organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-N-(4-bromo­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 July 2009; accepted 17 July 2009; online 22 July 2009)

In the title compound, C8H7Br2NO, the conformation of the N—H bond is anti to both the carbonyl and C—Br bonds in the side chain. In the crystal structure, mol­ecules are packed into supra­molecular chains along the c axis by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For related structures, see: Andreetti et al. (1968[Andreetti, G. D., Cavalca, L., Domiano, P. & Musatti, A. (1968). Acta Cryst. B24, 1195-1198.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2333-o2334.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2335-o2336.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4488.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7Br2NO

  • Mr = 292.97

  • Monoclinic, P 21 /n

  • a = 4.4987 (3) Å

  • b = 23.152 (1) Å

  • c = 9.1098 (5) Å

  • β = 99.713 (6)°

  • V = 935.22 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.62 mm−1

  • T = 303 K

  • 0.50 × 0.20 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.078, Tmax = 0.299

  • 3065 measured reflections

  • 1661 independent reflections

  • 1415 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 0.99

  • 1661 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.11 2.925 (6) 157
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of the ring and the side chain substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b, c), in the present work, the structure of 2-bromo-N-(4-bromophenyl)acetamide (I) has been determined (Fig. 1). The conformation of the N—H bond is anti to both the C=O and the C—Br bonds in the side chain, similar to that observed in 2-chloro-N-(4-chlorophenyl)acetamide (Gowda et al., 2007c), N-(4-bromophenyl)acetamide (Andreetti et al., 1968), and other amides (Gowda et al., 2007a, b).

The crystal packing shows N1—H1N···O1 hydrogen bonds (Table 1) that lead to the formation of molecular chain along the c-axis (Fig. 2).

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Andreetti et al. (1968); Gowda et al. (2007a,b,c).

Experimental top

Compound (I) was prepared from 4-bromoaniline and bromoacetylchloride according to the literature method (Gowda et al., 2003). Single crystals were obtained by slow evaporation of an ethanolic solution of (I) held at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model [N—H = 0.86 Å, C—H = 0.93—0.97 Å], and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds shown as dashed lines.
2-Bromo-N-(4-bromophenyl)acetamide top
Crystal data top
C8H7Br2NOF(000) = 560
Mr = 292.97Dx = 2.081 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2250 reflections
a = 4.4987 (3) Åθ = 2.9–27.8°
b = 23.152 (1) ŵ = 8.62 mm1
c = 9.1098 (5) ÅT = 303 K
β = 99.713 (6)°Needle, colourless
V = 935.22 (9) Å30.50 × 0.20 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1661 independent reflections
Radiation source: fine-focus sealed tube1415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 54
Tmin = 0.078, Tmax = 0.299k = 1627
3065 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0581P)2 + 4.1384P]
where P = (Fo2 + 2Fc2)/3
1661 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C8H7Br2NOV = 935.22 (9) Å3
Mr = 292.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4987 (3) ŵ = 8.62 mm1
b = 23.152 (1) ÅT = 303 K
c = 9.1098 (5) Å0.50 × 0.20 × 0.14 mm
β = 99.713 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1661 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1415 reflections with I > 2σ(I)
Tmin = 0.078, Tmax = 0.299Rint = 0.023
3065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.99Δρmax = 0.73 e Å3
1661 reflectionsΔρmin = 0.68 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7460 (14)0.2109 (3)0.3871 (6)0.0489 (15)
H1A0.64320.22870.46100.059*
H1B0.92180.19090.43950.059*
C20.8475 (13)0.2577 (3)0.2905 (6)0.0400 (13)
C31.1568 (13)0.3474 (2)0.3295 (6)0.0388 (12)
C41.0573 (14)0.3743 (3)0.1927 (6)0.0445 (14)
H40.90700.35730.12360.053*
C51.1831 (16)0.4263 (3)0.1603 (7)0.0535 (16)
H51.11580.44440.06970.064*
C61.4056 (14)0.4510 (3)0.2609 (7)0.0473 (15)
C71.5067 (15)0.4251 (3)0.3949 (7)0.0538 (16)
H71.65760.44240.46310.065*
C81.3832 (14)0.3731 (3)0.4283 (7)0.0476 (14)
H81.45420.35530.51890.057*
N11.0306 (11)0.2954 (2)0.3747 (5)0.0397 (11)
H1N1.07700.28700.46770.048*
O10.7725 (10)0.26109 (19)0.1567 (4)0.0529 (11)
Br10.48101 (16)0.15590 (3)0.27451 (8)0.0576 (3)
Br21.5669 (2)0.52368 (3)0.21830 (9)0.0722 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.063 (4)0.033 (3)0.015 (3)0.000 (3)0.002 (3)
C20.038 (3)0.044 (3)0.038 (3)0.007 (3)0.007 (2)0.001 (3)
C30.044 (3)0.037 (3)0.037 (3)0.004 (2)0.012 (2)0.005 (2)
C40.053 (4)0.050 (3)0.029 (3)0.004 (3)0.004 (3)0.003 (3)
C50.072 (4)0.048 (4)0.042 (3)0.007 (3)0.014 (3)0.006 (3)
C60.058 (4)0.038 (3)0.053 (4)0.001 (3)0.027 (3)0.003 (3)
C70.054 (4)0.057 (4)0.052 (4)0.012 (3)0.012 (3)0.008 (3)
C80.048 (3)0.052 (4)0.041 (3)0.001 (3)0.003 (3)0.001 (3)
N10.051 (3)0.039 (2)0.028 (2)0.001 (2)0.007 (2)0.006 (2)
O10.072 (3)0.054 (3)0.030 (2)0.012 (2)0.001 (2)0.0005 (19)
Br10.0632 (5)0.0541 (4)0.0528 (4)0.0127 (3)0.0024 (3)0.0073 (3)
Br20.1010 (7)0.0456 (4)0.0785 (6)0.0099 (4)0.0392 (5)0.0006 (3)
Geometric parameters (Å, º) top
C1—C21.513 (8)C4—H40.9300
C1—Br11.919 (6)C5—C61.363 (9)
C1—H1A0.9700C5—H50.9300
C1—H1B0.9700C6—C71.367 (9)
C2—O11.211 (7)C6—Br21.898 (6)
C2—N11.349 (7)C7—C81.381 (9)
C3—C81.376 (8)C7—H70.9300
C3—C41.398 (8)C8—H80.9300
C3—N11.421 (7)N1—H1N0.8600
C4—C51.382 (9)
C2—C1—Br1112.6 (4)C6—C5—C4120.2 (6)
C2—C1—H1A109.1C6—C5—H5119.9
Br1—C1—H1A109.1C4—C5—H5119.9
C2—C1—H1B109.1C5—C6—C7120.8 (6)
Br1—C1—H1B109.1C5—C6—Br2119.8 (5)
H1A—C1—H1B107.8C7—C6—Br2119.3 (5)
O1—C2—N1124.7 (6)C6—C7—C8119.6 (6)
O1—C2—C1124.9 (5)C6—C7—H7120.2
N1—C2—C1110.4 (5)C8—C7—H7120.2
C8—C3—C4118.8 (6)C3—C8—C7120.9 (6)
C8—C3—N1117.7 (5)C3—C8—H8119.6
C4—C3—N1123.5 (5)C7—C8—H8119.6
C5—C4—C3119.8 (6)C2—N1—C3128.3 (5)
C5—C4—H4120.1C2—N1—H1N115.8
C3—C4—H4120.1C3—N1—H1N115.8
Br1—C1—C2—O10.2 (8)Br2—C6—C7—C8178.0 (5)
Br1—C1—C2—N1179.5 (4)C4—C3—C8—C71.3 (9)
C8—C3—C4—C51.2 (9)N1—C3—C8—C7176.9 (6)
N1—C3—C4—C5177.0 (5)C6—C7—C8—C30.9 (10)
C3—C4—C5—C60.6 (9)O1—C2—N1—C34.1 (9)
C4—C5—C6—C70.3 (10)C1—C2—N1—C3175.1 (5)
C4—C5—C6—Br2177.8 (5)C8—C3—N1—C2167.5 (6)
C5—C6—C7—C80.4 (10)C4—C3—N1—C214.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.112.925 (6)157
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7Br2NO
Mr292.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)303
a, b, c (Å)4.4987 (3), 23.152 (1), 9.1098 (5)
β (°) 99.713 (6)
V3)935.22 (9)
Z4
Radiation typeMo Kα
µ (mm1)8.62
Crystal size (mm)0.50 × 0.20 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.078, 0.299
No. of measured, independent and
observed [I > 2σ(I)] reflections
3065, 1661, 1415
Rint0.023
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 0.99
No. of reflections1661
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.68

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.112.925 (6)157
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationAndreetti, G. D., Cavalca, L., Domiano, P. & Musatti, A. (1968). Acta Cryst. B24, 1195–1198.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2333–o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2335–o2336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds