organic compounds
(Z)-1-(2,5-Dichloro-3-thienyl)ethanone semicarbazone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A&B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India, cDepartment of Chemistry, NITTE Institute of Technology, Yelahanka, Bangalore 560 064, India, and dDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my
The title molecule, C7H7Cl2N3OS, is approximately planar [maximum deviation = 0.062 (1) Å]. Short intermolecular distances between the centroids of the five-membered rings [3.5340 (8) Å] indicate the existence of π–π interactions. An interesting feature of the is the presence of short intramolecular Cl⋯N interactions [3.0015 (11) Å]. Molecules are linked via pairs of intermolecular N—H⋯O hydrogen bonds, generating R22(8) ring motifs. Furthermore, N—H⋯O hydrogen bonds form R21(7) ring motifs with C—H⋯O contacts, further consolidating the In the crystal, molecules are linked by these intermolecular interactions, forming chains along [001].
Related literature
For the synthetic utility and applications of semicarbazone derivatives, see: Warren et al. (1977); Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Yogeeswari et al. (2004). For related structures, see: Fun et al. (2009a,b). For the preparation, see: Furniss et al. (1978). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809026567/tk2498sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026567/tk2498Isup2.hkl
Semicarbazide hydrochloride (1.84 g, 16.5 mmol) and freshly recrystallized sodium acetate (1.64 g, 20.0 mmol) was dissolved in water (15 ml) according to a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, 2,5-dichloro-3-acetylthiophene (3.0 g, 15.4 mmol) in ethanol (15 ml) was added and stirred well for 6 h. The separated semicarbazone was filtered, washed with chilled water and recrystallized from an ethanol/dimethylformamide mixture. Yield: 3.19 g, 82.22%. M.p. 491–493 K.
N-bound H atoms were located in a difference Fourier map and were allowed to refine freely, see Table 2 for distances. All the other H atoms were placed in calculated positions, with C–H = 0.93 or 0.96 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C7H7Cl2N3OS | F(000) = 1024 |
Mr = 252.12 | Dx = 1.706 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6313 reflections |
a = 13.0796 (2) Å | θ = 2.5–33.2° |
b = 10.4316 (2) Å | µ = 0.84 mm−1 |
c = 14.4352 (2) Å | T = 100 K |
β = 94.599 (1)° | Plate, colourless |
V = 1963.21 (6) Å3 | 0.49 × 0.22 × 0.08 mm |
Z = 8 |
Bruker SMART APEXII CCD area-detector diffractometer | 3742 independent reflections |
Radiation source: fine-focus sealed tube | 3060 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 33.2°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −20→19 |
Tmin = 0.683, Tmax = 0.934 | k = −16→15 |
16375 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0516P)2 + 0.6332P] where P = (Fo2 + 2Fc2)/3 |
3742 reflections | (Δ/σ)max = 0.002 |
140 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C7H7Cl2N3OS | V = 1963.21 (6) Å3 |
Mr = 252.12 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.0796 (2) Å | µ = 0.84 mm−1 |
b = 10.4316 (2) Å | T = 100 K |
c = 14.4352 (2) Å | 0.49 × 0.22 × 0.08 mm |
β = 94.599 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3742 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3060 reflections with I > 2σ(I) |
Tmin = 0.683, Tmax = 0.934 | Rint = 0.029 |
16375 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.46 e Å−3 |
3742 reflections | Δρmin = −0.35 e Å−3 |
140 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.17736 (3) | 0.23231 (4) | 0.62567 (3) | 0.02794 (10) | |
Cl2 | 0.88955 (3) | 0.12728 (4) | 0.31571 (2) | 0.02421 (10) | |
S1 | 1.06944 (2) | 0.19596 (3) | 0.43833 (3) | 0.01940 (9) | |
O1 | 0.48318 (7) | −0.00827 (9) | 0.37962 (6) | 0.01622 (18) | |
N1 | 0.62401 (10) | 0.02718 (15) | 0.30045 (8) | 0.0247 (3) | |
N2 | 0.63508 (8) | 0.03704 (11) | 0.46052 (7) | 0.0150 (2) | |
N3 | 0.73470 (8) | 0.07286 (10) | 0.45321 (7) | 0.0146 (2) | |
C1 | 0.57608 (9) | 0.01731 (12) | 0.37865 (8) | 0.0147 (2) | |
C2 | 0.79348 (9) | 0.09889 (12) | 0.52643 (9) | 0.0141 (2) | |
C3 | 0.89959 (10) | 0.13686 (12) | 0.51073 (9) | 0.0150 (2) | |
C4 | 0.97547 (10) | 0.16495 (13) | 0.58619 (9) | 0.0183 (2) | |
H4A | 0.9621 | 0.1617 | 0.6485 | 0.022* | |
C5 | 1.06803 (10) | 0.19643 (13) | 0.55714 (10) | 0.0194 (3) | |
C6 | 0.94260 (10) | 0.15031 (13) | 0.42725 (9) | 0.0167 (2) | |
C7 | 0.76299 (11) | 0.09363 (16) | 0.62397 (9) | 0.0232 (3) | |
H7A | 0.6913 | 0.0734 | 0.6234 | 0.035* | |
H7B | 0.7757 | 0.1753 | 0.6533 | 0.035* | |
H7C | 0.8024 | 0.0288 | 0.6579 | 0.035* | |
H1N1 | 0.5931 (16) | 0.0142 (19) | 0.2466 (16) | 0.036 (5)* | |
H2N1 | 0.6797 (17) | 0.0442 (19) | 0.3063 (14) | 0.030 (5)* | |
H1N2 | 0.6027 (14) | 0.0324 (17) | 0.5102 (13) | 0.022 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01347 (16) | 0.0327 (2) | 0.0365 (2) | −0.00378 (13) | −0.00478 (14) | −0.00720 (15) |
Cl2 | 0.01543 (15) | 0.0411 (2) | 0.01659 (15) | −0.00354 (13) | 0.00432 (11) | 0.00003 (12) |
S1 | 0.01115 (15) | 0.02034 (16) | 0.02707 (17) | −0.00210 (11) | 0.00391 (12) | 0.00104 (12) |
O1 | 0.0101 (4) | 0.0251 (5) | 0.0135 (4) | −0.0015 (4) | 0.0005 (3) | 0.0007 (3) |
N1 | 0.0116 (5) | 0.0502 (8) | 0.0124 (5) | −0.0061 (5) | 0.0008 (4) | −0.0013 (5) |
N2 | 0.0102 (4) | 0.0224 (5) | 0.0122 (4) | −0.0034 (4) | 0.0008 (4) | −0.0002 (4) |
N3 | 0.0095 (4) | 0.0199 (5) | 0.0148 (4) | −0.0027 (4) | 0.0018 (4) | −0.0003 (4) |
C1 | 0.0121 (5) | 0.0185 (6) | 0.0136 (5) | −0.0006 (4) | 0.0020 (4) | −0.0001 (4) |
C2 | 0.0113 (5) | 0.0156 (5) | 0.0152 (5) | −0.0010 (4) | 0.0010 (4) | −0.0004 (4) |
C3 | 0.0113 (5) | 0.0154 (5) | 0.0182 (5) | −0.0006 (4) | 0.0006 (4) | −0.0008 (4) |
C4 | 0.0137 (6) | 0.0199 (6) | 0.0208 (6) | −0.0011 (5) | −0.0010 (5) | −0.0029 (5) |
C5 | 0.0121 (5) | 0.0195 (6) | 0.0261 (6) | −0.0011 (5) | −0.0020 (5) | −0.0041 (5) |
C6 | 0.0117 (5) | 0.0192 (6) | 0.0192 (6) | −0.0010 (5) | 0.0016 (4) | 0.0000 (4) |
C7 | 0.0164 (6) | 0.0390 (8) | 0.0140 (5) | −0.0029 (6) | 0.0005 (5) | −0.0002 (5) |
Cl1—C5 | 1.7137 (14) | N3—C2 | 1.2851 (16) |
Cl2—C6 | 1.7182 (13) | C2—C3 | 1.4782 (18) |
S1—C5 | 1.7167 (15) | C2—C7 | 1.4949 (18) |
S1—C6 | 1.7211 (13) | C3—C6 | 1.3773 (19) |
O1—C1 | 1.2452 (15) | C3—C4 | 1.4436 (18) |
N1—C1 | 1.3384 (17) | C4—C5 | 1.3530 (19) |
N1—H1N1 | 0.86 (2) | C4—H4A | 0.9300 |
N1—H2N1 | 0.75 (2) | C7—H7A | 0.9600 |
N2—N3 | 1.3677 (15) | C7—H7B | 0.9600 |
N2—C1 | 1.3741 (16) | C7—H7C | 0.9600 |
N2—H1N2 | 0.863 (19) | ||
Cg1···Cg1i | 3.7188 (6) | Cl2···N3 | 3.0015 (11) |
C5—S1—C6 | 90.35 (6) | C4—C3—C2 | 122.41 (12) |
C1—N1—H1N1 | 122.3 (14) | C5—C4—C3 | 113.17 (13) |
C1—N1—H2N1 | 116.2 (16) | C5—C4—H4A | 123.4 |
H1N1—N1—H2N1 | 122 (2) | C3—C4—H4A | 123.4 |
N3—N2—C1 | 116.57 (10) | C4—C5—Cl1 | 126.87 (12) |
N3—N2—H1N2 | 127.8 (12) | C4—C5—S1 | 112.98 (10) |
C1—N2—H1N2 | 115.3 (12) | Cl1—C5—S1 | 120.14 (8) |
C2—N3—N2 | 120.34 (11) | C3—C6—Cl2 | 130.02 (10) |
O1—C1—N1 | 123.33 (12) | C3—C6—S1 | 113.90 (10) |
O1—C1—N2 | 120.24 (11) | Cl2—C6—S1 | 116.08 (8) |
N1—C1—N2 | 116.44 (11) | C2—C7—H7A | 109.5 |
N3—C2—C3 | 115.96 (11) | C2—C7—H7B | 109.5 |
N3—C2—C7 | 125.43 (11) | H7A—C7—H7B | 109.5 |
C3—C2—C7 | 118.61 (11) | C2—C7—H7C | 109.5 |
C6—C3—C4 | 109.59 (11) | H7A—C7—H7C | 109.5 |
C6—C3—C2 | 128.00 (12) | H7B—C7—H7C | 109.5 |
C1—N2—N3—C2 | 176.77 (12) | C3—C4—C5—Cl1 | −178.46 (10) |
N3—N2—C1—O1 | −175.87 (11) | C3—C4—C5—S1 | 0.65 (16) |
N3—N2—C1—N1 | 4.15 (18) | C6—S1—C5—C4 | −0.70 (11) |
N2—N3—C2—C3 | −179.86 (11) | C6—S1—C5—Cl1 | 178.47 (9) |
N2—N3—C2—C7 | 0.1 (2) | C4—C3—C6—Cl2 | 179.02 (11) |
N3—C2—C3—C6 | 1.5 (2) | C2—C3—C6—Cl2 | −0.5 (2) |
C7—C2—C3—C6 | −178.55 (13) | C4—C3—C6—S1 | −0.35 (15) |
N3—C2—C3—C4 | −177.95 (12) | C2—C3—C6—S1 | −179.82 (10) |
C7—C2—C3—C4 | 2.03 (19) | C5—S1—C6—C3 | 0.60 (11) |
C6—C3—C4—C5 | −0.19 (17) | C5—S1—C6—Cl2 | −178.86 (9) |
C2—C3—C4—C5 | 179.32 (12) |
Symmetry code: (i) x+5/2, y+1/2, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1ii | 0.86 (2) | 2.02 (2) | 2.8766 (15) | 177.3 (19) |
N2—H1N2···O1iii | 0.863 (19) | 2.035 (19) | 2.8949 (14) | 174.2 (17) |
C7—H7A···O1iii | 0.96 | 2.38 | 3.3370 (17) | 176 |
Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H7Cl2N3OS |
Mr | 252.12 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.0796 (2), 10.4316 (2), 14.4352 (2) |
β (°) | 94.599 (1) |
V (Å3) | 1963.21 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.49 × 0.22 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.683, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16375, 3742, 3060 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.770 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.100, 1.13 |
No. of reflections | 3742 |
No. of parameters | 140 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.35 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1···Cg1i | 3.7188 (6) | Cl2···N3 | 3.0015 (11) |
Symmetry code: (i) x+5/2, y+1/2, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1ii | 0.86 (2) | 2.02 (2) | 2.8766 (15) | 177.3 (19) |
N2—H1N2···O1iii | 0.863 (19) | 2.035 (19) | 2.8949 (14) | 174.2 (17) |
C7—H7A···O1iii | 0.96 | 2.38 | 3.3370 (17) | 176.1 |
Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x+1, −y, −z+1. |
Acknowledgements
HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094. CrossRef Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1634–o1635. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619–o1620. Web of Science CSD CrossRef IUCr Journals Google Scholar
Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed. p. 1112. London: ELBS. Google Scholar
Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110. Web of Science CrossRef CAS Google Scholar
Pilgram, K. H. G. (1978). US Patent No. 4 108 399. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521. CrossRef CAS PubMed Web of Science Google Scholar
Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Semicarbazones find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). Futher, 4-sulphamoylphenyl semicarbazones were found to possess anti-convulsant activity (Yogeeswari et al., 2004). Herein, we report the crystal structure of the title semicarbazone (I).
The bond lengths and angles in (I), Fig. 1, are comparable to those observed in two closely related structures (Fun et al., 2009a, b). The molecule is approximately planar, with an r.m.s. deviation of 0.062 (1) Å for atom O1. The short intramolecular distances between the centroids of five-membered rings [3.5340 (8) Å] prove existence of π–π interactions (Table 1). The interesting feature of the crystal structure is the short intermolecular Cl···N interactions [3.0015 (11) Å]".
The molecules are linked via pairs of intermolecular N1—H1N1···O1 and N2—H1N2···O1 (Table 2) hydrogen bonds to generate R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2). Furthermore, N2—H1N2···O1 hydrogen bonds form R21(7) ring motifs with C7—H7A···O1 contacts to further consolidate the crystal structure. The molecules are linked by these intermolecular interactions to form 1-D chains along the [0 0 1] direction.