organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­benzene­sulfonamido)acetic acid

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, bPCSIR, Laboratories Complex, Ferozpur Road, Lahore, Pakistan, and cInstitute of Physics, Université of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: mnachemist@hotmail.com

(Received 30 June 2009; accepted 4 July 2009; online 11 July 2009)

The title compound, C8H8BrNO4S, a halogenated sulfon­amide, was prepared by basic hydrolysis of the methyl ester. In the crystal, mol­ecules form centrosymmetric hydrogen-bonded dimers via the carboxyl groups. These dimers are further linked by N—H⋯O inter­actions involving the carbonyl O and amide H atoms, forming a ribbon-like structure propagating in [010]. These ribbons are further linked via C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For details of the crystal structure of the methyl ester of the title compound, see: Arshad et al. (2008b[Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008b). Acta Cryst. E64, o2380.]). For related structures, see: Arshad et al. (2008a[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008a). Acta Cryst. E64, o2283-o2284.]); Arshad et al. (2009[Arshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.]). For related thia­zine heterocycles, see: Arshad et al. (2008c[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008c). Acta Cryst. E64, o2045.]). For hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrNO4S

  • Mr = 294.12

  • Triclinic, [P \overline 1]

  • a = 5.0042 (4) Å

  • b = 7.9997 (6) Å

  • c = 13.2289 (11) Å

  • α = 79.691 (4)°

  • β = 88.667 (5)°

  • γ = 81.404 (4)°

  • V = 515.18 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.18 mm−1

  • T = 296 K

  • 0.28 × 0.17 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.612, Tmax = 0.632

  • 10359 measured reflections

  • 2557 independent reflections

  • 1243 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.168

  • S = 0.95

  • 2557 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.82 1.85 2.671 (5) 174
N1—H1⋯O4ii 0.86 2.38 3.124 (5) 146
C2—H2⋯O1iii 0.93 2.53 3.384 (7) 153
C3—H3⋯O3iv 0.93 2.50 3.423 (7) 170
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x+1, -y, -z+1; (iii) x, y+1, z; (iv) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was prepared by basic hydrolysis of methyl (4-bromobenzenesulfonamido)acetate (II) (Arshad et al., 2008b), in a continuation of our studies on the synthesis of thiazine related heterocycles (Arshad et al., 2008c). We have previously reported the crystal structures of 2-(benzenesulfonamido)acetic acid (III) (Arshad et al., 2008a) and 2-(2-iodobenzenesulfonamido)acetic acid (IV) (Arshad et al., 2009).

The molecular structure of (I), Fig. 1, reveals the bond lengths and angles are similar to those found for compounds (II), (III) and (IV).

The presence of the carboxylic acid group leads to the formation of characteristic O—H···O hydrogen-bonded centrosymmetric dimers (Table 1 and Fig. 2). These dimers are linked via N1—H1···O4 interactions, involving the carbonyl O-atom and the H-atom of the amido group, to form a ribbon-like structure propagating in the [010] direction (Table 1 and Fig. 2). The ribbons are further linked by C—H···O interactions to form a 3-D network (Table 1 and Fig. 3).

It is interesting to compare the hydrogen bonding patterns in the three acids; (I), (III) and (IV). The formation of the hydrogen bonded carboxylic acid dimers is the same in all three compounds, i.e. R22(8) (Bernstein et al., 1995). The N—H···O hydrogen-bonding involves the sulfonamido groups in (III) and (IV) [R22(8)], while in (I) it involves the carbonyl O-atom (O4) and the H-atom of the amido group (Table 1). This leads to a larger hydrogen-bonded ring of the form [R22(10)], as shown in Fig. 4.

Related literature top

For background information, see: Arshad et al. (2008b). For details of related structures, see: Arshad et al. (2008a); Arshad et al. (2009). For related thiazine heterocycles, see: Arshad et al. (2008c). For hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

Methyl (4-bromobenzenesulfonamido)acetate(II) (Arshad et al., 2008b) (1.0 g, 3.247 mmol) was dissolved in an aqueous sodium hydroxide solution (10%, 10 ml). The resulting solution was refluxed for an hour. The reaction mixture was then cooled to room temperature and acidified with 1 N HCl. A white precipitate was obtained. This was filtered off, washed with distilled water and dried. Crystals were obtained by recrystallization from methanol.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 - 0.97 Å, with Uiso(H) = k × Ueq(parent O–, N– or C-atom), where k = 1.5 for OH, and 1.2 for N- and C-bound H-atoms.

The maximum and minimum residual electron density peaks of 1.15 and -0.38 eÅ-3, respectively, were located at 1.10 Å and 0.78 Å, respectively, from atom Br1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of compound (I), with O—H···O and N—H···O hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of (I), with O—H···O, N—H···O and C—H···O hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].
[Figure 4] Fig. 4. A view of the hydrogen bonding patterns in the three acid compounds: (I), (III) and (IV). The hydrogen bonds are shown as pale-blue lines.
2-(4-Bromobenzenesulfonamido)acetic acid top
Crystal data top
C8H8BrNO4SZ = 2
Mr = 294.12F(000) = 292
Triclinic, P1Dx = 1.896 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0042 (4) ÅCell parameters from 1869 reflections
b = 7.9997 (6) Åθ = 2.2–21.8°
c = 13.2289 (11) ŵ = 4.18 mm1
α = 79.691 (4)°T = 296 K
β = 88.667 (5)°Needle, colorless
γ = 81.404 (4)°0.28 × 0.17 × 0.11 mm
V = 515.18 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2557 independent reflections
Radiation source: fine-focus sealed tube1243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.612, Tmax = 0.632k = 1010
10359 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
2557 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C8H8BrNO4Sγ = 81.404 (4)°
Mr = 294.12V = 515.18 (7) Å3
Triclinic, P1Z = 2
a = 5.0042 (4) ÅMo Kα radiation
b = 7.9997 (6) ŵ = 4.18 mm1
c = 13.2289 (11) ÅT = 296 K
α = 79.691 (4)°0.28 × 0.17 × 0.11 mm
β = 88.667 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2557 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1243 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.632Rint = 0.056
10359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 0.95Δρmax = 1.15 e Å3
2557 reflectionsΔρmin = 0.38 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.70371 (17)0.78972 (8)0.05167 (5)0.0774 (4)
S10.3354 (2)0.11701 (17)0.32101 (10)0.0365 (4)
O10.2650 (7)0.0106 (5)0.2528 (3)0.0486 (10)
O20.1387 (7)0.1738 (5)0.3930 (3)0.0492 (10)
O30.7775 (7)0.4424 (5)0.4169 (3)0.0505 (10)
H3O0.71740.52210.45360.076*
O40.4156 (7)0.2871 (4)0.4743 (3)0.0427 (9)
N10.5998 (8)0.0162 (5)0.3816 (3)0.0389 (10)
H10.66320.06300.42780.047*
C10.5927 (12)0.5917 (7)0.1309 (4)0.0456 (14)
C20.3808 (12)0.6089 (7)0.1979 (5)0.0495 (15)
H20.29140.71720.20390.059*
C30.3022 (11)0.4635 (7)0.2560 (5)0.0453 (14)
H30.15750.47370.30100.054*
C40.4368 (10)0.3039 (7)0.2478 (4)0.0355 (12)
C50.6490 (11)0.2867 (7)0.1801 (4)0.0489 (15)
H50.73860.17840.17420.059*
C60.7271 (13)0.4320 (8)0.1211 (5)0.0584 (17)
H60.86950.42210.07510.070*
C70.7389 (10)0.1470 (6)0.3652 (4)0.0410 (13)
H7A0.92740.15590.38390.049*
H7B0.73160.15190.29250.049*
C80.6253 (10)0.2978 (7)0.4249 (4)0.0368 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1144 (7)0.0372 (4)0.0728 (6)0.0176 (4)0.0098 (4)0.0154 (3)
S10.0376 (7)0.0264 (7)0.0458 (8)0.0085 (5)0.0029 (5)0.0043 (6)
O10.053 (2)0.037 (2)0.060 (3)0.0124 (18)0.0073 (18)0.0143 (19)
O20.045 (2)0.046 (2)0.058 (2)0.0118 (18)0.0163 (18)0.011 (2)
O30.050 (2)0.027 (2)0.069 (3)0.0001 (18)0.0167 (19)0.001 (2)
O40.0398 (19)0.027 (2)0.059 (2)0.0058 (16)0.0127 (17)0.0008 (17)
N10.050 (2)0.019 (2)0.046 (3)0.0062 (19)0.002 (2)0.001 (2)
C10.064 (4)0.026 (3)0.044 (3)0.009 (3)0.004 (3)0.002 (3)
C20.059 (3)0.017 (3)0.068 (4)0.003 (3)0.000 (3)0.006 (3)
C30.045 (3)0.025 (3)0.065 (4)0.002 (2)0.008 (3)0.007 (3)
C40.041 (3)0.027 (3)0.038 (3)0.003 (2)0.001 (2)0.005 (2)
C50.064 (4)0.022 (3)0.054 (4)0.001 (3)0.013 (3)0.004 (3)
C60.073 (4)0.040 (4)0.054 (4)0.001 (3)0.021 (3)0.006 (3)
C70.039 (3)0.032 (3)0.049 (3)0.010 (2)0.009 (2)0.001 (3)
C80.035 (3)0.033 (3)0.042 (3)0.007 (2)0.000 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C11.886 (5)C2—C31.379 (7)
S1—O11.429 (4)C2—H20.9300
S1—O21.436 (4)C3—C41.374 (7)
S1—N11.594 (4)C3—H30.9300
S1—C41.765 (5)C4—C51.380 (7)
O3—C81.306 (6)C5—C61.382 (7)
O3—H3O0.8200C5—H50.9300
O4—C81.223 (6)C6—H60.9300
N1—C71.436 (6)C7—C81.499 (6)
N1—H10.8600C7—H7A0.9700
C1—C21.373 (8)C7—H7B0.9700
C1—C61.379 (8)
O1—S1—O2119.3 (2)C3—C4—C5120.5 (5)
O1—S1—N1106.7 (2)C3—C4—S1120.6 (4)
O2—S1—N1109.3 (2)C5—C4—S1118.9 (4)
O1—S1—C4108.9 (2)C4—C5—C6119.4 (5)
O2—S1—C4106.5 (2)C4—C5—H5120.3
N1—S1—C4105.3 (2)C6—C5—H5120.3
C8—O3—H3O109.5C1—C6—C5119.6 (5)
C7—N1—S1124.8 (4)C1—C6—H6120.2
C7—N1—H1117.6C5—C6—H6120.2
S1—N1—H1117.5N1—C7—C8113.8 (4)
C2—C1—C6121.0 (5)N1—C7—H7A108.8
C2—C1—Br1119.6 (4)C8—C7—H7A108.8
C6—C1—Br1119.4 (4)N1—C7—H7B108.8
C1—C2—C3119.2 (5)C8—C7—H7B108.8
C1—C2—H2120.4H7A—C7—H7B107.7
C3—C2—H2120.4O4—C8—O3124.3 (5)
C4—C3—C2120.2 (5)O4—C8—C7124.4 (5)
C4—C3—H3119.9O3—C8—C7111.4 (4)
C2—C3—H3119.9
O1—S1—N1—C72.2 (4)O1—S1—C4—C557.6 (5)
O2—S1—N1—C7132.5 (4)O2—S1—C4—C5172.6 (4)
C4—S1—N1—C7113.5 (4)N1—S1—C4—C556.6 (5)
C6—C1—C2—C30.0 (9)C3—C4—C5—C60.6 (9)
Br1—C1—C2—C3179.5 (4)S1—C4—C5—C6178.9 (5)
C1—C2—C3—C40.8 (9)C2—C1—C6—C50.5 (10)
C2—C3—C4—C51.1 (8)Br1—C1—C6—C5179.1 (5)
C2—C3—C4—S1179.4 (4)C4—C5—C6—C10.2 (9)
O1—S1—C4—C3120.7 (5)S1—N1—C7—C885.5 (5)
O2—S1—C4—C39.1 (5)N1—C7—C8—O48.2 (8)
N1—S1—C4—C3125.2 (5)N1—C7—C8—O3172.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.821.852.671 (5)174
N1—H1···O4ii0.862.383.124 (5)146
C2—H2···O1iii0.932.533.384 (7)153
C3—H3···O3iv0.932.503.423 (7)170
C3—H3···O20.932.502.884 (7)105
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H8BrNO4S
Mr294.12
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.0042 (4), 7.9997 (6), 13.2289 (11)
α, β, γ (°)79.691 (4), 88.667 (5), 81.404 (4)
V3)515.18 (7)
Z2
Radiation typeMo Kα
µ (mm1)4.18
Crystal size (mm)0.28 × 0.17 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.612, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
10359, 2557, 1243
Rint0.056
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.168, 0.95
No. of reflections2557
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.821.852.671 (5)174
N1—H1···O4ii0.862.383.124 (5)146
C2—H2···O1iii0.932.533.384 (7)153
C3—H3···O3iv0.932.503.423 (7)170
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x1, y+1, z.
 

Acknowledgements

MNA acknowledges the Higher Education Commission of Pakistan for providing a PhD Scholarship under PIN 042–120607-PS2–183.

References

First citationArshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008a). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008b). Acta Cryst. E64, o2380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008c). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds