organic compounds
Bis(2,3-diaminopyridinium) succinate trihydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title salt, 2C5H8N3+·C4H4O42−·3H2O, the contains a protonated 2,3-diaminopyridinium cation, half of a succinate dianion (disposed about a centre of inversion), and one and a half water molecules. One of the water molecules is disordered over two sites with occupancies of 0.670 (17) and 0.330 (17). The other water molecule has an occupancy of 0.5 (from refinement). The pyridine N atom of the 2,3-diaminopyridine molecule is protonated. The protonated N atom and one of the 2-amino H atoms are hydrogen bonded to the succinate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. In the crystal, molecules are consolidated into a three-dimensional network by N—H⋯O and O—H⋯O interactions.
Related literature
For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For related structures, see: De Cires-Mejias et al. (2004); Fun & Balasubramani (2009); Balasubramani & Fun (2009a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809026439/tk2489sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026439/tk2489Isup2.hkl
An aqueous solution of hot methanol (10 ml/ 10 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and succinic acid (29 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.
All the H atoms (other than the water H-atoms) were located from the difference Fourier map and allowed to refine freely [N–H = 0.85 (3)–0.96 (3) Å & C–H = 0.93 (2)–0.98 (2) Å]. The water H-atoms were located from the difference Fourier map but constrained to 0.85 Å from the parent atom with Uiso(H) = 1.5Ueq(O).
One water molecule has a refined occupancy of 0.495 (7) which was then fixed as 0.5 in the final
The other water molecule is disordered (O1WA & O1WB) over two sites with occupancies of 0.670 (17) and 0.330 (17).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate the hydrogen bonding. The O1 water molecule is disordered over two positions. Symmetry operation A:-x, 2-y, 1-z. | |
Fig. 2. Part of the crystal packing showing the overall 3-D hydrogen-bonding network in (I). Dashed lines indicate the hydrogen bonding. |
2C5H8N3+·C4H4O42−·3H2O | F(000) = 416 |
Mr = 195.20 | Dx = 1.397 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2108 reflections |
a = 12.7159 (4) Å | θ = 2.2–30.0° |
b = 3.9024 (1) Å | µ = 0.11 mm−1 |
c = 18.7734 (6) Å | T = 100 K |
β = 94.933 (2)° | Block, brown |
V = 928.13 (5) Å3 | 0.17 × 0.13 × 0.06 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 2121 independent reflections |
Radiation source: fine-focus sealed tube | 1364 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −16→16 |
Tmin = 0.981, Tmax = 0.993 | k = −4→5 |
10934 measured reflections | l = −24→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.041P)2 + 0.7373P] where P = (Fo2 + 2Fc2)/3 |
2121 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
2C5H8N3+·C4H4O42−·3H2O | V = 928.13 (5) Å3 |
Mr = 195.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.7159 (4) Å | µ = 0.11 mm−1 |
b = 3.9024 (1) Å | T = 100 K |
c = 18.7734 (6) Å | 0.17 × 0.13 × 0.06 mm |
β = 94.933 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2121 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1364 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.993 | Rint = 0.056 |
10934 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2121 reflections | Δρmin = −0.24 e Å−3 |
178 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.02464 (12) | 0.7567 (4) | 0.37851 (8) | 0.0251 (4) | |
O2 | 0.18198 (12) | 0.6548 (5) | 0.43615 (8) | 0.0264 (4) | |
N1 | 0.25383 (14) | 0.2963 (5) | 0.33114 (10) | 0.0204 (5) | |
N2 | 0.10876 (15) | 0.4334 (6) | 0.25459 (12) | 0.0243 (5) | |
N3 | 0.20743 (19) | 0.1167 (7) | 0.14153 (12) | 0.0328 (6) | |
C1 | 0.20422 (17) | 0.2863 (6) | 0.26523 (12) | 0.0201 (5) | |
C2 | 0.25526 (17) | 0.1188 (6) | 0.20981 (12) | 0.0221 (6) | |
C3 | 0.35320 (18) | −0.0256 (7) | 0.22796 (13) | 0.0243 (6) | |
C4 | 0.40151 (18) | −0.0059 (7) | 0.29740 (13) | 0.0248 (6) | |
C5 | 0.35068 (18) | 0.1562 (7) | 0.34840 (13) | 0.0241 (6) | |
C6 | 0.08824 (17) | 0.7727 (6) | 0.43321 (12) | 0.0207 (5) | |
C7 | 0.05630 (18) | 0.9358 (7) | 0.50147 (12) | 0.0207 (5) | |
O1WA | 0.3424 (4) | 0.840 (3) | 0.5375 (3) | 0.082 (3) | 0.670 (17) |
H1WA | 0.3803 | 0.6625 | 0.5341 | 0.123* | 0.670 (17) |
H2WA | 0.2898 | 0.8222 | 0.5066 | 0.123* | 0.670 (17) |
O1WB | 0.3443 (6) | 0.583 (4) | 0.5327 (3) | 0.039 (4) | 0.330 (17) |
H1WB | 0.3312 | 0.7954 | 0.5365 | 0.058* | 0.330 (17) |
H2WB | 0.3173 | 0.5182 | 0.4919 | 0.058* | 0.330 (17) |
O2W | 0.4593 (3) | 0.248 (2) | 0.5467 (3) | 0.110 (3) | 0.50 |
H1W2 | 0.5119 | 0.3543 | 0.5322 | 0.165* | 0.50 |
H2W2 | 0.4462 | 0.0794 | 0.5187 | 0.165* | 0.50 |
H4A | 0.4676 (19) | −0.100 (7) | 0.3090 (12) | 0.027 (7)* | |
H5A | 0.3781 (17) | 0.185 (6) | 0.3960 (13) | 0.022 (6)* | |
H3A | 0.3854 (18) | −0.140 (7) | 0.1902 (13) | 0.030 (7)* | |
H7B | 0.0722 (17) | 0.759 (6) | 0.5381 (12) | 0.020 (6)* | |
H7A | 0.1062 (18) | 1.118 (7) | 0.5145 (12) | 0.026 (7)* | |
H2N2 | 0.076 (2) | 0.445 (8) | 0.2102 (16) | 0.047 (9)* | |
H1N3 | 0.142 (2) | 0.154 (7) | 0.1337 (14) | 0.037 (8)* | |
H1N2 | 0.0799 (19) | 0.537 (7) | 0.2905 (14) | 0.028 (7)* | |
H2N3 | 0.239 (2) | −0.022 (8) | 0.1105 (15) | 0.045 (9)* | |
H1N1 | 0.2213 (19) | 0.418 (7) | 0.3676 (13) | 0.030 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0211 (8) | 0.0345 (11) | 0.0203 (8) | 0.0028 (8) | 0.0054 (7) | −0.0005 (7) |
O2 | 0.0188 (8) | 0.0361 (11) | 0.0253 (9) | 0.0030 (8) | 0.0074 (7) | −0.0010 (8) |
N1 | 0.0177 (10) | 0.0213 (12) | 0.0235 (10) | −0.0029 (9) | 0.0084 (8) | −0.0007 (9) |
N2 | 0.0203 (11) | 0.0296 (13) | 0.0239 (11) | 0.0020 (10) | 0.0066 (9) | −0.0041 (10) |
N3 | 0.0263 (13) | 0.0450 (16) | 0.0277 (12) | 0.0052 (12) | 0.0056 (10) | −0.0071 (11) |
C1 | 0.0172 (11) | 0.0179 (13) | 0.0259 (12) | −0.0052 (10) | 0.0067 (9) | 0.0016 (10) |
C2 | 0.0219 (12) | 0.0213 (14) | 0.0242 (12) | −0.0050 (11) | 0.0074 (10) | −0.0006 (10) |
C3 | 0.0229 (12) | 0.0215 (15) | 0.0304 (13) | −0.0033 (11) | 0.0134 (10) | −0.0025 (11) |
C4 | 0.0153 (12) | 0.0234 (14) | 0.0366 (14) | −0.0026 (11) | 0.0067 (10) | 0.0008 (12) |
C5 | 0.0204 (12) | 0.0251 (15) | 0.0269 (13) | −0.0031 (11) | 0.0028 (10) | 0.0024 (11) |
C6 | 0.0219 (12) | 0.0185 (14) | 0.0229 (12) | −0.0022 (11) | 0.0082 (10) | 0.0049 (10) |
C7 | 0.0207 (12) | 0.0212 (14) | 0.0204 (12) | −0.0003 (11) | 0.0035 (10) | 0.0027 (11) |
O1WA | 0.068 (3) | 0.111 (8) | 0.061 (3) | −0.030 (3) | −0.026 (2) | 0.022 (3) |
O1WB | 0.031 (4) | 0.064 (9) | 0.020 (3) | 0.009 (4) | −0.002 (2) | −0.009 (3) |
O2W | 0.039 (3) | 0.210 (8) | 0.078 (4) | −0.015 (4) | −0.016 (3) | −0.006 (4) |
O1—C6 | 1.253 (3) | C4—H4A | 0.93 (2) |
O2—C6 | 1.274 (3) | C5—H5A | 0.94 (2) |
N1—C1 | 1.340 (3) | C6—C7 | 1.517 (3) |
N1—C5 | 1.361 (3) | C7—C7i | 1.513 (4) |
N1—H1N1 | 0.96 (3) | C7—H7B | 0.98 (2) |
N2—C1 | 1.342 (3) | C7—H7A | 0.97 (3) |
N2—H2N2 | 0.90 (3) | O1WA—H1WA | 0.8500 |
N2—H1N2 | 0.89 (3) | O1WA—H2WA | 0.8501 |
N3—C2 | 1.371 (3) | O1WA—H1WB | 0.2257 |
N3—H1N3 | 0.85 (3) | O1WB—H1WA | 0.5518 |
N3—H2N3 | 0.91 (3) | O1WB—H2WA | 1.2381 |
C1—C2 | 1.431 (3) | O1WB—H1WB | 0.8500 |
C2—C3 | 1.383 (3) | O1WB—H2WB | 0.8502 |
C3—C4 | 1.395 (3) | O2W—H1W2 | 0.8500 |
C3—H3A | 0.96 (3) | O2W—H2W2 | 0.8501 |
C4—C5 | 1.357 (3) | ||
C1—N1—C5 | 123.6 (2) | C4—C5—H5A | 124.5 (14) |
C1—N1—H1N1 | 118.5 (14) | N1—C5—H5A | 115.7 (14) |
C5—N1—H1N1 | 117.9 (14) | O1—C6—O2 | 123.6 (2) |
C1—N2—H2N2 | 120.3 (18) | O1—C6—C7 | 120.8 (2) |
C1—N2—H1N2 | 120.5 (15) | O2—C6—C7 | 115.61 (19) |
H2N2—N2—H1N2 | 119 (2) | C7i—C7—C6 | 115.4 (2) |
C2—N3—H1N3 | 120.8 (18) | C7i—C7—H7B | 113.3 (13) |
C2—N3—H2N3 | 114.7 (17) | C6—C7—H7B | 104.0 (13) |
H1N3—N3—H2N3 | 118 (3) | C7i—C7—H7A | 111.3 (14) |
N1—C1—N2 | 118.2 (2) | C6—C7—H7A | 107.7 (14) |
N1—C1—C2 | 118.5 (2) | H7B—C7—H7A | 104.4 (18) |
N2—C1—C2 | 123.2 (2) | H1WA—O1WA—H2WA | 107.4 |
N3—C2—C3 | 123.1 (2) | H1WA—O1WA—H1WB | 73.7 |
N3—C2—C1 | 119.4 (2) | H2WA—O1WA—H1WB | 54.6 |
C3—C2—C1 | 117.5 (2) | H1WA—O1WB—H2WA | 91.7 |
C2—C3—C4 | 121.5 (2) | H1WA—O1WB—H1WB | 67.4 |
C2—C3—H3A | 116.1 (14) | H2WA—O1WB—H1WB | 35.9 |
C4—C3—H3A | 122.3 (14) | H1WA—O1WB—H2WB | 118.6 |
C5—C4—C3 | 119.1 (2) | H2WA—O1WB—H2WB | 72.5 |
C5—C4—H4A | 119.8 (15) | H1WB—O1WB—H2WB | 107.4 |
C3—C4—H4A | 121.1 (15) | H1W2—O2W—H2W2 | 107.4 |
C4—C5—N1 | 119.7 (2) | ||
C5—N1—C1—N2 | 180.0 (2) | C1—C2—C3—C4 | −0.8 (4) |
C5—N1—C1—C2 | 0.2 (3) | C2—C3—C4—C5 | 0.6 (4) |
N1—C1—C2—N3 | −177.7 (2) | C3—C4—C5—N1 | 0.0 (4) |
N2—C1—C2—N3 | 2.6 (4) | C1—N1—C5—C4 | −0.4 (4) |
N1—C1—C2—C3 | 0.4 (3) | O1—C6—C7—C7i | 1.6 (4) |
N2—C1—C2—C3 | −179.4 (2) | O2—C6—C7—C7i | −177.9 (3) |
N3—C2—C3—C4 | 177.2 (2) |
Symmetry code: (i) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O1ii | 0.90 (3) | 2.14 (3) | 2.978 (3) | 155 (3) |
N3—H1N3···O1ii | 0.85 (3) | 2.14 (3) | 2.993 (3) | 176 (3) |
N3—H2N3···O1WAiii | 0.91 (3) | 2.34 (3) | 3.243 (6) | 172 (2) |
O1WA—H2WA···O2 | 0.85 | 1.93 | 2.764 (5) | 165 |
N2—H1N2···O1 | 0.89 (3) | 2.04 (3) | 2.929 (3) | 175 (2) |
N1—H1N1···O2 | 0.96 (3) | 1.69 (3) | 2.643 (3) | 171 (2) |
Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | 2C5H8N3+·C4H4O42−·3H2O |
Mr | 195.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.7159 (4), 3.9024 (1), 18.7734 (6) |
β (°) | 94.933 (2) |
V (Å3) | 928.13 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.17 × 0.13 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.981, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10934, 2121, 1364 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.129, 1.06 |
No. of reflections | 2121 |
No. of parameters | 178 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O1i | 0.90 (3) | 2.14 (3) | 2.978 (3) | 155 (3) |
N3—H1N3···O1i | 0.85 (3) | 2.14 (3) | 2.993 (3) | 176 (3) |
N3—H2N3···O1WAii | 0.91 (3) | 2.34 (3) | 3.243 (6) | 172 (2) |
O1WA—H2WA···O2 | 0.85 | 1.93 | 2.764 (5) | 165 |
N2—H1N2···O1 | 0.89 (3) | 2.04 (3) | 2.929 (3) | 175 (2) |
N1—H1N1···O2 | 0.96 (3) | 1.69 (3) | 2.643 (3) | 171 (2) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
De Cires-Mejias, C., Tanase, S., Reedijk, J., Gonzalez-Vilchez, F., Vilaplana, R., Mills, A. M., Kooijman, H. & Spek, A. L. (2004). Inorg. Chim. Acta, 357, 1494–1498. Web of Science CSD CrossRef CAS Google Scholar
Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Further, pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997;Scheiner, 1997). The crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b) have been reported by us recently. In the hope to study some interesting hydrogen-bonding interactions, the title compound (I) was synthesized. Its molecular and crystal structure is presented here.
The asymmetric unit of (I) (Fig. 1), contains a protonated 2,3-diaminopyridinium cation, a half molecule of succinate anion (disposed about a centre of inversion), and one and half water molecules. In the 2,3-diaminopyridinium cation, protonatation N1 atom has lead to a slight increase (ca. 4 °) in the C1—N1—C5 angle to 123.6 (2)° compared with the unprotonated structure (De Cires-Mejias et al., 2004). The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.004 (2) Å for atom C2.
In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the succinate oxygen atoms (O2 and O1) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The 2-amino groups (N2 and N3) are involved in N—H···O hydrogen-bonding interactions to form a R21(7) ring motif. The crystal structure is further stabilized by water molecules via O(water)—H···O and N—H···O(water) hydrogen bonding (Table 1 and Fig. 2).