organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­­oxy)benzoic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSyngene International Ltd, Biocon Park, Plot Nos. 2 & 3, Bommasandra 4th Phase, Jigani Link Road, Bangalore 560 100, India, cDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India, and dDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 July 2009; accepted 17 July 2009; online 25 July 2009)

In the title compound, C13H9FO3, the dihedral angle between the two benzene rings is 70.99 (5)°. In the crystal structure, mol­ecules are linked into dimers by centrosymmetric O—H⋯O inter­actions, generating R22(8) ring motifs. These dimers are linked into a two-dimensional array, parallel to the ab plane, by two different C—H⋯O inter­actions. A weak C—H⋯π inter­actions is also present.

Related literature

For general background to and applications of phen­oxy benzoic acid derivatives, see: Forster et al. (1989[Forster, H., Eue, L., Schmidt, R. R. & Lurssen, K. (1989). US Patent No. 4 889 946.]); Holla et al. (2003[Holla, B. S., Bhat, K. S. & Shetty, N. S. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 2193-2199.]); Ramu et al. (2000[Ramu, K., Lam, G. N. & Hughes, H. (2000). Drug Metabol. Dispos. 28, 1153-1161.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9FO3

  • Mr = 232.20

  • Triclinic, [P \overline 1]

  • a = 5.8850 (1) Å

  • b = 7.8526 (2) Å

  • c = 12.0250 (2) Å

  • α = 91.803 (1)°

  • β = 96.321 (1)°

  • γ = 106.027 (1)°

  • V = 529.75 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.38 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.984

  • 17124 measured reflections

  • 4049 independent reflections

  • 3329 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.04

  • 4049 reflections

  • 190 parameters

  • All H-atom parameters refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O3i 0.92 (2) 1.70 (2) 2.6204 (11) 175 (2)
C5—H5A⋯O3ii 0.980 (15) 2.403 (15) 3.3573 (12) 164.3 (14)
C9—H9A⋯O2iii 0.969 (17) 2.588 (16) 3.3519 (13) 135.9 (11)
C2—H2ACg2iv 0.981 (15) 2.928 (16) 3.9014 (10) 172.1 (13)
Symmetry codes: (i) -x-1, -y, -z+2; (ii) x+1, y+1, z; (iii) -x-1, -y+1, -z+2; (iv) -x, -y+1, -z+1. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenoxy benzoic acids and its derivatives are known for their herbicidal and plant growth-regulating activities (Forster et al., 1989). These compounds are also used in the synthesis of various thiadiazoles and oxadiazole derivatives which show excellent anti-bacterial activity (Holla et al., 2003).The title compound, (I), which is used for peripheral neuropathic pain treatment, is a potent blocker of neuronal voltage-gated sodium channels that interacts selectively with inactivated states as opposed to resting states of the channels (Ramu et al., 2000).

In (I), Fig. 1, the two benzene rings are inclined to one another, with dihedral angle of 70.99 (5)°. In the crystal structure (Fig. 2), the molecules are linked into dimers by centrosymmetric O2—H1O2···O3 interactions (Table 1) to generate R22(8) ring motifs. These dimers are linked into a 2-D array, parallel to the ab plane, by intermolecular C—H···O interactions (Table 1). The crystal structure is further stabilized by weak C2—H2A···Cg2 (Table 1) and π···π interactions involving the C1-C6 benzene rings (centroid Cg1) [Cg1···Cg1 = 3.6427 (6)°; symmetry code: 1-x, 2-y, 1-z].

Related literature top

For general background to and applications of phenoxy benzoic acid derivatives, see: Forster et al. (1989); Holla et al. (2003); Ramu et al. (2000). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1is the centroid of the C1–C6 benzene ring.

Experimental top

4-Bromo-methylbenzoate (0.760 g, 3.57 mmol), sodium carbonate (0.750 g, 7.00 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.400 g, 0.350 mmol) were added to a stirred solution of 4-fluorobenzene boronic acid (0.500 g, 3.57 mmol) in toluene and water (1:1) (20 ml). The reaction mixture was heated at reflux for 8 h; TLC indicated completion of reaction. Sodium hydroxide (0.284 g, 7.00 mmol) was added and stirring was continued for further 1 h. Mass analysis of crude reaction mixture shows the formation of desired compound. The reaction mixture was acidified to pH 3, extracted with ethylacetate and dried. The concentrated residue was purified by column chromatography to yield the pure product, which was recrystallized using hot dichloromethane to yield single crystals. The yield was 0.400 g, 50 %. M.p. 448-450 K.

Refinement top

All the H atoms were located from difference Fourier map and allowed to refine freely [range of C—H = 0.959 (15) - 0.981 (15) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. 2-D arrays parallel to the ab plane, viewed along the a axis. Intermolecular interactions are shown as dashed lines.
4-(4-Fluorophenoxy)benzoic acid top
Crystal data top
C13H9FO3Z = 2
Mr = 232.20F(000) = 240
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8850 (1) ÅCell parameters from 7298 reflections
b = 7.8526 (2) Åθ = 2.7–33.2°
c = 12.0250 (2) ŵ = 0.12 mm1
α = 91.803 (1)°T = 100 K
β = 96.321 (1)°Block, colourless
γ = 106.027 (1)°0.38 × 0.22 × 0.14 mm
V = 529.75 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4049 independent reflections
Radiation source: fine-focus sealed tube3329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 33.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.958, Tmax = 0.984k = 1212
17124 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1453P]
where P = (Fo2 + 2Fc2)/3
4049 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H9FO3γ = 106.027 (1)°
Mr = 232.20V = 529.75 (2) Å3
Triclinic, P1Z = 2
a = 5.8850 (1) ÅMo Kα radiation
b = 7.8526 (2) ŵ = 0.12 mm1
c = 12.0250 (2) ÅT = 100 K
α = 91.803 (1)°0.38 × 0.22 × 0.14 mm
β = 96.321 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3329 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.984Rint = 0.023
17124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.04Δρmax = 0.48 e Å3
4049 reflectionsΔρmin = 0.26 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.72786 (13)0.78346 (9)0.39118 (6)0.02925 (17)
O10.21383 (14)0.80788 (9)0.74196 (6)0.02239 (16)
O20.50311 (14)0.22204 (10)0.97542 (7)0.02221 (17)
O30.26343 (13)0.05949 (9)0.93084 (6)0.01906 (15)
C10.22933 (18)0.70062 (13)0.55272 (9)0.01978 (19)
C20.36012 (18)0.69543 (13)0.46395 (8)0.02022 (19)
C30.59978 (18)0.78592 (13)0.47858 (8)0.01926 (19)
C40.71427 (18)0.88095 (13)0.57691 (9)0.02004 (19)
C50.58253 (18)0.88423 (13)0.66581 (8)0.01836 (18)
C60.34309 (17)0.79342 (12)0.65322 (8)0.01679 (17)
C70.08790 (17)0.65375 (12)0.78461 (8)0.01647 (17)
C80.09821 (18)0.66886 (12)0.84280 (8)0.01712 (18)
C90.23330 (17)0.52057 (12)0.88889 (8)0.01649 (17)
C100.17956 (16)0.35800 (12)0.87894 (7)0.01449 (16)
C110.01210 (17)0.34637 (12)0.82318 (8)0.01577 (17)
C120.14587 (17)0.49364 (12)0.77501 (8)0.01720 (18)
C130.31845 (16)0.20040 (12)0.93050 (7)0.01521 (17)
H1O20.578 (4)0.120 (3)1.0074 (18)0.067 (6)*
H1A0.061 (3)0.6429 (19)0.5446 (12)0.027 (4)*
H2A0.287 (3)0.634 (2)0.3911 (13)0.030 (4)*
H4A0.883 (2)0.9437 (18)0.5838 (12)0.023 (3)*
H5A0.653 (3)0.9516 (19)0.7372 (13)0.028 (4)*
H8A0.134 (3)0.780 (2)0.8501 (12)0.027 (4)*
H9A0.366 (3)0.5275 (19)0.9281 (12)0.025 (3)*
H11A0.051 (2)0.2356 (18)0.8193 (11)0.020 (3)*
H12A0.279 (3)0.4852 (19)0.7355 (12)0.026 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0317 (4)0.0303 (3)0.0262 (3)0.0042 (3)0.0181 (3)0.0015 (3)
O10.0293 (4)0.0139 (3)0.0247 (4)0.0022 (3)0.0160 (3)0.0027 (3)
O20.0236 (4)0.0175 (3)0.0295 (4)0.0067 (3)0.0162 (3)0.0065 (3)
O30.0238 (4)0.0146 (3)0.0205 (3)0.0054 (3)0.0091 (3)0.0029 (2)
C10.0177 (4)0.0185 (4)0.0211 (4)0.0009 (3)0.0045 (3)0.0007 (3)
C20.0223 (5)0.0193 (4)0.0176 (4)0.0030 (3)0.0037 (3)0.0002 (3)
C30.0217 (4)0.0183 (4)0.0193 (4)0.0052 (3)0.0099 (3)0.0027 (3)
C40.0163 (4)0.0189 (4)0.0239 (5)0.0025 (3)0.0052 (3)0.0006 (3)
C50.0196 (4)0.0166 (4)0.0179 (4)0.0032 (3)0.0030 (3)0.0008 (3)
C60.0200 (4)0.0132 (4)0.0178 (4)0.0033 (3)0.0079 (3)0.0031 (3)
C70.0186 (4)0.0142 (4)0.0156 (4)0.0015 (3)0.0054 (3)0.0019 (3)
C80.0211 (4)0.0148 (4)0.0172 (4)0.0061 (3)0.0067 (3)0.0028 (3)
C90.0176 (4)0.0171 (4)0.0164 (4)0.0057 (3)0.0061 (3)0.0027 (3)
C100.0159 (4)0.0143 (4)0.0131 (4)0.0033 (3)0.0038 (3)0.0019 (3)
C110.0167 (4)0.0147 (4)0.0161 (4)0.0039 (3)0.0043 (3)0.0012 (3)
C120.0166 (4)0.0166 (4)0.0188 (4)0.0035 (3)0.0066 (3)0.0013 (3)
C130.0169 (4)0.0153 (4)0.0131 (4)0.0032 (3)0.0040 (3)0.0008 (3)
Geometric parameters (Å, º) top
F1—C31.3617 (11)C5—C61.3814 (14)
O1—C71.3801 (11)C5—H5A0.980 (15)
O1—C61.3961 (11)C7—C81.3923 (13)
O2—C131.3142 (11)C7—C121.3953 (13)
O2—H1O20.92 (2)C8—C91.3863 (13)
O3—C131.2357 (11)C8—H8A0.959 (15)
C1—C21.3889 (14)C9—C101.4021 (13)
C1—C61.3917 (14)C9—H9A0.967 (14)
C1—H1A0.960 (15)C10—C111.3963 (13)
C2—C31.3817 (14)C10—C131.4783 (13)
C2—H2A0.981 (15)C11—C121.3901 (13)
C3—C41.3786 (14)C11—H11A0.961 (13)
C4—C51.3916 (14)C12—H12A0.978 (15)
C4—H4A0.971 (14)
C7—O1—C6118.23 (7)O1—C7—C12123.17 (9)
C13—O2—H1O2109.9 (13)C8—C7—C12121.23 (8)
C2—C1—C6119.42 (9)C9—C8—C7119.35 (9)
C2—C1—H1A120.5 (9)C9—C8—H8A120.3 (9)
C6—C1—H1A120.1 (9)C7—C8—H8A120.3 (9)
C3—C2—C1118.26 (9)C8—C9—C10120.22 (9)
C3—C2—H2A119.4 (9)C8—C9—H9A120.7 (9)
C1—C2—H2A122.2 (9)C10—C9—H9A119.1 (9)
F1—C3—C4118.50 (9)C11—C10—C9119.70 (8)
F1—C3—C2118.45 (9)C11—C10—C13119.66 (8)
C4—C3—C2123.04 (9)C9—C10—C13120.60 (8)
C3—C4—C5118.37 (9)C12—C11—C10120.43 (8)
C3—C4—H4A120.6 (8)C12—C11—H11A120.5 (8)
C5—C4—H4A121.0 (8)C10—C11—H11A119.1 (8)
C6—C5—C4119.50 (9)C11—C12—C7119.03 (9)
C6—C5—H5A118.4 (9)C11—C12—H12A120.4 (9)
C4—C5—H5A122.1 (9)C7—C12—H12A120.6 (9)
C5—C6—C1121.40 (9)O3—C13—O2123.01 (9)
C5—C6—O1117.85 (9)O3—C13—C10122.01 (8)
C1—C6—O1120.60 (9)O2—C13—C10114.98 (8)
O1—C7—C8115.55 (8)
C6—C1—C2—C31.01 (15)O1—C7—C8—C9179.70 (9)
C1—C2—C3—F1179.00 (9)C12—C7—C8—C92.13 (15)
C1—C2—C3—C40.10 (16)C7—C8—C9—C101.33 (14)
F1—C3—C4—C5179.56 (9)C8—C9—C10—C110.55 (14)
C2—C3—C4—C50.66 (16)C8—C9—C10—C13178.31 (9)
C3—C4—C5—C60.11 (15)C9—C10—C11—C121.68 (14)
C4—C5—C6—C11.01 (15)C13—C10—C11—C12179.47 (8)
C4—C5—C6—O1176.49 (9)C10—C11—C12—C70.91 (14)
C2—C1—C6—C51.58 (15)O1—C7—C12—C11178.39 (9)
C2—C1—C6—O1176.94 (9)C8—C7—C12—C111.01 (15)
C7—O1—C6—C5125.60 (10)C11—C10—C13—O33.66 (14)
C7—O1—C6—C158.88 (13)C9—C10—C13—O3174.10 (9)
C6—O1—C7—C8158.42 (9)C11—C10—C13—O2176.33 (8)
C6—O1—C7—C1224.07 (14)C9—C10—C13—O25.90 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O3i0.92 (2)1.70 (2)2.6204 (11)175 (2)
C5—H5A···O3ii0.980 (15)2.403 (15)3.3573 (12)164.3 (14)
C9—H9A···O2iii0.969 (17)2.588 (16)3.3519 (13)135.9 (11)
C2—H2A···Cg2iv0.981 (15)2.928 (16)3.9014 (10)172.1 (13)
Symmetry codes: (i) x1, y, z+2; (ii) x+1, y+1, z; (iii) x1, y+1, z+2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9FO3
Mr232.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.8850 (1), 7.8526 (2), 12.0250 (2)
α, β, γ (°)91.803 (1), 96.321 (1), 106.027 (1)
V3)529.75 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.958, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17124, 4049, 3329
Rint0.023
(sin θ/λ)max1)0.772
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.04
No. of reflections4049
No. of parameters190
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.48, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O3i0.92 (2)1.70 (2)2.6204 (11)175 (2)
C5—H5A···O3ii0.980 (15)2.403 (15)3.3573 (12)164.3 (14)
C9—H9A···O2iii0.969 (17)2.588 (16)3.3519 (13)135.9 (11)
C2—H2A···Cg2iv0.981 (15)2.928 (16)3.9014 (10)172.1 (13)
Symmetry codes: (i) x1, y, z+2; (ii) x+1, y+1, z; (iii) x1, y+1, z+2; (iv) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research Universiti Golden Goose Grant (No. 1001/PFIZIK/811012). JHG thanks USM for the award of a USM Fellowship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForster, H., Eue, L., Schmidt, R. R. & Lurssen, K. (1989). US Patent No. 4 889 946.  Google Scholar
First citationHolla, B. S., Bhat, K. S. & Shetty, N. S. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 2193–2199.  Web of Science CrossRef CAS Google Scholar
First citationRamu, K., Lam, G. N. & Hughes, H. (2000). Drug Metabol. Dispos. 28, 1153–1161.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds