organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,2,2′-Tetra­methyl-3,3′-(p-phenyl­enedi­methyl­ene)diimidazol-1-ium bis­­(hexa­fluoridophosphate)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 July 2009; accepted 6 July 2009; online 11 July 2009)

The title imidazolium-based ionic-liquid salt, C18H24N42+·2PF6, has the cation lying about a center of inversion. The five-membered imidazole ring is disordered over two positions (the methyl substituents are ordered). This imidazole ring is approximately perpendicular to the six-membered phenyl­ene ring [dihedral angle = 81.3 (8)° for one disorder component and 83.8 (8)° for the other; the two components are off-set by 2.7 (8)°]. The crystal is a non-merohedral twin with a twin component of 23%.

Related literature

For background to imidazolium-based ionic liquid salts, see: Ganesan et al. (2008[Ganesan, K., Alias, Y. & Ng, S. W. (2008). Acta Cryst. C64, o478-o480.]). For the procedure to manipulate twinned diffraction data, see: Spek (2003).

[Scheme 1]

Experimental

Crystal data
  • C18H24N42+·2PF6

  • Mr = 586.35

  • Triclinic, [P \overline 1]

  • a = 7.3808 (3) Å

  • b = 8.2169 (4) Å

  • c = 11.0553 (5) Å

  • α = 73.435 (3)°

  • β = 71.173 (3)°

  • γ = 73.897 (3)°

  • V = 595.43 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 140 K

  • 0.35 × 0.03 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 0.991

  • 4724 measured reflections

  • 2654 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.224

  • S = 1.08

  • 2654 reflections

  • 158 parameters

  • 41 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For background to imidazolium-based ionic liquid salts, see: Ganesan et al. (2008). For the procedure to manipulate twinned diffraction data, see: Spek (2003).

Experimental top

α,α-Dibromo-p-xylene (0.78 g, 3 mmol) and 1,2-dimethylimidazole (0.58 g, 7.6 mmol) were refluxed in DMF (50 ml) for 3 h. The product that separated from solution was collected and washed with ether. Crystals were grown from its solution in water.

The bromide salt (0.46 g, 1 mmol) and sodium hexafluorophosphate (0.17 g, 1 mol) were stirred in water (100 ml) for 24 h. The product that separated from solution was collected and washed with ethanol. Crystals were grown from its solution in DMF.

Refinement top

The imidazolyl ring is disordered over two positions (the two methyl groups are ordered). The ring was refined as a regular pentagon of 1.35 Å sides; the occupancy could not be refined, so the ring was assumed to be disordered in a 1:1 ratio. The C–Cmethyl, N–Cmethyl and N–Cmethylene pairs of distances were restrained to within 0.01 Å of each other. The anisotropic displacement parameters of the primed atoms were restrained to those of the unprimed ones; these were restrained to be nearly isotropic. The two dimethylimidazolyl units were each restrained to be nearly planar.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C).

The crystal is a non-merohedral twin; the twin law as given by PLATON is (Spek, 2003) (-1 0 0, -0.461 1 - 0.325, 0 0 - 1); the refinement with the inclusion of this gave a twin component of 23%.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C18H24N4]2+ 2[PF6]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The imidazolyl ring is disordered; only one component (unprimed) of the disorder is shown. The non-H atoms comprising the asymmetric unit are labelled and the unlabelled atoms are related by 2-x, 2-y, -z.
1,1',2,2'-Tetramethyl-3,3'-(p-phenylenedimethylene)diimidazol-1-ium bis(hexafluoridophosphate) top
Crystal data top
C18H24N42+·2PF6Z = 1
Mr = 586.35F(000) = 298
Triclinic, P1Dx = 1.635 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3808 (3) ÅCell parameters from 951 reflections
b = 8.2169 (4) Åθ = 2.6–23.6°
c = 11.0553 (5) ŵ = 0.29 mm1
α = 73.435 (3)°T = 140 K
β = 71.173 (3)°Prism, colorless
γ = 73.897 (3)°0.35 × 0.03 × 0.03 mm
V = 595.43 (5) Å3
Data collection top
Bruker SMART APEX
diffractometer
2654 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.905, Tmax = 0.991k = 1010
4724 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0937P)2 + 1.0627P]
where P = (Fo2 + 2Fc2)/3
2654 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.53 e Å3
41 restraintsΔρmin = 0.48 e Å3
Crystal data top
C18H24N42+·2PF6γ = 73.897 (3)°
Mr = 586.35V = 595.43 (5) Å3
Triclinic, P1Z = 1
a = 7.3808 (3) ÅMo Kα radiation
b = 8.2169 (4) ŵ = 0.29 mm1
c = 11.0553 (5) ÅT = 140 K
α = 73.435 (3)°0.35 × 0.03 × 0.03 mm
β = 71.173 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2654 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1654 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.991Rint = 0.037
4724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07141 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
2654 reflectionsΔρmin = 0.48 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.27195 (18)0.30311 (17)0.76433 (12)0.0235 (3)
F60.2767 (5)0.4311 (4)0.6246 (3)0.0364 (8)
F40.3686 (5)0.1439 (4)0.6946 (3)0.0428 (8)
F50.2653 (5)0.1760 (4)0.9036 (3)0.0400 (8)
F30.0593 (4)0.2794 (5)0.7741 (3)0.0417 (8)
F20.1736 (5)0.4638 (4)0.8340 (3)0.0494 (10)
F10.4829 (4)0.3294 (5)0.7547 (3)0.0440 (9)
C11.1492 (7)1.0037 (6)0.3848 (4)0.0233 (10)
H11.25181.00520.30630.028*
C21.0666 (7)0.8581 (7)0.4421 (5)0.0259 (10)
H21.11220.76120.40180.031*
C30.9177 (6)0.8525 (6)0.5581 (5)0.0218 (10)
C40.8353 (7)0.6892 (6)0.6166 (5)0.0263 (11)
H4A0.78150.66700.55300.032*0.50
H4B0.94120.58910.63520.032*0.50
H4C0.79460.66250.54860.032*0.50
H4D0.94130.59210.63980.032*0.50
N10.683 (2)0.706 (4)0.7365 (15)0.0231 (17)0.50
C50.493 (3)0.753 (2)0.7349 (14)0.0216 (14)0.50
N20.3833 (7)0.7643 (18)0.858 (2)0.0250 (13)0.50
C60.505 (3)0.724 (4)0.9349 (6)0.034 (2)0.50
H60.46770.72191.02590.040*0.50
C70.690 (2)0.688 (5)0.860 (2)0.031 (3)0.50
H70.80570.65620.88920.038*0.50
N1'0.670 (2)0.695 (4)0.7318 (14)0.0231 (17)0.50
C5'0.477 (3)0.749 (2)0.7430 (16)0.0216 (14)0.50
N2'0.3852 (8)0.7552 (19)0.869 (2)0.0250 (13)0.50
C6'0.523 (3)0.705 (4)0.9363 (7)0.034 (2)0.50
H6'0.49930.69751.02720.040*0.50
C7'0.6988 (18)0.668 (5)0.851 (2)0.031 (3)0.50
H7'0.82130.63000.87180.038*0.50
C80.3963 (5)0.7903 (4)0.6307 (4)0.0303 (11)
H8A0.49260.75880.55170.046*0.50
H8B0.33800.91430.61180.046*0.50
H8C0.29370.72280.65870.046*0.50
H8D0.50100.76070.55440.046*0.50
H8E0.33880.91450.61180.046*0.50
H8F0.29530.72330.65060.046*0.50
C90.1775 (5)0.8077 (4)0.9104 (4)0.0407 (14)
H9A0.11310.84790.83920.061*0.50
H9B0.14630.90010.95820.061*0.50
H9C0.13110.70520.97030.061*0.50
H9D0.11990.79580.84580.061*0.50
H9E0.14280.92910.91830.061*0.50
H9F0.12710.73440.99550.061*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0225 (6)0.0259 (7)0.0221 (6)0.0038 (5)0.0050 (5)0.0074 (5)
F60.0438 (18)0.0321 (17)0.0305 (16)0.0089 (14)0.0136 (14)0.0030 (13)
F40.051 (2)0.0294 (17)0.0420 (19)0.0005 (14)0.0048 (15)0.0157 (15)
F50.0462 (19)0.046 (2)0.0278 (16)0.0157 (15)0.0126 (14)0.0012 (14)
F30.0283 (17)0.060 (2)0.0410 (19)0.0154 (15)0.0101 (14)0.0102 (16)
F20.056 (2)0.044 (2)0.050 (2)0.0074 (17)0.0001 (17)0.0294 (17)
F10.0302 (17)0.064 (2)0.0415 (19)0.0187 (16)0.0123 (14)0.0048 (17)
C10.020 (2)0.030 (3)0.019 (2)0.0075 (19)0.0014 (17)0.0062 (19)
C20.022 (2)0.027 (3)0.028 (3)0.0026 (19)0.0044 (19)0.010 (2)
C30.017 (2)0.024 (2)0.025 (2)0.0003 (18)0.0121 (18)0.0026 (19)
C40.020 (2)0.027 (3)0.031 (3)0.005 (2)0.0047 (19)0.006 (2)
N10.020 (2)0.026 (3)0.026 (2)0.010 (2)0.0078 (19)0.0027 (18)
C50.022 (3)0.022 (2)0.021 (3)0.009 (2)0.003 (2)0.0026 (19)
N20.027 (2)0.025 (2)0.024 (3)0.0109 (17)0.0049 (17)0.003 (2)
C60.046 (4)0.042 (5)0.017 (2)0.019 (4)0.010 (2)0.001 (2)
C70.035 (3)0.036 (7)0.032 (4)0.014 (3)0.017 (3)0.003 (3)
N1'0.020 (2)0.026 (3)0.026 (2)0.010 (2)0.0078 (19)0.0027 (18)
C5'0.022 (3)0.022 (2)0.021 (3)0.009 (2)0.003 (2)0.0026 (19)
N2'0.027 (2)0.025 (2)0.024 (3)0.0109 (17)0.0049 (17)0.003 (2)
C6'0.046 (4)0.042 (5)0.017 (2)0.019 (4)0.010 (2)0.001 (2)
C7'0.035 (3)0.036 (7)0.032 (4)0.014 (3)0.017 (3)0.003 (3)
C80.033 (3)0.027 (3)0.034 (3)0.006 (2)0.015 (2)0.004 (2)
C90.032 (3)0.042 (3)0.041 (3)0.011 (2)0.008 (2)0.016 (3)
Geometric parameters (Å, º) top
P1—F41.586 (3)C6—C71.3500
P1—F51.590 (3)C6—H60.9500
P1—F11.597 (3)C7—H70.9500
P1—F21.597 (3)N1'—C5'1.3500
P1—F61.598 (3)N1'—C7'1.3500
P1—F31.600 (3)C5'—N2'1.3500
C1—C21.388 (7)C5'—C81.459 (7)
C1—C3i1.393 (6)N2'—C6'1.3500
C1—H10.9500N2'—C91.428 (6)
C2—C31.392 (6)C6'—C7'1.3500
C2—H20.9500C6'—H6'0.9500
C3—C1i1.393 (6)C7'—H7'0.9500
C3—C41.514 (7)C8—H8A0.9800
C4—N11.449 (7)C8—H8B0.9800
C4—N1'1.452 (7)C8—H8C0.9800
C4—H4A0.9900C8—H8D0.9800
C4—H4B0.9900C8—H8E0.9800
C4—H4C0.9900C8—H8F0.9800
C4—H4D0.9900C9—H9A0.9800
N1—C51.3500C9—H9B0.9800
N1—C71.3500C9—H9C0.9800
C5—N21.3500C9—H9D0.9800
C5—C81.462 (7)C9—H9E0.9800
N2—C61.3500C9—H9F0.9800
N2—C91.422 (6)
F4—P1—F590.52 (18)C5'—N1'—C4131 (2)
F4—P1—F190.71 (19)C7'—N1'—C4121 (2)
F5—P1—F190.42 (18)N1'—C5'—N2'108.0
F4—P1—F2179.6 (2)N1'—C5'—C8122 (2)
F5—P1—F289.74 (19)N2'—C5'—C8130 (2)
F1—P1—F289.58 (19)C6'—N2'—C5'108.0
F4—P1—F689.62 (18)C6'—N2'—C9132 (2)
F5—P1—F6179.52 (18)C5'—N2'—C9120 (2)
F1—P1—F690.04 (18)N2'—C6'—C7'108.0
F2—P1—F690.11 (18)N2'—C6'—H6'126.0
F4—P1—F389.98 (19)C7'—C6'—H6'126.0
F5—P1—F389.90 (18)C6'—C7'—N1'108.0
F1—P1—F3179.2 (2)C6'—C7'—H7'126.0
F2—P1—F389.73 (19)N1'—C7'—H7'126.0
F6—P1—F389.64 (17)C5'—C8—H8A113.7
C2—C1—C3i120.3 (4)C5—C8—H8A109.5
C2—C1—H1119.8C5'—C8—H8B109.7
C3i—C1—H1119.8C5—C8—H8B109.5
C1—C2—C3120.7 (4)H8A—C8—H8B109.5
C1—C2—H2119.7C5'—C8—H8C104.9
C3—C2—H2119.7C5—C8—H8C109.5
C2—C3—C1i119.0 (4)H8A—C8—H8C109.5
C2—C3—C4118.2 (4)H8B—C8—H8C109.5
C1i—C3—C4122.8 (4)C5'—C8—H8D109.5
N1—C4—C3110.7 (13)C5—C8—H8D105.1
N1'—C4—C3115.8 (13)C5'—C8—H8E109.5
N1—C4—H4A109.5C5—C8—H8E109.2
N1'—C4—H4A103.2H8A—C8—H8E109.4
C3—C4—H4A109.5H8C—C8—H8E109.9
N1—C4—H4B109.5H8D—C8—H8E109.5
N1'—C4—H4B110.3C5'—C8—H8F109.5
C3—C4—H4B109.5C5—C8—H8F114.0
H4A—C4—H4B108.1H8A—C8—H8F105.3
N1—C4—H4C114.7H8B—C8—H8F109.1
N1'—C4—H4C108.3H8D—C8—H8F109.5
C3—C4—H4C108.3H8E—C8—H8F109.5
N1—C4—H4D107.2N2—C9—H9A109.5
N1'—C4—H4D108.3N2'—C9—H9A114.6
C3—C4—H4D108.3N2—C9—H9B109.5
C5—N1—C7108.0N2'—C9—H9B108.2
C5—N1—C4120 (2)H9A—C9—H9B109.5
C7—N1—C4132 (2)N2—C9—H9C109.5
N2—C5—N1108.0N2'—C9—H9C105.5
N2—C5—C8119 (2)H9A—C9—H9C109.5
N1—C5—C8133 (2)H9B—C9—H9C109.5
C6—N2—C5108.0N2—C9—H9D105.5
C6—N2—C9121 (2)N2'—C9—H9D109.5
C5—N2—C9131 (2)N2—C9—H9E108.2
N2—C6—C7108.0N2'—C9—H9E109.5
N2—C6—H6126.0H9D—C9—H9E109.5
C7—C6—H6126.0N2—C9—H9F114.6
C6—C7—N1108.0N2'—C9—H9F109.5
C6—C7—H7126.0H9D—C9—H9F109.5
N1—C7—H7126.0H9E—C9—H9F109.5
C5'—N1'—C7'108.0
C3i—C1—C2—C30.8 (8)C9—N2—C6—C7179.8 (3)
C1—C2—C3—C1i0.8 (8)N2—C6—C7—N10.0
C1—C2—C3—C4179.3 (4)C5—N1—C7—C60.0
C2—C3—C4—N1180.0 (11)C4—N1—C7—C6178 (2)
C1i—C3—C4—N10.1 (12)C3—C4—N1'—C5'87.8 (19)
C2—C3—C4—N1'175.4 (11)C3—C4—N1'—C7'81.7 (9)
C1i—C3—C4—N1'4.5 (12)C7'—N1'—C5'—N2'0.0
N1'—C4—N1—C544 (19)C4—N1'—C5'—N2'170.5 (19)
C3—C4—N1—C597.1 (15)C7'—N1'—C5'—C8179.9 (3)
N1'—C4—N1—C7139 (21)C4—N1'—C5'—C89.4 (19)
C3—C4—N1—C780.4 (10)N1'—C5'—N2'—C6'0.0
C7—N1—C5—N20.0C8—C5'—N2'—C6'179.9 (3)
C4—N1—C5—N2178.0 (17)N1'—C5'—N2'—C9179.8 (3)
C7—N1—C5—C8179.9 (3)C8—C5'—N2'—C90.3 (4)
C4—N1—C5—C81.9 (17)C5'—N2'—C6'—C7'0.0
N1—C5—N2—C60.0C9—N2'—C6'—C7'179.8 (3)
C8—C5—N2—C6179.9 (2)N2'—C6'—C7'—N1'0.0
N1—C5—N2—C9179.8 (3)C5'—N1'—C7'—C6'0.0
C8—C5—N2—C90.2 (4)C4—N1'—C7'—C6'171.6 (18)
C5—N2—C6—C70.0
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H24N42+·2PF6
Mr586.35
Crystal system, space groupTriclinic, P1
Temperature (K)140
a, b, c (Å)7.3808 (3), 8.2169 (4), 11.0553 (5)
α, β, γ (°)73.435 (3), 71.173 (3), 73.897 (3)
V3)595.43 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.03 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.905, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4724, 2654, 1654
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.224, 1.08
No. of reflections2654
No. of parameters158
No. of restraints41
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya (grant Nos. TA 0009/2008 A and FS343/2008 A) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGanesan, K., Alias, Y. & Ng, S. W. (2008). Acta Cryst. C64, o478–o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds