The coordination geometry approximates a square planar arrangement. The structure of (I) resembles that of N,N'-ethylene-bis(salicylaldiminato)nickel(II) (Feng et al., 2007).

Related literature top

For background to complexes of Schiff bases, see: Arnold et al. (1998); Jabri et al. (1995); Jiang et al. (2003). For a related structure, see: Feng et al. (2007).

Experimental top

A mixture of N,N'-ethylene-bis(5-bromosalicylaldimine) (0.1 mmol), Cu(NO3)2 (0.1 mmol), DMF (10.0 ml), and ethanol (5.0 ml) was sealed in a 40 mL Teflon-lined stainless steel reactor, heated in an oven at 353 K for 72 h, and then slowly cooled to room temperature. The blue crystals were collected.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 – 0.97 Å, and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 30% probability level.
{4,4'-Dibromo-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C16H12Br2N2O2)]Z = 2
Mr = 487.68F(000) = 474
Triclinic, P1Dx = 2.114 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2848 (4) ÅCell parameters from 3643 reflections
b = 9.6302 (5) Åθ = 2.4–32.6°
c = 10.9984 (6) ŵ = 6.65 mm1
α = 115.601 (6)°T = 173 K
β = 92.866 (4)°Block, blue
γ = 101.527 (5)°0.4 × 0.1 × 0.1 mm
V = 766.10 (7) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2641 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Rotation method data acquisition using ω and ϕ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.715, Tmax = 1k = 1111
6303 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
2641 reflections(Δ/σ)max = 0.005
208 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu(C16H12Br2N2O2)]γ = 101.527 (5)°
Mr = 487.68V = 766.10 (7) Å3
Triclinic, P1Z = 2
a = 8.2848 (4) ÅMo Kα radiation
b = 9.6302 (5) ŵ = 6.65 mm1
c = 10.9984 (6) ÅT = 173 K
α = 115.601 (6)°0.4 × 0.1 × 0.1 mm
β = 92.866 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2128 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1Rint = 0.030
6303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.01Δρmax = 0.50 e Å3
2641 reflectionsΔρmin = 0.35 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.98239 (6)1.20034 (5)0.06363 (4)0.02426 (13)
Br10.55269 (5)0.80260 (4)0.44272 (4)0.03477 (13)
Br21.24837 (5)1.57593 (5)0.37940 (4)0.03793 (13)
O20.9055 (3)1.2075 (3)0.1004 (2)0.0258 (6)
O10.7760 (3)1.0630 (3)0.0529 (2)0.0332 (6)
N21.1879 (4)1.3606 (3)0.1009 (3)0.0241 (7)
N11.0890 (4)1.1769 (3)0.2128 (3)0.0241 (7)
C160.9859 (5)1.2886 (4)0.1568 (4)0.0250 (8)
C150.9173 (5)1.2616 (4)0.2887 (4)0.0273 (8)
H15A0.81761.18540.33230.033*
C140.9942 (5)1.3449 (4)0.3533 (4)0.0272 (9)
H14A0.94691.32380.43990.033*
C131.1434 (5)1.4613 (4)0.2894 (4)0.0280 (9)
C121.2146 (5)1.4889 (4)0.1645 (4)0.0278 (9)
H12A1.31381.56660.12290.033*
C111.1425 (5)1.4034 (4)0.0966 (4)0.0246 (8)
C101.2328 (5)1.4321 (4)0.0297 (4)0.0257 (8)
H10A1.33281.50960.06260.031*
C50.7334 (5)1.0083 (4)0.1394 (4)0.0266 (8)
C40.5657 (5)0.9251 (4)0.1244 (4)0.0295 (9)
H4A0.48900.91110.05290.035*
C30.5139 (5)0.8652 (4)0.2115 (4)0.0281 (9)
H3A0.40290.81220.19920.034*
C20.6253 (5)0.8827 (4)0.3184 (4)0.0257 (8)
C10.7877 (5)0.9614 (4)0.3382 (4)0.0248 (8)
H1A0.86130.97280.41050.030*
C60.8457 (5)1.0256 (4)0.2511 (4)0.0246 (8)
C71.0206 (5)1.1058 (4)0.2782 (4)0.0254 (8)
H7A1.08761.10530.34830.030*
C81.2681 (5)1.2481 (4)0.2451 (4)0.0290 (9)
H8A1.32721.17600.18380.035*
H8B1.30951.27300.33810.035*
C91.2922 (5)1.3988 (4)0.2276 (4)0.0279 (8)
H9A1.25991.48120.30430.033*
H9B1.40831.43680.22330.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0249 (3)0.0287 (3)0.0179 (2)0.00328 (19)0.00093 (18)0.0109 (2)
Br10.0388 (3)0.0389 (2)0.0343 (2)0.00736 (19)0.00758 (18)0.0242 (2)
Br20.0462 (3)0.0443 (3)0.0355 (2)0.0127 (2)0.00954 (19)0.0280 (2)
O20.0260 (15)0.0306 (14)0.0192 (13)0.0036 (11)0.0022 (11)0.0112 (12)
O10.0318 (17)0.0439 (16)0.0214 (14)0.0038 (12)0.0038 (11)0.0190 (13)
N20.0292 (18)0.0242 (16)0.0174 (16)0.0055 (13)0.0008 (13)0.0087 (14)
N10.0229 (18)0.0279 (17)0.0207 (17)0.0058 (13)0.0009 (13)0.0107 (14)
C160.028 (2)0.026 (2)0.022 (2)0.0113 (17)0.0062 (16)0.0087 (17)
C150.029 (2)0.029 (2)0.022 (2)0.0089 (17)0.0008 (16)0.0101 (17)
C140.031 (2)0.033 (2)0.021 (2)0.0151 (18)0.0038 (16)0.0125 (18)
C130.037 (2)0.032 (2)0.027 (2)0.0167 (18)0.0134 (18)0.0190 (18)
C120.025 (2)0.031 (2)0.025 (2)0.0058 (17)0.0052 (16)0.0112 (18)
C110.027 (2)0.028 (2)0.0213 (19)0.0092 (17)0.0042 (16)0.0120 (16)
C100.027 (2)0.0228 (19)0.024 (2)0.0049 (16)0.0027 (16)0.0076 (17)
C50.030 (2)0.026 (2)0.020 (2)0.0083 (17)0.0018 (16)0.0072 (17)
C40.025 (2)0.038 (2)0.024 (2)0.0031 (17)0.0012 (16)0.0156 (18)
C30.024 (2)0.029 (2)0.028 (2)0.0043 (17)0.0057 (17)0.0107 (18)
C20.031 (2)0.025 (2)0.023 (2)0.0081 (17)0.0071 (17)0.0116 (17)
C10.028 (2)0.024 (2)0.021 (2)0.0073 (16)0.0009 (16)0.0083 (16)
C60.030 (2)0.0209 (19)0.020 (2)0.0088 (16)0.0004 (16)0.0063 (16)
C70.028 (2)0.028 (2)0.0187 (19)0.0094 (17)0.0007 (16)0.0084 (17)
C80.022 (2)0.038 (2)0.027 (2)0.0051 (17)0.0025 (16)0.0165 (18)
C90.024 (2)0.032 (2)0.022 (2)0.0023 (17)0.0020 (16)0.0096 (17)
Geometric parameters (Å, º) top
Cu1—O11.905 (2)C12—H12A0.9300
Cu1—O21.917 (2)C11—C101.431 (5)
Cu1—N11.943 (3)C10—H10A0.9300
Cu1—N21.945 (3)C5—C41.420 (5)
Br1—C21.907 (3)C5—C61.432 (5)
Br2—C131.898 (3)C4—C31.362 (5)
O2—C161.301 (4)C4—H4A0.9300
O1—C51.302 (4)C3—C21.385 (5)
N2—C101.272 (4)C3—H3A0.9300
N2—C91.461 (4)C2—C11.361 (5)
N1—C71.273 (4)C1—C61.404 (5)
N1—C81.459 (4)C1—H1A0.9300
C16—C151.423 (5)C6—C71.447 (5)
C16—C111.432 (5)C7—H7A0.9300
C15—C141.374 (5)C8—C91.521 (5)
C15—H15A0.9300C8—H8A0.9700
C14—C131.399 (5)C8—H8B0.9700
C14—H14A0.9300C9—H9A0.9700
C13—C121.358 (5)C9—H9B0.9700
C12—C111.404 (5)
O1—Cu1—O291.88 (10)C11—C10—H10A117.2
O1—Cu1—N192.75 (11)O1—C5—C4119.4 (3)
O2—Cu1—N1170.19 (12)O1—C5—C6124.3 (3)
O1—Cu1—N2171.68 (11)C4—C5—C6116.3 (3)
O2—Cu1—N292.89 (11)C3—C4—C5122.0 (4)
N1—Cu1—N283.60 (12)C3—C4—H4A119.0
C16—O2—Cu1127.2 (2)C5—C4—H4A119.0
C5—O1—Cu1127.5 (2)C4—C3—C2120.5 (4)
C10—N2—C9120.6 (3)C4—C3—H3A119.8
C10—N2—Cu1126.9 (3)C2—C3—H3A119.8
C9—N2—Cu1112.5 (2)C1—C2—C3120.3 (3)
C7—N1—C8119.9 (3)C1—C2—Br1119.0 (3)
C7—N1—Cu1127.3 (3)C3—C2—Br1120.7 (3)
C8—N1—Cu1112.8 (2)C2—C1—C6120.9 (3)
O2—C16—C15118.8 (3)C2—C1—H1A119.5
O2—C16—C11124.6 (3)C6—C1—H1A119.5
C15—C16—C11116.6 (3)C1—C6—C5119.9 (3)
C14—C15—C16121.9 (3)C1—C6—C7117.5 (3)
C14—C15—H15A119.1C5—C6—C7122.6 (3)
C16—C15—H15A119.1N1—C7—C6124.6 (3)
C15—C14—C13120.2 (3)N1—C7—H7A117.7
C15—C14—H14A119.9C6—C7—H7A117.7
C13—C14—H14A119.9N1—C8—C9105.9 (3)
C12—C13—C14119.8 (3)N1—C8—H8A110.6
C12—C13—Br2120.3 (3)C9—C8—H8A110.6
C14—C13—Br2119.9 (3)N1—C8—H8B110.6
C13—C12—C11121.8 (3)C9—C8—H8B110.6
C13—C12—H12A119.1H8A—C8—H8B108.7
C11—C12—H12A119.1N2—C9—C8107.7 (3)
C12—C11—C16119.6 (3)N2—C9—H9A110.2
C12—C11—C10117.8 (3)C8—C9—H9A110.2
C16—C11—C10122.5 (3)N2—C9—H9B110.2
N2—C10—C11125.6 (3)C8—C9—H9B110.2
N2—C10—H10A117.2H9A—C9—H9B108.5

Experimental details

Crystal data
Chemical formula[Cu(C16H12Br2N2O2)]
Mr487.68
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.2848 (4), 9.6302 (5), 10.9984 (6)
α, β, γ (°)115.601 (6), 92.866 (4), 101.527 (5)
V3)766.10 (7)
Z2
Radiation typeMo Kα
µ (mm1)6.65
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.715, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6303, 2641, 2128
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.01
No. of reflections2641
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Education Department Foundation of Fujian Province of China (grant Nos. JA08212 and 2008 F5053).

References

First citationArnold, M., Brown, D. A., Deeg, O., Errington, W., Haase, W., Herlihy, K., Kemp, T. J., Nimir, H. & Werner, R. (1998). Inorg. Chem. 37, 2920–2924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X., Du, Z.-X., Ye, B.-X. & Cui, F.-N. (2007). Chin. J. Struct. Chem. 26, 1033–1038.  CAS Google Scholar
First citationJabri, E., Carr, M. B. & Hausinger, R. P. (1995). Science, 268, 998–1002.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJiang, Y.-M., Zhang, S.-H., Xu, Q. & Xiao, Y. (2003). Huaxue Xuebao, 61, 573–577.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds