organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1918-o1919

4-Amino-3-(p-tolyl­oxymeth­yl)-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A&B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 July 2009; accepted 14 July 2009; online 18 July 2009)

In the title triazole compound, C10H12N4OS, the triazole ring is essentially planar [maximum deviation = 0.009 (1) Å] and forms a dihedral angle of 5.78 (4)° with the benzene ring. In the crystal structure, mol­ecules are linked into dimers by centrosymmetric N—H⋯S inter­actions. These dimers are linked into two-mol­ecule-wide tapes by N—H⋯N and S⋯S [3.2634 (3) Å] inter­actions. In addition, they are further inter­connected by weak N—H⋯S inter­actions into sheets parallel to the ab plane. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background and applications of triazole derivatives, see: Amir et al. (2008[Amir, Mohd., Kumar, H., Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056-2066.]); Kuş et al. (2008[Kuş, C. Ayhan Kılcıgil, G., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Can-Eke, B. (2008). Bioorg. Med. Chem. 16, 4294-4303.]); Krzysztof et al. (2008[Krzysztof, S., Tuzimski, T., Rzymowska, J., Kazimierz, P. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404-419.]); Padmavathi et al. (2008[Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]). For the preparation, see: Conti (1964[Conti, L. (1964). Boll. Sci. Fac. Chim. Ind. Bologna, 22, 13.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1590-o1591.], 2009[Fun, H.-K., Kia, R., Samuel, R. J., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o618.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N4OS

  • Mr = 236.30

  • Triclinic, [P \overline 1]

  • a = 5.9977 (1) Å

  • b = 6.4002 (1) Å

  • c = 15.5506 (2) Å

  • α = 89.352 (1)°

  • β = 83.157 (1)°

  • γ = 65.562 (1)°

  • V = 539.11 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.47 × 0.30 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.975

  • 19910 measured reflections

  • 4712 independent reflections

  • 4228 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.095

  • S = 1.05

  • 4712 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.930 (13) 2.412 (13) 3.3364 (7) 172.5 (11)
N4—H1N4⋯N1ii 0.930 (17) 2.428 (17) 3.2100 (9) 141.6 (12)
N4—H2N4⋯S1iii 0.894 (15) 2.937 (16) 3.5456 (7) 126.8 (12)
C10—H10CCg2iv 0.968 (18) 2.697 (19) 3.6250 (9) 160.8 (14)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z; (iv) -x-1, -y+3, -z+1. Cg2 is the centroid of the C4–C9 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-Triazole and its derivatives were reported to exhibit various pharmacological activities such as anti-microbial, analgesic, anti-inflammatory, anti-cancer and anti-oxidant properties (Amir et al., 2008; Kuş et al., 2008; Krzysztof et al., 2008; Padmavathi et al., 2008). Some of the present day drugs such as Ribavirin (anti-viral agent), Rizatriptan (anti-migraine agent), Alprazolam (anxiolytic agent), Fluconazole and Itraconazole (anti-fungal agents) are the best examples for potent molecules possessing the triazole nucleus. The amino and mercapto groups of thio-substituted 1,2,4-triazole serve as readily accessible nucleophilic centers for the preparation of N-bridged heterocycles. In view of their biological importance, we have synthesized the title compound (I) to study its crystal structure.

In (I), Fig. 1, the 1,2,4-triazole ring (C1/C2/N1-N3) is essentially planar, with a maximum deviation of 0.009 (1) Å for atom C1. The 1,2,4-triazole ring makes dihedral angle of 5.78 (4)° with the C4-C9 benzene ring. The bond lengths and angles in the molecule are comparable to those found in closely related structures (Fun et al., 2008, 2009).

In the crystal packing (Fig. 2), centrosymmetrically related molecules are linked into dimers by N2—H1N2···S1 interactions (Table 1). These dimers are linked into two-molecule-wide tapes by N4—H1N4···N1 (Table 1) and by short S1···S1 contacts of 3.2634 (3) Å; symmetry code: 2-x, -y, -z. In addition, these tapes are interconnected into sheets parallel to the ab plane by weak N4—H2N4···S1 interactions (Table 1). The crystal structure is further stabilized by weak C···H···π interactions (Table 1).

Related literature top

For general background and applications of triazole derivatives, see: Amir et al. (2008); Kuş et al. (2008); Krzysztof et al. (2008); Padmavathi et al. (2008). For the preparation, see: Conti (1964). For related structures, see: Fun et al. (2008, 2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

P-Cresoloxyacetyl hydrazine (18.0 g, 0.10 mol) was added slowly to a solution of potassium hydroxide (8.4 g, 0.15 mol) in ethanol (150 ml). The resulting mixture was stirred well until a clear solution was obtained. Carbon disulphide (11.4 g, 0.15 mol) was added drop-wise and the contents were stirred vigorously. Further stirring was continued for 24 h. The resulting mixture was diluted with ether (100 ml) and the precipitate formed was collected by filtration, washed with dry ether and dried at 65 °C under vacuum. It was used for the next step without any purification.

A mixture of the above synthesized potassium dithiocarbazinate (29.4 g, 0.10 mol), hydrazine hydrate (99 %, 0.20 mol) and water (2 ml) was heated gently to boil for 30 minutes. Heating was continued until the evacuation of hydrogen sulphide ceased. The reaction mixture was cooled to room temperature, diluted with water (100 ml) and acidified with HCl. The solid mass that separated was collected by filtration, washed with water and dried. Recrystallization was achieved from ethanol (Conti, 1964). The yield was 14.63 g, 62 %. M.p. 461-463 K.

Refinement top

All the H atoms were located from difference Fourier map [range of C-H = 0.894 (15) - 1.011 (12) Å] and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Two-molecular-wide tapes connected by N—H···S, N—H···N and S···S interactions. The tapes form sheets parallel to the ab plane via weaker N—H···S interactions. Intermolecular interactions are shown as dashed bonds.
4-Amino-3-(p-tolyloxymethyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H12N4OSZ = 2
Mr = 236.30F(000) = 248
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9977 (1) ÅCell parameters from 9925 reflections
b = 6.4002 (1) Åθ = 2.6–35.2°
c = 15.5506 (2) ŵ = 0.28 mm1
α = 89.352 (1)°T = 100 K
β = 83.157 (1)°Plate, colourless
γ = 65.562 (1)°0.47 × 0.30 × 0.09 mm
V = 539.11 (1) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4712 independent reflections
Radiation source: fine-focus sealed tube4228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.878, Tmax = 0.975k = 1010
19910 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0513P]
where P = (Fo2 + 2Fc2)/3
4712 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H12N4OSγ = 65.562 (1)°
Mr = 236.30V = 539.11 (1) Å3
Triclinic, P1Z = 2
a = 5.9977 (1) ÅMo Kα radiation
b = 6.4002 (1) ŵ = 0.28 mm1
c = 15.5506 (2) ÅT = 100 K
α = 89.352 (1)°0.47 × 0.30 × 0.09 mm
β = 83.157 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4228 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.975Rint = 0.022
19910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.59 e Å3
4712 reflectionsΔρmin = 0.33 e Å3
193 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84328 (3)0.26155 (3)0.040453 (11)0.01525 (6)
O10.06661 (10)1.12912 (9)0.24927 (4)0.01568 (10)
N10.49686 (12)0.89098 (11)0.14036 (4)0.01591 (11)
N20.69184 (11)0.71323 (11)0.09371 (4)0.01581 (11)
H1N20.820 (2)0.732 (2)0.0596 (9)0.024 (3)*
N30.43624 (11)0.57330 (10)0.13942 (4)0.01199 (10)
N40.30133 (12)0.43979 (11)0.15295 (4)0.01506 (11)
H1N40.405 (2)0.293 (3)0.1674 (9)0.023 (3)*
H2N40.258 (3)0.419 (3)0.1018 (10)0.035 (4)*
C10.66067 (12)0.51754 (12)0.09031 (4)0.01305 (11)
C20.34451 (12)0.79838 (12)0.16710 (4)0.01274 (11)
C30.09665 (12)0.91116 (11)0.21854 (5)0.01325 (11)
H3A0.034 (2)0.927 (2)0.1804 (8)0.018 (3)*
H3B0.086 (2)0.808 (2)0.2649 (8)0.016 (3)*
C40.16049 (12)1.26194 (12)0.29390 (4)0.01307 (12)
C50.34570 (13)1.18698 (13)0.31707 (5)0.01573 (12)
H5A0.333 (2)1.039 (2)0.2991 (9)0.026 (3)*
C60.56524 (13)1.33505 (13)0.36639 (5)0.01718 (13)
H6A0.682 (3)1.275 (2)0.3802 (9)0.027 (3)*
C70.60421 (13)1.55609 (12)0.39238 (5)0.01587 (13)
C80.41667 (15)1.62850 (13)0.36627 (5)0.01808 (13)
H8A0.443 (3)1.785 (3)0.3837 (9)0.028 (3)*
C90.19792 (14)1.48515 (12)0.31738 (5)0.01693 (13)
H9A0.070 (3)1.533 (3)0.2975 (10)0.031 (4)*
C100.83720 (14)1.71372 (15)0.44753 (5)0.02093 (15)
H10A0.902 (3)1.871 (3)0.4283 (11)0.042 (4)*
H10B0.971 (3)1.672 (3)0.4484 (11)0.046 (4)*
H10C0.807 (3)1.720 (3)0.5070 (12)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01469 (9)0.01076 (8)0.01619 (9)0.00247 (6)0.00295 (6)0.00124 (6)
O10.0137 (2)0.0113 (2)0.0208 (2)0.00540 (17)0.00364 (18)0.00495 (18)
N10.0146 (2)0.0125 (2)0.0193 (3)0.0056 (2)0.0033 (2)0.0034 (2)
N20.0138 (2)0.0134 (2)0.0194 (3)0.0062 (2)0.0036 (2)0.0032 (2)
N30.0118 (2)0.0090 (2)0.0141 (2)0.00392 (18)0.00088 (18)0.00093 (18)
N40.0165 (3)0.0110 (2)0.0186 (3)0.0073 (2)0.0007 (2)0.0000 (2)
C10.0118 (2)0.0120 (3)0.0136 (3)0.0037 (2)0.0004 (2)0.0002 (2)
C20.0130 (2)0.0099 (2)0.0139 (3)0.0038 (2)0.0002 (2)0.0013 (2)
C30.0126 (3)0.0095 (2)0.0156 (3)0.0035 (2)0.0018 (2)0.0025 (2)
C40.0125 (3)0.0106 (3)0.0143 (3)0.0035 (2)0.0008 (2)0.0015 (2)
C50.0140 (3)0.0128 (3)0.0195 (3)0.0055 (2)0.0011 (2)0.0024 (2)
C60.0134 (3)0.0163 (3)0.0199 (3)0.0051 (2)0.0015 (2)0.0026 (2)
C70.0141 (3)0.0143 (3)0.0147 (3)0.0017 (2)0.0003 (2)0.0011 (2)
C80.0192 (3)0.0113 (3)0.0204 (3)0.0041 (2)0.0018 (2)0.0028 (2)
C90.0179 (3)0.0117 (3)0.0201 (3)0.0064 (2)0.0028 (2)0.0026 (2)
C100.0164 (3)0.0199 (3)0.0193 (3)0.0011 (3)0.0014 (2)0.0041 (3)
Geometric parameters (Å, º) top
S1—C11.6812 (7)C4—C51.3913 (10)
O1—C41.3746 (8)C4—C91.3970 (10)
O1—C31.4119 (9)C5—C61.4012 (10)
N1—C21.3080 (9)C5—H5A0.962 (14)
N1—N21.3798 (9)C6—C71.3915 (10)
N2—C11.3432 (9)C6—H6A0.930 (14)
N2—H1N20.932 (13)C7—C81.4011 (11)
N3—C21.3657 (9)C7—C101.5078 (10)
N3—C11.3734 (9)C8—C91.3868 (10)
N3—N41.3988 (8)C8—H8A0.984 (14)
N4—H1N40.928 (14)C9—H9A0.959 (14)
N4—H2N40.894 (15)C10—H10A0.975 (17)
C2—C31.4875 (9)C10—H10B0.944 (17)
C3—H3A1.011 (12)C10—H10C0.968 (18)
C3—H3B0.986 (12)
C4—O1—C3115.53 (5)O1—C4—C9115.49 (6)
C2—N1—N2103.33 (6)C5—C4—C9119.96 (6)
C1—N2—N1113.75 (6)C4—C5—C6119.23 (7)
C1—N2—H1N2121.9 (9)C4—C5—H5A122.9 (8)
N1—N2—H1N2123.5 (9)C6—C5—H5A117.8 (8)
C2—N3—C1108.49 (6)C7—C6—C5121.82 (7)
C2—N3—N4122.95 (6)C7—C6—H6A122.7 (9)
C1—N3—N4128.18 (6)C5—C6—H6A115.4 (9)
N3—N4—H1N4109.3 (8)C6—C7—C8117.60 (7)
N3—N4—H2N4107.2 (10)C6—C7—C10122.01 (7)
H1N4—N4—H2N4104.5 (13)C8—C7—C10120.39 (7)
N2—C1—N3102.99 (6)C9—C8—C7121.62 (7)
N2—C1—S1130.61 (6)C9—C8—H8A120.1 (8)
N3—C1—S1126.40 (5)C7—C8—H8A118.3 (8)
N1—C2—N3111.41 (6)C8—C9—C4119.73 (7)
N1—C2—C3127.78 (6)C8—C9—H9A122.7 (9)
N3—C2—C3120.78 (6)C4—C9—H9A117.5 (9)
O1—C3—C2108.32 (6)C7—C10—H10A112.9 (10)
O1—C3—H3A110.4 (7)C7—C10—H10B114.7 (11)
C2—C3—H3A109.3 (7)H10A—C10—H10B104.2 (14)
O1—C3—H3B113.9 (7)C7—C10—H10C110.4 (11)
C2—C3—H3B107.8 (7)H10A—C10—H10C107.1 (14)
H3A—C3—H3B107.0 (10)H10B—C10—H10C107.1 (15)
O1—C4—C5124.54 (6)
C2—N1—N2—C10.94 (8)N1—C2—C3—O111.09 (10)
N1—N2—C1—N31.56 (8)N3—C2—C3—O1171.04 (6)
N1—N2—C1—S1178.86 (6)C3—O1—C4—C56.66 (10)
C2—N3—C1—N21.55 (8)C3—O1—C4—C9174.38 (6)
N4—N3—C1—N2174.57 (7)O1—C4—C5—C6176.82 (7)
C2—N3—C1—S1178.85 (5)C9—C4—C5—C62.10 (11)
N4—N3—C1—S15.83 (11)C4—C5—C6—C70.49 (12)
N2—N1—C2—N30.13 (8)C5—C6—C7—C81.01 (11)
N2—N1—C2—C3177.90 (7)C5—C6—C7—C10178.28 (7)
C1—N3—C2—N11.10 (8)C6—C7—C8—C90.94 (12)
N4—N3—C2—N1174.56 (6)C10—C7—C8—C9178.36 (7)
C1—N3—C2—C3177.09 (6)C7—C8—C9—C40.64 (12)
N4—N3—C2—C33.62 (10)O1—C4—C9—C8176.84 (7)
C4—O1—C3—C2176.18 (6)C5—C4—C9—C82.18 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.930 (13)2.412 (13)3.3364 (7)172.5 (11)
N4—H1N4···N1ii0.930 (17)2.428 (17)3.2100 (9)141.6 (12)
N4—H2N4···S1iii0.894 (15)2.937 (16)3.5456 (7)126.8 (12)
C10—H10C···Cg2iv0.968 (18)2.697 (19)3.6250 (9)160.8 (14)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x1, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC10H12N4OS
Mr236.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9977 (1), 6.4002 (1), 15.5506 (2)
α, β, γ (°)89.352 (1), 83.157 (1), 65.562 (1)
V3)539.11 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.47 × 0.30 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.878, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
19910, 4712, 4228
Rint0.022
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.095, 1.05
No. of reflections4712
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.930 (13)2.412 (13)3.3364 (7)172.5 (11)
N4—H1N4···N1ii0.930 (17)2.428 (17)3.2100 (9)141.6 (12)
N4—H2N4···S1iii0.894 (15)2.937 (16)3.5456 (7)126.8 (12)
C10—H10C···Cg2iv0.968 (18)2.697 (19)3.6250 (9)160.8 (14)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x1, y+3, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Current address: Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia for the Research Universiti Golden Goose Grant (No. 1001/PFIZIK/811012). JHG thanks Universiti Sains Malaysia for the award of a Research Fellowship. AMI is thankful to the Head of the Department of Chemistry and the Director, NITK Surathkal, for providing research facilities.

References

First citationAmir, Mohd., Kumar, H., Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056–2066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConti, L. (1964). Boll. Sci. Fac. Chim. Ind. Bologna, 22, 13.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Samuel, R. J., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1590–o1591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrzysztof, S., Tuzimski, T., Rzymowska, J., Kazimierz, P. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science PubMed Google Scholar
First citationKuş, C. Ayhan Kılcıgil, G., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Can-Eke, B. (2008). Bioorg. Med. Chem. 16, 4294–4303.  Web of Science PubMed Google Scholar
First citationPadmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1918-o1919
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds