metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[4,4,4-tri­fluoro-1-(2-thien­yl)butane-1,3-dionato]aluminium(III)–tris­­[4,4,4-tri­fluoro-1-(2-thien­yl)butane-1,3-dion­ato]iron(III) (3/1)

aSchool of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia, and bChemistry Department, College of Sciences and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City, Philippines
*Correspondence e-mail: madeleine.schultz@qut.edu.au

(Received 29 June 2009; accepted 20 July 2009; online 25 July 2009)

In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octa­hedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the mol­ecule with a mer geometry of the S atoms.

Related literature

The analogous structures of the octa­hedral Fe, In (Soling, 1976[Soling, H. (1976). Acta Chem. Scand. 30, 163-170.]) and Ru (Aynetchi et al., 1986[Aynetchi, S., Hitchcock, P. B., Seddon, E. A., Seddon, K. R., Yousif, Y. Z., Zora, J. A. & Stucky, K. (1986). Inorg. Chim. Acta, 113, L7-L9.]) complexes of this ligand have been reported. For extraction with supercritical carbon dioxide using this ligand, see: Wai (1995[Wai, C. M. (1995). Anal. Sci. 11, 165-167.]); Wai et al. (1996[Wai, C. M., Wang, S., Liu, Y., Lopez-Avila, V. & Beckert, W. F. (1996). Talanta, 43, 2083-2091.]). For related Al acetyl­acetonato structures, see: Bott et al. (2001[Bott, S. G., Fahlman, B. D., Pierson, M. L. & Barron, A. R. (2001). J. Chem. Soc. Dalton Trans. pp. 2148-2152.]); Dharmaprakash et al. (2006[Dharmaprakash, M. S., Thamotharan, S., Neelgund, G. M. & Shivashankar, S. A. (2006). Acta Cryst. E62, m434-m436.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3]

  • Mr = 2790.97

  • Monoclinic, P 21 /n

  • a = 13.743 (3) Å

  • b = 14.278 (2) Å

  • c = 14.136 (3) Å

  • β = 94.013 (18)°

  • V = 2767.1 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 173 K

  • 0.14 × 0.10 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 detector

  • Absorption correction: none

  • 11706 measured reflections

  • 6021 independent reflections

  • 2687 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.185

  • S = 0.91

  • 6021 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and WinGX32 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was formed during the extraction of a standard reference material using supercritical carbon dioxide (SFE) in order to determine the recovery of some heavy metals by ICP-MS. SFE using fluorinated ligands such as 1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedione has been shown to be very effective in extracting metals from a variety of matrices (Wai, 1995; Wai et al., 1996).

The structure of (I), Fig. 1, is similar to those of the Ru (Aynetchi et al., 1986), In and Fe (Soling, 1976) complexes of the same ligand. As observed in those structures, the M—O distances adjacent to the trifluoromethyl group are very slightly shorter than those adjacent to the thienyl group. A more important bond distance variation is found in the backbone of the butanedionato ligand, in that the two C—C bond distances in the chelate ring are significantly different from each other. The distance from the central C atom of the chelate ring to the C atom adjacent to the trifluoromethyl group (C2—C3; C10—C11; C18—C19) is significantly shorter than that to the C atom adjacent to the thienyl group (C3—C4; C11—C12; C19—C20). In the present structure this difference is around 0.06 Å, which is similar to that observed in the three reported structures involving octahedral complexes of this ligand.

A large number of structures of Al(acac)3 have been reported with the unsubstituted acetylacetonato ligand (Bott et al., 2001), and the related complex tris(3-t-butoxybutandionato)aluminium(III), bearing a heterobidentate acetylacetonato ligand has also been reported (Dharmaprakash et al., 2006). In that structure, a fac arrangement of the ligands was observed, unlike in the present structure.

Related literature top

The analogous structures of the octahedral Fe, In (Soling, 1976) and Ru (Aynetchi et al., 1986) complexes of this ligand have been reported. For extraction with supercritical carbon dioxide, see: Wai (1995); Wai et al. (1996). For related Al acetylacetonato structures, see: Bott et al. (2001); Dharmaprakash et al. (2006).

Experimental top

A sample of a standard reference material NCSDC 73372, Lake Sediment, was extracted using supercritical CO2 modified with 5% methanol in the presence of the protonated ligand 1-(2-thienyl)-4,4,4-trifluoro- 1,3-butanedione (Wai, 1995; Wai et al., 1996). The extract was collected in chloroform and the deep-red crystals formed upon evaporation of the solvent. The identity of the metal was determined after the crystallographic data had been collected by subjecting the same crystal to Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX). The spectra obtained at two different locations on the crystal showed the only metals present in detectable amounts to be Al and Fe. The ratio of these was found to be 3:1 by integrating the K peaks after background subtraction.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances of 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

There is gross thermal motion in one trifluoromethyl group of one ligand, affecting the thermal parameters of F7, F8 and F9, but this does not adversely impact the quality of the core of the structure. It is interesting to examine the residual electron density in detail; the thienyl groups appear to have very low occupancy in which the sulfur atom lies on the opposite side of the planar thienyl ring. This leads to some anomalies in the thermal parameters in those rings. However, all bond distances and angles fall within normal ranges.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and WinGX32 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the complex (I) showing the atom labelling scheme. Hydrogen atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. The Al1 site is 25% occupied by Fe.
Tris[4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionato]aluminium(III)– tris[4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionato]iron(III) (3/1) top
Crystal data top
[Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3]F(000) = 1397
Mr = 2790.97Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1790 reflections
a = 13.743 (3) Åθ = 2.9–28.0°
b = 14.278 (2) ŵ = 0.52 mm1
c = 14.136 (3) ÅT = 173 K
β = 94.013 (18)°Block, red
V = 2767.1 (9) Å30.14 × 0.10 × 0.10 mm
Z = 1
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Ultra Mo) detector
2687 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 28.0°, θmin = 2.9°
ω scansh = 1814
11706 measured reflectionsk = 1618
6021 independent reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0829P)2]
where P = (Fo2 + 2Fc2)/3
6021 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3]V = 2767.1 (9) Å3
Mr = 2790.97Z = 1
Monoclinic, P21/nMo Kα radiation
a = 13.743 (3) ŵ = 0.52 mm1
b = 14.278 (2) ÅT = 173 K
c = 14.136 (3) Å0.14 × 0.10 × 0.10 mm
β = 94.013 (18)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Ultra Mo) detector
2687 reflections with I > 2σ(I)
11706 measured reflectionsRint = 0.052
6021 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 0.91Δρmax = 0.72 e Å3
6021 reflectionsΔρmin = 0.44 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.69004 (9)0.19827 (9)0.06179 (8)0.0295 (3)0.75
Fe10.69004 (9)0.19827 (9)0.06179 (8)0.0295 (3)0.25
S30.44342 (12)0.41369 (12)0.13998 (12)0.0543 (5)
S20.89747 (12)0.06384 (12)0.11705 (12)0.0585 (5)
S10.85479 (12)0.30057 (13)0.34316 (12)0.0563 (5)
F50.5874 (2)0.1933 (2)0.2505 (2)0.0519 (9)
O30.7705 (2)0.0890 (2)0.0564 (2)0.0360 (9)
F40.7125 (3)0.1207 (3)0.2951 (2)0.0676 (11)
O50.7945 (2)0.2798 (2)0.0298 (2)0.0335 (9)
O20.7411 (2)0.2155 (3)0.1911 (2)0.0367 (9)
F80.8943 (3)0.5020 (3)0.0181 (3)0.0840 (14)
O10.5872 (2)0.1250 (2)0.1022 (2)0.0344 (9)
O60.6072 (2)0.3059 (2)0.0761 (2)0.0336 (9)
F20.4760 (3)0.0067 (3)0.2755 (3)0.0831 (13)
F30.3977 (3)0.1018 (3)0.1898 (3)0.0889 (14)
F10.4669 (3)0.0117 (3)0.1286 (3)0.0901 (15)
F70.9645 (3)0.3814 (3)0.0733 (3)0.0868 (14)
F60.7253 (3)0.2621 (3)0.2414 (2)0.0709 (12)
O40.6526 (2)0.1881 (2)0.0684 (2)0.0334 (9)
C120.8008 (4)0.0479 (4)0.0163 (4)0.0337 (13)
F90.9159 (3)0.3810 (3)0.0685 (3)0.0972 (16)
C140.9116 (4)0.0882 (4)0.0661 (4)0.0377 (14)
H140.90260.08270.13310.045*
C180.7963 (4)0.3683 (4)0.0399 (4)0.0372 (14)
C100.7039 (4)0.1449 (4)0.1282 (3)0.0312 (13)
C20.5671 (4)0.1104 (4)0.1884 (4)0.0414 (15)
C90.6824 (4)0.1807 (4)0.2294 (4)0.0445 (15)
C220.5581 (4)0.5545 (4)0.1173 (4)0.0389 (14)
H220.61250.59260.10530.047*
C30.6194 (4)0.1384 (4)0.2702 (4)0.0409 (14)
H30.59750.11980.32970.049*
C210.5569 (4)0.4602 (4)0.1117 (3)0.0396 (15)
C60.7347 (4)0.2167 (4)0.4512 (4)0.0355 (13)
H60.68310.18030.47330.043*
C130.8660 (4)0.0308 (4)0.0018 (4)0.0416 (14)
C10.4768 (4)0.0521 (4)0.1955 (4)0.0428 (15)
C240.4008 (4)0.5220 (4)0.1584 (4)0.0459 (16)
H240.33710.53480.17730.055*
C40.7053 (4)0.1944 (4)0.2686 (4)0.0395 (14)
C70.8050 (5)0.2679 (5)0.5097 (4)0.0498 (16)
H70.80540.26940.57690.060*
C110.7736 (4)0.0785 (4)0.1096 (4)0.0362 (13)
H110.80500.05180.16100.043*
C170.8902 (4)0.4101 (4)0.0143 (5)0.0466 (16)
C190.7239 (4)0.4262 (4)0.0665 (4)0.0447 (15)
H190.73710.49120.07380.054*
C80.8712 (5)0.3141 (4)0.4601 (4)0.0563 (18)
H80.92240.35090.48960.068*
C230.4676 (5)0.5887 (5)0.1434 (4)0.0568 (18)
H230.45460.65360.14980.068*
C200.6284 (4)0.3921 (4)0.0839 (3)0.0366 (14)
C50.7541 (4)0.2285 (4)0.3563 (4)0.0356 (14)
C150.9723 (5)0.1543 (5)0.0158 (5)0.0576 (19)
H151.01150.19790.04680.069*
C160.9703 (4)0.1506 (4)0.0786 (6)0.061 (2)
H161.00610.19240.12030.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0308 (7)0.0283 (7)0.0301 (7)0.0074 (6)0.0079 (5)0.0021 (6)
Fe10.0308 (7)0.0283 (7)0.0301 (7)0.0074 (6)0.0079 (5)0.0021 (6)
S30.0459 (10)0.0551 (11)0.0631 (11)0.0076 (8)0.0130 (8)0.0013 (9)
S20.0528 (11)0.0485 (11)0.0735 (12)0.0058 (9)0.0003 (8)0.0154 (9)
S10.0486 (10)0.0621 (12)0.0582 (11)0.0068 (9)0.0037 (8)0.0030 (9)
F50.047 (2)0.062 (2)0.045 (2)0.0062 (19)0.0039 (15)0.0006 (17)
O30.040 (2)0.034 (2)0.034 (2)0.0012 (18)0.0059 (17)0.0066 (18)
F40.071 (3)0.094 (3)0.039 (2)0.028 (2)0.0096 (18)0.008 (2)
O50.031 (2)0.032 (2)0.039 (2)0.0064 (17)0.0133 (16)0.0031 (18)
O20.034 (2)0.046 (3)0.031 (2)0.0091 (18)0.0102 (16)0.0005 (18)
F80.052 (3)0.046 (3)0.160 (4)0.016 (2)0.050 (3)0.004 (2)
O10.034 (2)0.037 (2)0.032 (2)0.0125 (18)0.0002 (16)0.0015 (18)
O60.038 (2)0.026 (2)0.037 (2)0.0130 (18)0.0047 (16)0.0020 (17)
F20.088 (3)0.084 (3)0.076 (3)0.035 (3)0.002 (2)0.025 (2)
F30.035 (2)0.074 (3)0.158 (4)0.001 (2)0.007 (2)0.018 (3)
F10.096 (3)0.083 (3)0.095 (3)0.062 (3)0.033 (2)0.039 (3)
F70.042 (2)0.084 (3)0.133 (4)0.020 (2)0.005 (2)0.006 (3)
F60.085 (3)0.071 (3)0.057 (2)0.036 (2)0.005 (2)0.018 (2)
O40.031 (2)0.031 (2)0.039 (2)0.0044 (17)0.0050 (16)0.0017 (18)
C120.026 (3)0.030 (3)0.046 (4)0.009 (2)0.006 (2)0.000 (3)
F90.106 (3)0.096 (3)0.099 (3)0.051 (3)0.078 (3)0.027 (3)
C140.022 (3)0.032 (3)0.060 (4)0.003 (3)0.004 (3)0.004 (3)
C180.043 (3)0.035 (4)0.036 (3)0.005 (3)0.013 (3)0.006 (3)
C100.026 (3)0.035 (3)0.032 (3)0.018 (3)0.001 (2)0.004 (3)
C20.042 (4)0.032 (3)0.051 (4)0.009 (3)0.009 (3)0.008 (3)
C90.038 (4)0.052 (4)0.044 (4)0.003 (3)0.002 (3)0.001 (3)
C220.033 (3)0.046 (4)0.040 (3)0.013 (3)0.014 (3)0.001 (3)
C30.043 (4)0.043 (4)0.038 (3)0.002 (3)0.015 (3)0.000 (3)
C210.046 (4)0.053 (4)0.020 (3)0.025 (3)0.004 (2)0.012 (3)
C60.025 (3)0.028 (3)0.053 (4)0.010 (2)0.003 (3)0.000 (3)
C130.032 (3)0.036 (3)0.057 (4)0.013 (3)0.002 (3)0.005 (3)
C10.044 (4)0.041 (4)0.045 (4)0.016 (3)0.010 (3)0.005 (3)
C240.041 (4)0.052 (4)0.046 (4)0.008 (3)0.017 (3)0.006 (3)
C40.034 (3)0.033 (3)0.051 (4)0.005 (3)0.002 (3)0.011 (3)
C70.052 (4)0.062 (4)0.035 (3)0.010 (3)0.004 (3)0.005 (3)
C110.029 (3)0.047 (4)0.032 (3)0.003 (3)0.003 (2)0.005 (3)
C170.038 (4)0.032 (4)0.073 (5)0.019 (3)0.021 (3)0.007 (3)
C190.039 (3)0.035 (3)0.062 (4)0.014 (3)0.015 (3)0.005 (3)
C80.047 (4)0.054 (4)0.067 (4)0.012 (3)0.006 (3)0.022 (4)
C230.070 (5)0.043 (4)0.058 (4)0.001 (4)0.005 (4)0.013 (3)
C200.039 (3)0.043 (4)0.027 (3)0.009 (3)0.001 (2)0.000 (3)
C50.031 (3)0.031 (3)0.042 (3)0.017 (3)0.019 (2)0.014 (3)
C150.048 (4)0.043 (4)0.084 (5)0.003 (3)0.020 (4)0.005 (4)
C160.040 (4)0.031 (4)0.111 (6)0.001 (3)0.001 (4)0.025 (4)
Geometric parameters (Å, º) top
Al1—O11.879 (3)C14—C131.438 (7)
Al1—O41.882 (4)C14—H140.9500
Al1—O31.918 (4)C18—C191.368 (7)
Al1—O51.927 (3)C18—C171.489 (7)
Al1—O21.928 (4)C10—C111.359 (7)
Al1—O61.932 (4)C10—C91.528 (7)
S3—C241.680 (6)C2—C31.378 (7)
S3—C211.767 (6)C2—C11.503 (7)
S2—C161.706 (7)C22—C211.348 (7)
S2—C131.722 (6)C22—C231.408 (8)
S1—C81.664 (6)C22—H220.9500
S1—C51.744 (6)C3—C41.428 (7)
F5—C91.331 (6)C3—H30.9500
O3—C121.277 (6)C21—C201.456 (7)
F4—C91.349 (6)C6—C51.396 (7)
O5—C181.271 (6)C6—C71.427 (8)
O2—C41.267 (6)C6—H60.9500
F8—C171.314 (6)C24—C231.351 (8)
O1—C21.284 (6)C24—H240.9500
O6—C201.267 (6)C4—C51.452 (7)
F2—C11.305 (6)C7—C81.359 (8)
F3—C11.296 (7)C7—H70.9500
F1—C11.313 (6)C11—H110.9500
F7—C171.337 (7)C19—C201.437 (7)
F6—C91.319 (6)C19—H190.9500
O4—C101.295 (6)C8—H80.9500
C12—C111.415 (7)C23—H230.9500
C12—C131.449 (8)C15—C161.338 (8)
F9—C171.314 (6)C15—H150.9500
C14—C151.418 (8)C16—H160.9500
O1—Al1—O495.39 (15)C20—C21—S3115.6 (5)
O1—Al1—O390.41 (15)C5—C6—C7109.1 (5)
O4—Al1—O390.98 (15)C5—C6—H6125.4
O1—Al1—O5175.17 (16)C7—C6—H6125.4
O4—Al1—O588.53 (15)C14—C13—C12128.1 (5)
O3—Al1—O592.33 (15)C14—C13—S2112.5 (4)
O1—Al1—O290.83 (14)C12—C13—S2119.4 (4)
O4—Al1—O2173.74 (15)F3—C1—F2105.5 (5)
O3—Al1—O288.24 (15)F3—C1—F1106.9 (5)
O5—Al1—O285.29 (15)F2—C1—F1105.8 (5)
O1—Al1—O687.13 (15)F3—C1—C2112.7 (5)
O4—Al1—O692.32 (15)F2—C1—C2113.0 (5)
O3—Al1—O6176.06 (14)F1—C1—C2112.3 (5)
O5—Al1—O689.90 (15)C23—C24—S3112.1 (4)
O2—Al1—O688.71 (15)C23—C24—H24123.9
C24—S3—C2190.7 (3)S3—C24—H24123.9
C16—S2—C1390.7 (3)O2—C4—C3121.2 (5)
C8—S1—C590.9 (3)O2—C4—C5118.3 (5)
C12—O3—Al1128.8 (3)C3—C4—C5120.5 (5)
C18—O5—Al1125.6 (3)C8—C7—C6113.6 (5)
C4—O2—Al1130.7 (4)C8—C7—H7123.2
C2—O1—Al1126.5 (3)C6—C7—H7123.2
C20—O6—Al1130.4 (3)C10—C11—C12122.2 (5)
C10—O4—Al1123.4 (3)C10—C11—H11118.9
O3—C12—C11121.9 (5)C12—C11—H11118.9
O3—C12—C13116.5 (5)F9—C17—F8109.9 (5)
C11—C12—C13121.6 (5)F9—C17—F7102.6 (5)
C15—C14—C13108.3 (5)F8—C17—F7104.6 (5)
C15—C14—H14125.9F9—C17—C18112.4 (5)
C13—C14—H14125.9F8—C17—C18115.2 (5)
O5—C18—C19128.6 (5)F7—C17—C18111.2 (5)
O5—C18—C17112.5 (5)C18—C19—C20122.2 (5)
C19—C18—C17118.9 (5)C18—C19—H19118.9
O4—C10—C11127.9 (5)C20—C19—H19118.9
O4—C10—C9111.9 (5)C7—C8—S1114.0 (5)
C11—C10—C9120.1 (5)C7—C8—H8123.0
O1—C2—C3128.0 (5)S1—C8—H8123.0
O1—C2—C1112.8 (5)C24—C23—C22114.8 (6)
C3—C2—C1119.2 (5)C24—C23—H23122.6
F6—C9—F5106.9 (5)C22—C23—H23122.6
F6—C9—F4108.1 (5)O6—C20—C19121.4 (5)
F5—C9—F4105.9 (5)O6—C20—C21121.2 (5)
F6—C9—C10110.8 (5)C19—C20—C21117.4 (5)
F5—C9—C10112.2 (4)C6—C5—C4132.3 (5)
F4—C9—C10112.5 (5)C6—C5—S1112.3 (4)
C21—C22—C23110.8 (5)C4—C5—S1115.4 (4)
C21—C22—H22124.6C16—C15—C14114.9 (6)
C23—C22—H22124.6C16—C15—H15122.5
C2—C3—C4122.2 (5)C14—C15—H15122.5
C2—C3—H3118.9C15—C16—S2113.6 (5)
C4—C3—H3118.9C15—C16—H16123.2
C22—C21—C20132.6 (6)S2—C16—H16123.2
C22—C21—S3111.7 (4)
O1—Al1—O3—C12111.0 (4)C16—S2—C13—C140.6 (4)
O4—Al1—O3—C1215.6 (4)C16—S2—C13—C12178.8 (4)
O5—Al1—O3—C1273.0 (4)O1—C2—C1—F385.8 (6)
O2—Al1—O3—C12158.2 (4)C3—C2—C1—F396.5 (7)
O4—Al1—O5—C18104.5 (4)O1—C2—C1—F2154.6 (5)
O3—Al1—O5—C18164.5 (4)C3—C2—C1—F223.0 (8)
O2—Al1—O5—C1876.5 (4)O1—C2—C1—F135.0 (7)
O6—Al1—O5—C1812.2 (4)C3—C2—C1—F1142.7 (6)
O1—Al1—O2—C48.8 (5)C21—S3—C24—C230.5 (5)
O3—Al1—O2—C499.2 (4)Al1—O2—C4—C39.2 (8)
O5—Al1—O2—C4168.3 (5)Al1—O2—C4—C5170.9 (3)
O6—Al1—O2—C478.3 (4)C2—C3—C4—O24.9 (9)
O4—Al1—O1—C2174.4 (4)C2—C3—C4—C5175.2 (5)
O3—Al1—O1—C294.6 (4)C5—C6—C7—C80.0 (7)
O2—Al1—O1—C26.4 (4)O4—C10—C11—C121.0 (8)
O6—Al1—O1—C282.3 (4)C9—C10—C11—C12175.5 (5)
O1—Al1—O6—C20161.0 (4)O3—C12—C11—C108.9 (8)
O4—Al1—O6—C20103.7 (4)C13—C12—C11—C10172.1 (5)
O5—Al1—O6—C2015.1 (4)O5—C18—C17—F949.4 (7)
O2—Al1—O6—C2070.1 (4)C19—C18—C17—F9128.0 (6)
O1—Al1—O4—C10114.0 (4)O5—C18—C17—F8176.3 (5)
O3—Al1—O4—C1023.5 (4)C19—C18—C17—F81.2 (9)
O5—Al1—O4—C1068.9 (4)O5—C18—C17—F765.0 (6)
O6—Al1—O4—C10158.7 (4)C19—C18—C17—F7117.6 (6)
Al1—O3—C12—C112.6 (7)O5—C18—C19—C202.8 (10)
Al1—O3—C12—C13176.4 (3)C17—C18—C19—C20174.2 (5)
Al1—O5—C18—C196.6 (8)C6—C7—C8—S10.2 (7)
Al1—O5—C18—C17176.3 (4)C5—S1—C8—C70.3 (5)
Al1—O4—C10—C1121.0 (7)S3—C24—C23—C221.0 (7)
Al1—O4—C10—C9155.7 (3)C21—C22—C23—C241.0 (8)
Al1—O1—C2—C35.4 (8)Al1—O6—C20—C1911.1 (7)
Al1—O1—C2—C1177.2 (4)Al1—O6—C20—C21168.3 (3)
O4—C10—C9—F676.7 (5)C18—C19—C20—O60.6 (8)
C11—C10—C9—F6100.4 (6)C18—C19—C20—C21179.9 (5)
O4—C10—C9—F542.8 (6)C22—C21—C20—O6173.5 (6)
C11—C10—C9—F5140.1 (5)S3—C21—C20—O63.6 (6)
O4—C10—C9—F4162.2 (4)C22—C21—C20—C197.0 (9)
C11—C10—C9—F420.8 (7)S3—C21—C20—C19175.9 (4)
O1—C2—C3—C43.2 (9)C7—C6—C5—C4178.5 (5)
C1—C2—C3—C4179.5 (5)C7—C6—C5—S10.2 (5)
C23—C22—C21—C20176.7 (5)O2—C4—C5—C6178.7 (5)
C23—C22—C21—S30.5 (6)C3—C4—C5—C61.2 (9)
C24—S3—C21—C220.0 (5)O2—C4—C5—S13.0 (6)
C24—S3—C21—C20177.7 (4)C3—C4—C5—S1177.1 (4)
C15—C14—C13—C12177.7 (5)C8—S1—C5—C60.3 (4)
C15—C14—C13—S21.8 (6)C8—S1—C5—C4178.9 (4)
O3—C12—C13—C14179.1 (5)C13—C14—C15—C162.4 (7)
C11—C12—C13—C140.1 (8)C14—C15—C16—S22.0 (7)
O3—C12—C13—S20.3 (6)C13—S2—C16—C150.8 (5)
C11—C12—C13—S2179.3 (4)

Experimental details

Crystal data
Chemical formula[Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3]
Mr2790.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.743 (3), 14.278 (2), 14.136 (3)
β (°) 94.013 (18)
V3)2767.1 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.14 × 0.10 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Ultra Mo) detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11706, 6021, 2687
Rint0.052
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.185, 0.91
No. of reflections6021
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.44

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and WinGX32 (Farrugia, 1999).

 

Acknowledgements

This work was supported by the Applied Chemistry Cluster of the Faculty of Science and Technology at the Queensland University of Technology and the Commission on Higher Education - Higher Education Development Project - Faculty Development Program of the Philippines. We thank Jocelyne Bouzaid for assistance with the SEM-EDX.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAynetchi, S., Hitchcock, P. B., Seddon, E. A., Seddon, K. R., Yousif, Y. Z., Zora, J. A. & Stucky, K. (1986). Inorg. Chim. Acta, 113, L7–L9.  CSD CrossRef CAS Web of Science Google Scholar
First citationBott, S. G., Fahlman, B. D., Pierson, M. L. & Barron, A. R. (2001). J. Chem. Soc. Dalton Trans. pp. 2148–2152.  Web of Science CSD CrossRef Google Scholar
First citationDharmaprakash, M. S., Thamotharan, S., Neelgund, G. M. & Shivashankar, S. A. (2006). Acta Cryst. E62, m434–m436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoling, H. (1976). Acta Chem. Scand. 30, 163–170.  CrossRef Web of Science Google Scholar
First citationWai, C. M. (1995). Anal. Sci. 11, 165–167.  CrossRef CAS Web of Science Google Scholar
First citationWai, C. M., Wang, S., Liu, Y., Lopez-Avila, V. & Beckert, W. F. (1996). Talanta, 43, 2083–2091.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds