organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1985-o1986

Methyl 2-(4,6-di­chloro-1,3,5-triazin-2-yl­amino)acetate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, bDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal, and cDepartment of Chemistry, CQ-VR, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 17 July 2009; accepted 20 July 2009; online 25 July 2009)

The title compound, C6H6Cl2N4O2, was prepared by the nucleophilic substitution of 2,4,6-trichloro-1,3,5-triazine by glycine methyl ester hydro­chloride, and was isolated from the reaction by using flash chromatography. The crystal structure at 150 K reveals the presence two crystallographically independent mol­ecules in the asymmetric unit which differ in the orientation of the pendant methoxy­carbonyl group. Each mol­ecular unit is engaged in strong and highly directional N—H⋯N hydrogen-bonding inter­actions with a symmetry-related mol­ecule, forming supra­molecular dimers which act as the synthons in the crystal packing.

Related literature

For background to nucleophilic reactions based on 1,3,5-triazine derivatives, see: Blotny (2006[Blotny, G. (2006). Tetrahedron, 62, 9507-9522.]); Giacomelli et al. (2004[Giacomelli, G., Porcheddu, A. & de Luca, L. (2004). Curr. Org. Chem. 8, 1497-1519.]). For coordination polymers based 1,3,5-triazine derivatives, see: Wang, Xing et al. (2007[Wang, S. N., Xing, H., Li, Y. Z., Bai, J., Scheer, M., Pan, Y. & You, X. Z. (2007). Chem. Commun. pp. 2293-2295.]); Wang, Bai, Xing et al. (2007[Wang, S. N., Bai, J., Xing, H., Li, Y., Song, Y., Pan, Y., Scheer, M. & You, Z. (2007). Cryst. Growth. Des. 7, 747-754.]); Wang, Bai, Li et al. (2007[Wang, S. N., Bai, J., Li, Y. Z., Pan, Y., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1084-1095.]). For general background studies on crystal-engineering approaches from our research group, see: Vilela et al. (2009[Vilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., de Zea Bermudez, V., Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, o1970.]); Shi et al. (2008[Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.], 2007[Paz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097-1110.]); Paz et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.], 2005[Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database and the Mercury software package, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6Cl2N4O2

  • Mr = 237.05

  • Triclinic, [P \overline 1]

  • a = 7.3543 (4) Å

  • b = 9.7523 (5) Å

  • c = 13.4133 (7) Å

  • α = 97.714 (3)°

  • β = 92.714 (3)°

  • γ = 90.225 (3)°

  • V = 952.19 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.04 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.974

  • 23605 measured reflections

  • 5043 independent reflections

  • 3753 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.165

  • S = 1.04

  • 5043 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.78 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.945 (10) 2.092 (12) 3.028 (3) 171 (3)
N8—H8⋯N6ii 0.943 (10) 2.083 (11) 3.022 (3) 173 (3)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Worldwide research on 1,3,5-triazine derivatives has increased quite considerably in recent years driven by the versatility of this molecule which allows the nucleophilic substitution of the chloride atoms by various functional groups such as carboxylic acids, amines, amides, chlorides, nitriles, among others (Blotny, 2006; Giacomelli et al., 2004). These reactions allow the engineering of novel derivative compounds which exhibit markedly different properties from their precursors. Hence, the isolated products can be ultimately employed in various areas such as in pharmaceutical sciences, in the textile industry, and in analytical chemistry. Following our interest in crystal engineering (Vilela et al., 2009; Shi et al., 2008; Paz & Klinowski, 2003, 2007; Paz et al., 2002, 2005), we started using 2,4,6-trichloro-1,3,5-triazine as a molecular canvas for the preparation of novel multipodal organic ligands. A search in the literature and in the Cambridge Structural Database (CSD, Version of November 2008 with three updates; Allen, 2002) shows that the group of Bai (Wang, Xing et al., 2007; Wang, Bai, Xing et al., 2007; Wang, Bai, Li et al., 2007) reported the only known examples of transition metal coordination polymers containing N,N',N''-1,3,5-triazine-2,4,6-triyltrisglycine. We intend to further develop their concept by preparing mono-, di- and tri-substitued derivatives with several amino acid pendant groups. By using glycine methyl ester hydrochloride (Vilela et al., 2009) we isolated the pure title compound (i.e., the monosubstituted derivative, I).

At 150 K compound (I) contains two identical molecular units in the asymmetric unit (Fig. 1). The bond lengths and angles observed for the two molecules are statistically identical. The pendant methoxycarbonyl group exhibits considerable conformational flexibility due to the possibility of rotation around the —CH2— moiety. Indeed, while the rings and the —NH— moiety of the two crystallographically independent molecular units are almost co-planar, the pendant group is rotated by ca 180° (Fig. 2), with this feature arising with the objective to minimize steric repulsion in the crystal structure (see below).

The co-planarity of the —NH— bond with the ring of each molecular unit seems to be promoted by the existence of two strong (dD···A being ca 3.02 Å) and highly directional [<(DHA) angles above 170° - see Table 1] N—H···N hydrogen bonding interactions that form a R22(8) graph set motif (Bernstein et al., 1995). This arrangement leads to the existence of supramolecular dimers (one for each molecular unit) in the crystal structure, with Fig. 3 depicting one of these. The close packing in the solid-state is based on the spatial interdigitation of the two dimers to effectively occupy the available space, hence the two conformations for the pendant groups which ultimately help promoting a more effective packing (Fig. 4).

Related literature top

For background to nucleophilic reactions with 1,3,5-triazine derivatives, see: Blotny (2006); Giacomelli et al. (2004). For coordination polymers based 1,3,5-triazine derivatives, see: Wang, Xing et al. (2007); Wang, Bai, Xing et al. (2007); Wang, Bai, Li et al. (2007). For general background studies on crystal-engineering approaches from our research group, see: Vilela et al. (2009); Shi et al. (2008); Paz & Klinowski (2003, 2007); Paz et al. (2005); Paz et al. (2002). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database and the Mercury software package, see: Allen (2002); Macrae et al. (2008).

Experimental top

Glycine methyl ester hydrochloride (193 mg, 2.169 mmol; Sigma-Adrich, 99%) and potassium carbonate (200 mg, 1.447 mmol; Sigma-Aldrich, >99.0%) were added at 273 K to a solution of 2,4,6-trichloro-1,3,5-triazine (100 mg, 0.542 mmol; Sigma-Aldrich, >98,0%) in dried toluene (ca 5 ml). The reaction mixture was kept under magnetic stirring and slowly heated to reflux under an anhydrous atmosphere. The reaction was controlled by TLC and stopped after 24 h. The reaction mixture was separated by flash column chromatography using as eluent a gradient of methanol in dichloromethane. The first isolated fraction was identified as (I) (7% yield). Single crystals were isolated from recrystallization of the crude product from a solution in dichloromethane: methanol (ca 1: 1). All employed solvents were of analytical grade and purchased from commercial sources.

1H NMR (300.13 MHz, CDCl3) δ: 3.83 (s, 3H, OCH3), 4.27 (d, 2H, J = 2.7 Hz, CH2), 6.35 (br s, 1H, NH). 13C NMR (75.47 MHz, CDCl3) δ: 42.8 (CH2), 52.8 (OCH3), 165.8 (CNH), 168.9 (CCl), 170.2 (CCl), 171.1 (CO2Me). MS (TOF MS ES+) m/z: 237.0 (M+H)+. Selected FT—IR data (ATR, in cm-1): ν(N—H) = 3264m; νasym(—CH3) = 2961m; ν(C=O) = 1751vs; νin-plane(ring) = 1549s and 1524s (doublet); δ(—CH3) = 1417m; ν(Caromatic—N) = 1322m; νasym(C—O—C) = 1205s; νsym(C—O—C) = 1134s; γ(ring) = 841s.

Refinement top

Hydrogen atoms bound to carbon were located at their idealized positions and were included in the model in the riding model approximation with C—H = 0.99 Å (for the —CH2— groups) or 0.98 Å (for the —CH3 moieties). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 (methylene) or 1.5 (methyl) times Ueq of the carbon atom to which they are attached. The N—H atoms were located from difference Fourier maps and included in the structure with the N—H distance restrained to 0.95 (1) Å and with Uiso fixed at 1.5 times Ueq of the N atom.

The structure contains a large residual electron density of 1.78 e.Å-3 located at 1.36 Å of H4A. Attempts to include this peak as a disordered C atom did not lead to sensible structural refinements.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structures of the two independent molecules in (I). Non-hydrogen atoms are represented as thermal displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radii. The atomic labeling is provided for all non-hydrogen atoms.
[Figure 2] Fig. 2. Structure overlay of the two crystallographically independent molecular units comprising the asymmetric unit in (I): while the —NH group remains almost co-planar with the aromatic ring, the two methoxycarbonyl groups are mutually rotated by ca 180° around the —CH2— bond.
[Figure 3] Fig. 3. Strong N—H···N hydrogen bonding interactions connecting adjacent molecular units via a R22(8) synthon. For details on the hydrogen bonding geometry see Table 1.
[Figure 4] Fig. 4. Crystal packing of (I) viewed in perspective along the (a) [100] and (b) [001] directions of the unit cell. N—H···N hydrogen bonds are represented as violet dashed lines.
[Figure 5] Fig. 5. Asymmetric unit of the title compound depicting the two crystallographically independent molecular units. Non-hydrogen atoms are represented as thermal ellipsoids drawn at the 50% probability level.
[Figure 6] Fig. 6. Crystal packing of the title compound viewed in perspective along the [100] direction of the unit cell.
Methyl 2-(4,6-dichloro-1,3,5-triazin-2-ylamino)acetate top
Crystal data top
C6H6Cl2N4O2Z = 4
Mr = 237.05F(000) = 480
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3543 (4) ÅCell parameters from 6830 reflections
b = 9.7523 (5) Åθ = 2.8–28.9°
c = 13.4133 (7) ŵ = 0.66 mm1
α = 97.714 (3)°T = 150 K
β = 92.714 (3)°Plate, colourless
γ = 90.225 (3)°0.18 × 0.16 × 0.04 mm
V = 952.19 (9) Å3
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
5043 independent reflections
Radiation source: fine-focus sealed tube3753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and ϕ scansθmax = 29.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.890, Tmax = 0.974k = 1313
23605 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0886P)2 + 1.283P]
where P = (Fo2 + 2Fc2)/3
5043 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 1.78 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
C6H6Cl2N4O2γ = 90.225 (3)°
Mr = 237.05V = 952.19 (9) Å3
Triclinic, P1Z = 4
a = 7.3543 (4) ÅMo Kα radiation
b = 9.7523 (5) ŵ = 0.66 mm1
c = 13.4133 (7) ÅT = 150 K
α = 97.714 (3)°0.18 × 0.16 × 0.04 mm
β = 92.714 (3)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
5043 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3753 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.974Rint = 0.047
23605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.78 e Å3
5043 reflectionsΔρmin = 0.42 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03910 (11)0.76811 (9)0.64289 (6)0.02802 (19)
Cl20.05165 (10)0.83098 (7)1.03313 (5)0.02279 (18)
Cl30.55099 (12)0.59177 (9)0.63658 (6)0.0312 (2)
Cl40.54953 (10)0.68082 (7)1.02721 (6)0.02374 (18)
N10.0584 (3)0.8055 (2)0.83787 (18)0.0195 (5)
N20.3083 (3)0.9206 (2)0.93391 (18)0.0172 (5)
N30.3084 (3)0.8875 (2)0.75349 (18)0.0177 (5)
N40.5544 (3)0.9858 (2)0.85124 (18)0.0182 (5)
H40.610 (5)1.014 (4)0.9155 (14)0.027*
N50.5630 (3)0.6316 (2)0.83184 (19)0.0214 (5)
N60.8095 (3)0.5542 (2)0.93194 (17)0.0160 (5)
N70.8146 (3)0.5166 (2)0.75176 (18)0.0178 (5)
N81.0585 (3)0.4599 (2)0.85293 (18)0.0174 (5)
H81.109 (5)0.456 (4)0.9184 (13)0.026*
C10.1492 (4)0.8273 (3)0.7573 (2)0.0179 (5)
C20.1510 (4)0.8563 (3)0.9232 (2)0.0173 (5)
C30.3874 (4)0.9307 (3)0.8456 (2)0.0163 (5)
C40.6573 (4)0.9941 (3)0.7636 (2)0.0194 (6)
H4A0.62990.91160.71360.023*
H4B0.78880.99340.78300.023*
C50.6151 (4)1.1235 (3)0.7156 (2)0.0175 (5)
C60.6440 (5)1.2261 (4)0.5677 (3)0.0321 (8)
H6A0.52171.26430.57590.048*
H6B0.66291.19900.49590.048*
H6C0.73491.29630.59570.048*
C70.6559 (4)0.5773 (3)0.7536 (2)0.0194 (6)
C80.6527 (4)0.6144 (3)0.9185 (2)0.0172 (5)
C90.8913 (4)0.5102 (3)0.8450 (2)0.0156 (5)
C101.1643 (4)0.4189 (3)0.7663 (2)0.0181 (5)
H10A1.29540.42600.78710.022*
H10B1.14050.48330.71620.022*
C111.1208 (4)0.2724 (3)0.7175 (2)0.0175 (5)
C121.1656 (5)0.1125 (3)0.5745 (2)0.0296 (7)
H12A1.23380.05020.61370.044*
H12B1.21420.10720.50730.044*
H12C1.03680.08490.56820.044*
O10.6625 (3)1.1059 (2)0.62027 (16)0.0241 (5)
O20.5510 (3)1.2274 (2)0.75767 (17)0.0289 (5)
O31.1833 (3)0.2526 (2)0.62497 (15)0.0222 (4)
O41.0454 (3)0.1858 (2)0.75626 (17)0.0298 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0294 (4)0.0362 (4)0.0181 (4)0.0088 (3)0.0034 (3)0.0043 (3)
Cl20.0263 (4)0.0243 (3)0.0186 (3)0.0070 (3)0.0063 (3)0.0042 (3)
Cl30.0374 (5)0.0337 (4)0.0217 (4)0.0070 (3)0.0087 (3)0.0045 (3)
Cl40.0263 (4)0.0231 (3)0.0221 (4)0.0093 (3)0.0070 (3)0.0016 (3)
N10.0204 (12)0.0204 (11)0.0188 (12)0.0048 (9)0.0021 (10)0.0058 (9)
N20.0194 (12)0.0155 (10)0.0173 (11)0.0006 (9)0.0032 (9)0.0041 (9)
N30.0194 (12)0.0180 (11)0.0165 (11)0.0009 (9)0.0011 (9)0.0045 (9)
N40.0176 (12)0.0208 (11)0.0163 (11)0.0014 (9)0.0026 (9)0.0017 (9)
N50.0217 (13)0.0195 (11)0.0223 (13)0.0046 (10)0.0028 (10)0.0012 (9)
N60.0179 (11)0.0140 (10)0.0161 (11)0.0015 (8)0.0017 (9)0.0015 (8)
N70.0220 (12)0.0167 (11)0.0146 (11)0.0015 (9)0.0013 (9)0.0017 (8)
N80.0190 (12)0.0186 (11)0.0144 (11)0.0020 (9)0.0017 (9)0.0010 (9)
C10.0212 (14)0.0182 (12)0.0143 (13)0.0001 (10)0.0026 (10)0.0030 (10)
C20.0198 (13)0.0168 (12)0.0161 (13)0.0009 (10)0.0039 (10)0.0040 (10)
C30.0190 (13)0.0138 (11)0.0170 (13)0.0031 (10)0.0021 (10)0.0048 (10)
C40.0185 (13)0.0215 (13)0.0190 (14)0.0020 (10)0.0046 (11)0.0040 (11)
C50.0160 (13)0.0193 (12)0.0170 (13)0.0012 (10)0.0035 (10)0.0007 (10)
C60.043 (2)0.0308 (16)0.0269 (17)0.0052 (14)0.0134 (15)0.0146 (14)
C70.0263 (15)0.0153 (12)0.0169 (13)0.0008 (11)0.0031 (11)0.0043 (10)
C80.0185 (13)0.0137 (12)0.0191 (13)0.0016 (10)0.0033 (10)0.0002 (10)
C90.0185 (13)0.0107 (11)0.0171 (13)0.0024 (9)0.0017 (10)0.0003 (9)
C100.0176 (13)0.0186 (12)0.0177 (13)0.0016 (10)0.0043 (10)0.0006 (10)
C110.0154 (13)0.0209 (13)0.0160 (13)0.0006 (10)0.0001 (10)0.0015 (10)
C120.0411 (19)0.0255 (15)0.0194 (15)0.0042 (13)0.0031 (13)0.0075 (12)
O10.0330 (12)0.0227 (10)0.0178 (10)0.0049 (9)0.0089 (9)0.0046 (8)
O20.0384 (13)0.0257 (11)0.0242 (12)0.0106 (10)0.0135 (10)0.0047 (9)
O30.0316 (12)0.0195 (10)0.0152 (10)0.0002 (8)0.0057 (8)0.0006 (8)
O40.0389 (13)0.0254 (11)0.0252 (12)0.0109 (10)0.0121 (10)0.0002 (9)
Geometric parameters (Å, º) top
Cl1—C11.728 (3)N8—C101.442 (4)
Cl2—C21.723 (3)N8—H80.943 (10)
Cl3—C71.739 (3)C4—C51.519 (4)
Cl4—C81.725 (3)C4—H4A0.9900
N1—C11.337 (4)C4—H4B0.9900
N1—C21.337 (4)C5—O21.200 (4)
N2—C21.306 (4)C5—O11.331 (3)
N2—C31.359 (4)C6—O11.451 (4)
N3—C11.314 (4)C6—H6A0.9800
N3—C31.354 (4)C6—H6B0.9800
N4—C31.333 (4)C6—H6C0.9800
N4—C41.439 (4)C10—C111.516 (4)
N4—H40.945 (10)C10—H10A0.9900
N5—C71.330 (4)C10—H10B0.9900
N5—C81.340 (4)C11—O41.197 (4)
N6—C81.312 (4)C11—O31.334 (3)
N6—C91.357 (4)C12—O31.444 (4)
N7—C71.311 (4)C12—H12A0.9800
N7—C91.357 (4)C12—H12B0.9800
N8—C91.330 (4)C12—H12C0.9800
C1—N1—C2111.0 (2)O1—C6—H6B109.5
C2—N2—C3114.0 (2)H6A—C6—H6B109.5
C1—N3—C3113.1 (2)O1—C6—H6C109.5
C3—N4—C4122.6 (2)H6A—C6—H6C109.5
C3—N4—H4119 (2)H6B—C6—H6C109.5
C4—N4—H4119 (2)N7—C7—N5129.7 (3)
C7—N5—C8110.5 (2)N7—C7—Cl3115.6 (2)
C8—N6—C9113.7 (2)N5—C7—Cl3114.6 (2)
C7—N7—C9113.1 (2)N6—C8—N5128.6 (3)
C9—N8—C10122.3 (2)N6—C8—Cl4115.4 (2)
C9—N8—H8117 (2)N5—C8—Cl4116.0 (2)
C10—N8—H8120 (2)N8—C9—N6117.2 (2)
N3—C1—N1129.1 (3)N8—C9—N7118.7 (2)
N3—C1—Cl1116.2 (2)N6—C9—N7124.1 (3)
N1—C1—Cl1114.7 (2)N8—C10—C11112.5 (2)
N2—C2—N1128.4 (3)N8—C10—H10A109.1
N2—C2—Cl2115.8 (2)C11—C10—H10A109.1
N1—C2—Cl2115.8 (2)N8—C10—H10B109.1
N4—C3—N3118.5 (3)C11—C10—H10B109.1
N4—C3—N2117.2 (3)H10A—C10—H10B107.8
N3—C3—N2124.3 (3)O4—C11—O3124.6 (3)
N4—C4—C5112.4 (2)O4—C11—C10125.6 (3)
N4—C4—H4A109.1O3—C11—C10109.8 (2)
C5—C4—H4A109.1O3—C12—H12A109.5
N4—C4—H4B109.1O3—C12—H12B109.5
C5—C4—H4B109.1H12A—C12—H12B109.5
H4A—C4—H4B107.9O3—C12—H12C109.5
O2—C5—O1124.8 (3)H12A—C12—H12C109.5
O2—C5—C4125.2 (3)H12B—C12—H12C109.5
O1—C5—C4109.9 (2)C5—O1—C6115.8 (2)
O1—C6—H6A109.5C11—O3—C12114.9 (2)
C3—N3—C1—N10.7 (4)C8—N5—C7—N71.6 (4)
C3—N3—C1—Cl1179.70 (19)C8—N5—C7—Cl3179.3 (2)
C2—N1—C1—N30.7 (4)C9—N6—C8—N53.2 (4)
C2—N1—C1—Cl1178.9 (2)C9—N6—C8—Cl4176.48 (19)
C3—N2—C2—N12.7 (4)C7—N5—C8—N60.1 (4)
C3—N2—C2—Cl2176.07 (19)C7—N5—C8—Cl4179.6 (2)
C1—N1—C2—N20.5 (4)C10—N8—C9—N6175.6 (2)
C1—N1—C2—Cl2178.3 (2)C10—N8—C9—N73.4 (4)
C4—N4—C3—N33.4 (4)C8—N6—C9—N8173.8 (2)
C4—N4—C3—N2175.9 (2)C8—N6—C9—N75.1 (4)
C1—N3—C3—N4175.9 (2)C7—N7—C9—N8175.2 (2)
C1—N3—C3—N23.4 (4)C7—N7—C9—N63.7 (4)
C2—N2—C3—N4175.1 (2)C9—N8—C10—C1184.5 (3)
C2—N2—C3—N34.3 (4)N8—C10—C11—O418.0 (4)
C3—N4—C4—C586.3 (3)N8—C10—C11—O3163.6 (2)
N4—C4—C5—O221.8 (4)O2—C5—O1—C64.0 (4)
N4—C4—C5—O1159.3 (2)C4—C5—O1—C6174.9 (3)
C9—N7—C7—N50.1 (4)O4—C11—O3—C124.2 (4)
C9—N7—C7—Cl3178.98 (19)C10—C11—O3—C12174.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.95 (1)2.09 (1)3.028 (3)171 (3)
N8—H8···N6ii0.94 (1)2.08 (1)3.022 (3)173 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC6H6Cl2N4O2
Mr237.05
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.3543 (4), 9.7523 (5), 13.4133 (7)
α, β, γ (°)97.714 (3), 92.714 (3), 90.225 (3)
V3)952.19 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.18 × 0.16 × 0.04
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.890, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
23605, 5043, 3753
Rint0.047
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.165, 1.04
No. of reflections5043
No. of parameters261
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.78, 0.42

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.945 (10)2.092 (12)3.028 (3)171 (3)
N8—H8···N6ii0.943 (10)2.083 (11)3.022 (3)173 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+2.
 

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support and also for specific funding toward the purchase of the single-crystal diffractometer. SV wishes to acknowledge the Associated Laboratory CICECO for a research grant.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlotny, G. (2006). Tetrahedron, 62, 9507–9522.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGiacomelli, G., Porcheddu, A. & de Luca, L. (2004). Curr. Org. Chem. 8, 1497–1519.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097–1110.  Web of Science CrossRef CAS Google Scholar
First citationPaz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., de Zea Bermudez, V., Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, o1970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, S. N., Bai, J., Li, Y. Z., Pan, Y., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1084–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S. N., Bai, J., Xing, H., Li, Y., Song, Y., Pan, Y., Scheer, M. & You, Z. (2007). Cryst. Growth. Des. 7, 747–754.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S. N., Xing, H., Li, Y. Z., Bai, J., Scheer, M., Pan, Y. & You, X. Z. (2007). Chem. Commun. pp. 2293–2295.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1985-o1986
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds