organic compounds
Methyl 2-(4,6-dichloro-1,3,5-triazin-2-ylamino)acetate
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, bDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal, and cDepartment of Chemistry, CQ-VR, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
*Correspondence e-mail: filipe.paz@ua.pt
The title compound, C6H6Cl2N4O2, was prepared by the nucleophilic substitution of 2,4,6-trichloro-1,3,5-triazine by glycine methyl ester hydrochloride, and was isolated from the reaction by using flash The at 150 K reveals the presence two crystallographically independent molecules in the which differ in the orientation of the pendant methoxycarbonyl group. Each molecular unit is engaged in strong and highly directional N—H⋯N hydrogen-bonding interactions with a symmetry-related molecule, forming supramolecular dimers which act as the synthons in the crystal packing.
Related literature
For background to nucleophilic reactions based on 1,3,5-triazine derivatives, see: Blotny (2006); Giacomelli et al. (2004). For coordination polymers based 1,3,5-triazine derivatives, see: Wang, Xing et al. (2007); Wang, Bai, Xing et al. (2007); Wang, Bai, Li et al. (2007). For general background studies on crystal-engineering approaches from our research group, see: Vilela et al. (2009); Shi et al. (2008); Paz & Klinowski (2003, 2007); Paz et al. (2002, 2005). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database and the Mercury software package, see: Allen (2002); Macrae et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809028670/tk2507sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809028670/tk2507Isup2.hkl
Glycine methyl ester hydrochloride (193 mg, 2.169 mmol; Sigma-Adrich, 99%) and potassium carbonate (200 mg, 1.447 mmol; Sigma-Aldrich, >99.0%) were added at 273 K to a solution of 2,4,6-trichloro-1,3,5-triazine (100 mg, 0.542 mmol; Sigma-Aldrich, >98,0%) in dried toluene (ca 5 ml). The reaction mixture was kept under magnetic stirring and slowly heated to reflux under an anhydrous atmosphere. The reaction was controlled by TLC and stopped after 24 h. The reaction mixture was separated by flash
using as a gradient of methanol in dichloromethane. The first isolated fraction was identified as (I) (7% yield). Single crystals were isolated from recrystallization of the crude product from a solution in dichloromethane: methanol (ca 1: 1). All employed solvents were of analytical grade and purchased from commercial sources.1H NMR (300.13 MHz, CDCl3) δ: 3.83 (s, 3H, OCH3), 4.27 (d, 2H, J = 2.7 Hz, CH2), 6.35 (br s, 1H, NH). 13C NMR (75.47 MHz, CDCl3) δ: 42.8 (CH2), 52.8 (OCH3), 165.8 (CNH), 168.9 (CCl), 170.2 (CCl), 171.1 (CO2Me). MS (TOF MS ES+) m/z: 237.0 (M+H)+. Selected FT—IR data (ATR, in cm-1): ν(N—H) = 3264m; νasym(—CH3) = 2961m; ν(C=O) = 1751vs; νin-plane(ring) = 1549s and 1524s (doublet); δ(—CH3) = 1417m; ν(Caromatic—N) = 1322m; νasym(C—O—C) = 1205s; νsym(C—O—C) = 1134s; γ(ring) = 841s.
Hydrogen atoms bound to carbon were located at their idealized positions and were included in the model in the riding model approximation with C—H = 0.99 Å (for the —CH2— groups) or 0.98 Å (for the —CH3 moieties). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 (methylene) or 1.5 (methyl) times Ueq of the carbon atom to which they are attached. The N—H atoms were located from difference Fourier maps and included in the structure with the N—H distance restrained to 0.95 (1) Å and with Uiso fixed at 1.5 times Ueq of the N atom.
The structure contains a large residual electron density of 1.78 e.Å-3 located at 1.36 Å of H4A. Attempts to include this peak as a disordered C atom did not lead to sensible structural refinements.
Data collection: APEX2 (Bruker, 2006); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C6H6Cl2N4O2 | Z = 4 |
Mr = 237.05 | F(000) = 480 |
Triclinic, P1 | Dx = 1.654 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3543 (4) Å | Cell parameters from 6830 reflections |
b = 9.7523 (5) Å | θ = 2.8–28.9° |
c = 13.4133 (7) Å | µ = 0.66 mm−1 |
α = 97.714 (3)° | T = 150 K |
β = 92.714 (3)° | Plate, colourless |
γ = 90.225 (3)° | 0.18 × 0.16 × 0.04 mm |
V = 952.19 (9) Å3 |
Bruker X8 Kappa CCD APEXII diffractometer | 5043 independent reflections |
Radiation source: fine-focus sealed tube | 3753 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω and ϕ scans | θmax = 29.1°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −10→10 |
Tmin = 0.890, Tmax = 0.974 | k = −13→13 |
23605 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: mixed |
wR(F2) = 0.165 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0886P)2 + 1.283P] where P = (Fo2 + 2Fc2)/3 |
5043 reflections | (Δ/σ)max = 0.001 |
261 parameters | Δρmax = 1.78 e Å−3 |
2 restraints | Δρmin = −0.42 e Å−3 |
C6H6Cl2N4O2 | γ = 90.225 (3)° |
Mr = 237.05 | V = 952.19 (9) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.3543 (4) Å | Mo Kα radiation |
b = 9.7523 (5) Å | µ = 0.66 mm−1 |
c = 13.4133 (7) Å | T = 150 K |
α = 97.714 (3)° | 0.18 × 0.16 × 0.04 mm |
β = 92.714 (3)° |
Bruker X8 Kappa CCD APEXII diffractometer | 5043 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3753 reflections with I > 2σ(I) |
Tmin = 0.890, Tmax = 0.974 | Rint = 0.047 |
23605 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 2 restraints |
wR(F2) = 0.165 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 1.78 e Å−3 |
5043 reflections | Δρmin = −0.42 e Å−3 |
261 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.03910 (11) | 0.76811 (9) | 0.64289 (6) | 0.02802 (19) | |
Cl2 | 0.05165 (10) | 0.83098 (7) | 1.03313 (5) | 0.02279 (18) | |
Cl3 | 0.55099 (12) | 0.59177 (9) | 0.63658 (6) | 0.0312 (2) | |
Cl4 | 0.54953 (10) | 0.68082 (7) | 1.02721 (6) | 0.02374 (18) | |
N1 | 0.0584 (3) | 0.8055 (2) | 0.83787 (18) | 0.0195 (5) | |
N2 | 0.3083 (3) | 0.9206 (2) | 0.93391 (18) | 0.0172 (5) | |
N3 | 0.3084 (3) | 0.8875 (2) | 0.75349 (18) | 0.0177 (5) | |
N4 | 0.5544 (3) | 0.9858 (2) | 0.85124 (18) | 0.0182 (5) | |
H4 | 0.610 (5) | 1.014 (4) | 0.9155 (14) | 0.027* | |
N5 | 0.5630 (3) | 0.6316 (2) | 0.83184 (19) | 0.0214 (5) | |
N6 | 0.8095 (3) | 0.5542 (2) | 0.93194 (17) | 0.0160 (5) | |
N7 | 0.8146 (3) | 0.5166 (2) | 0.75176 (18) | 0.0178 (5) | |
N8 | 1.0585 (3) | 0.4599 (2) | 0.85293 (18) | 0.0174 (5) | |
H8 | 1.109 (5) | 0.456 (4) | 0.9184 (13) | 0.026* | |
C1 | 0.1492 (4) | 0.8273 (3) | 0.7573 (2) | 0.0179 (5) | |
C2 | 0.1510 (4) | 0.8563 (3) | 0.9232 (2) | 0.0173 (5) | |
C3 | 0.3874 (4) | 0.9307 (3) | 0.8456 (2) | 0.0163 (5) | |
C4 | 0.6573 (4) | 0.9941 (3) | 0.7636 (2) | 0.0194 (6) | |
H4A | 0.6299 | 0.9116 | 0.7136 | 0.023* | |
H4B | 0.7888 | 0.9934 | 0.7830 | 0.023* | |
C5 | 0.6151 (4) | 1.1235 (3) | 0.7156 (2) | 0.0175 (5) | |
C6 | 0.6440 (5) | 1.2261 (4) | 0.5677 (3) | 0.0321 (8) | |
H6A | 0.5217 | 1.2643 | 0.5759 | 0.048* | |
H6B | 0.6629 | 1.1990 | 0.4959 | 0.048* | |
H6C | 0.7349 | 1.2963 | 0.5957 | 0.048* | |
C7 | 0.6559 (4) | 0.5773 (3) | 0.7536 (2) | 0.0194 (6) | |
C8 | 0.6527 (4) | 0.6144 (3) | 0.9185 (2) | 0.0172 (5) | |
C9 | 0.8913 (4) | 0.5102 (3) | 0.8450 (2) | 0.0156 (5) | |
C10 | 1.1643 (4) | 0.4189 (3) | 0.7663 (2) | 0.0181 (5) | |
H10A | 1.2954 | 0.4260 | 0.7871 | 0.022* | |
H10B | 1.1405 | 0.4833 | 0.7162 | 0.022* | |
C11 | 1.1208 (4) | 0.2724 (3) | 0.7175 (2) | 0.0175 (5) | |
C12 | 1.1656 (5) | 0.1125 (3) | 0.5745 (2) | 0.0296 (7) | |
H12A | 1.2338 | 0.0502 | 0.6137 | 0.044* | |
H12B | 1.2142 | 0.1072 | 0.5073 | 0.044* | |
H12C | 1.0368 | 0.0849 | 0.5682 | 0.044* | |
O1 | 0.6625 (3) | 1.1059 (2) | 0.62027 (16) | 0.0241 (5) | |
O2 | 0.5510 (3) | 1.2274 (2) | 0.75767 (17) | 0.0289 (5) | |
O3 | 1.1833 (3) | 0.2526 (2) | 0.62497 (15) | 0.0222 (4) | |
O4 | 1.0454 (3) | 0.1858 (2) | 0.75626 (17) | 0.0298 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0294 (4) | 0.0362 (4) | 0.0181 (4) | −0.0088 (3) | −0.0034 (3) | 0.0043 (3) |
Cl2 | 0.0263 (4) | 0.0243 (3) | 0.0186 (3) | −0.0070 (3) | 0.0063 (3) | 0.0042 (3) |
Cl3 | 0.0374 (5) | 0.0337 (4) | 0.0217 (4) | 0.0070 (3) | −0.0087 (3) | 0.0045 (3) |
Cl4 | 0.0263 (4) | 0.0231 (3) | 0.0221 (4) | 0.0093 (3) | 0.0070 (3) | 0.0016 (3) |
N1 | 0.0204 (12) | 0.0204 (11) | 0.0188 (12) | −0.0048 (9) | 0.0021 (10) | 0.0058 (9) |
N2 | 0.0194 (12) | 0.0155 (10) | 0.0173 (11) | −0.0006 (9) | 0.0032 (9) | 0.0041 (9) |
N3 | 0.0194 (12) | 0.0180 (11) | 0.0165 (11) | 0.0009 (9) | 0.0011 (9) | 0.0045 (9) |
N4 | 0.0176 (12) | 0.0208 (11) | 0.0163 (11) | −0.0014 (9) | 0.0026 (9) | 0.0017 (9) |
N5 | 0.0217 (13) | 0.0195 (11) | 0.0223 (13) | 0.0046 (10) | −0.0028 (10) | 0.0012 (9) |
N6 | 0.0179 (11) | 0.0140 (10) | 0.0161 (11) | 0.0015 (8) | 0.0017 (9) | 0.0015 (8) |
N7 | 0.0220 (12) | 0.0167 (11) | 0.0146 (11) | −0.0015 (9) | 0.0013 (9) | 0.0017 (8) |
N8 | 0.0190 (12) | 0.0186 (11) | 0.0144 (11) | 0.0020 (9) | 0.0017 (9) | 0.0010 (9) |
C1 | 0.0212 (14) | 0.0182 (12) | 0.0143 (13) | 0.0001 (10) | −0.0026 (10) | 0.0030 (10) |
C2 | 0.0198 (13) | 0.0168 (12) | 0.0161 (13) | −0.0009 (10) | 0.0039 (10) | 0.0040 (10) |
C3 | 0.0190 (13) | 0.0138 (11) | 0.0170 (13) | 0.0031 (10) | 0.0021 (10) | 0.0048 (10) |
C4 | 0.0185 (13) | 0.0215 (13) | 0.0190 (14) | 0.0020 (10) | 0.0046 (11) | 0.0040 (11) |
C5 | 0.0160 (13) | 0.0193 (12) | 0.0170 (13) | −0.0012 (10) | 0.0035 (10) | 0.0007 (10) |
C6 | 0.043 (2) | 0.0308 (16) | 0.0269 (17) | 0.0052 (14) | 0.0134 (15) | 0.0146 (14) |
C7 | 0.0263 (15) | 0.0153 (12) | 0.0169 (13) | −0.0008 (11) | −0.0031 (11) | 0.0043 (10) |
C8 | 0.0185 (13) | 0.0137 (12) | 0.0191 (13) | 0.0016 (10) | 0.0033 (10) | 0.0002 (10) |
C9 | 0.0185 (13) | 0.0107 (11) | 0.0171 (13) | −0.0024 (9) | 0.0017 (10) | 0.0003 (9) |
C10 | 0.0176 (13) | 0.0186 (12) | 0.0177 (13) | −0.0016 (10) | 0.0043 (10) | −0.0006 (10) |
C11 | 0.0154 (13) | 0.0209 (13) | 0.0160 (13) | 0.0006 (10) | 0.0001 (10) | 0.0015 (10) |
C12 | 0.0411 (19) | 0.0255 (15) | 0.0194 (15) | 0.0042 (13) | 0.0031 (13) | −0.0075 (12) |
O1 | 0.0330 (12) | 0.0227 (10) | 0.0178 (10) | 0.0049 (9) | 0.0089 (9) | 0.0046 (8) |
O2 | 0.0384 (13) | 0.0257 (11) | 0.0242 (12) | 0.0106 (10) | 0.0135 (10) | 0.0047 (9) |
O3 | 0.0316 (12) | 0.0195 (10) | 0.0152 (10) | 0.0002 (8) | 0.0057 (8) | −0.0006 (8) |
O4 | 0.0389 (13) | 0.0254 (11) | 0.0252 (12) | −0.0109 (10) | 0.0121 (10) | 0.0002 (9) |
Cl1—C1 | 1.728 (3) | N8—C10 | 1.442 (4) |
Cl2—C2 | 1.723 (3) | N8—H8 | 0.943 (10) |
Cl3—C7 | 1.739 (3) | C4—C5 | 1.519 (4) |
Cl4—C8 | 1.725 (3) | C4—H4A | 0.9900 |
N1—C1 | 1.337 (4) | C4—H4B | 0.9900 |
N1—C2 | 1.337 (4) | C5—O2 | 1.200 (4) |
N2—C2 | 1.306 (4) | C5—O1 | 1.331 (3) |
N2—C3 | 1.359 (4) | C6—O1 | 1.451 (4) |
N3—C1 | 1.314 (4) | C6—H6A | 0.9800 |
N3—C3 | 1.354 (4) | C6—H6B | 0.9800 |
N4—C3 | 1.333 (4) | C6—H6C | 0.9800 |
N4—C4 | 1.439 (4) | C10—C11 | 1.516 (4) |
N4—H4 | 0.945 (10) | C10—H10A | 0.9900 |
N5—C7 | 1.330 (4) | C10—H10B | 0.9900 |
N5—C8 | 1.340 (4) | C11—O4 | 1.197 (4) |
N6—C8 | 1.312 (4) | C11—O3 | 1.334 (3) |
N6—C9 | 1.357 (4) | C12—O3 | 1.444 (4) |
N7—C7 | 1.311 (4) | C12—H12A | 0.9800 |
N7—C9 | 1.357 (4) | C12—H12B | 0.9800 |
N8—C9 | 1.330 (4) | C12—H12C | 0.9800 |
C1—N1—C2 | 111.0 (2) | O1—C6—H6B | 109.5 |
C2—N2—C3 | 114.0 (2) | H6A—C6—H6B | 109.5 |
C1—N3—C3 | 113.1 (2) | O1—C6—H6C | 109.5 |
C3—N4—C4 | 122.6 (2) | H6A—C6—H6C | 109.5 |
C3—N4—H4 | 119 (2) | H6B—C6—H6C | 109.5 |
C4—N4—H4 | 119 (2) | N7—C7—N5 | 129.7 (3) |
C7—N5—C8 | 110.5 (2) | N7—C7—Cl3 | 115.6 (2) |
C8—N6—C9 | 113.7 (2) | N5—C7—Cl3 | 114.6 (2) |
C7—N7—C9 | 113.1 (2) | N6—C8—N5 | 128.6 (3) |
C9—N8—C10 | 122.3 (2) | N6—C8—Cl4 | 115.4 (2) |
C9—N8—H8 | 117 (2) | N5—C8—Cl4 | 116.0 (2) |
C10—N8—H8 | 120 (2) | N8—C9—N6 | 117.2 (2) |
N3—C1—N1 | 129.1 (3) | N8—C9—N7 | 118.7 (2) |
N3—C1—Cl1 | 116.2 (2) | N6—C9—N7 | 124.1 (3) |
N1—C1—Cl1 | 114.7 (2) | N8—C10—C11 | 112.5 (2) |
N2—C2—N1 | 128.4 (3) | N8—C10—H10A | 109.1 |
N2—C2—Cl2 | 115.8 (2) | C11—C10—H10A | 109.1 |
N1—C2—Cl2 | 115.8 (2) | N8—C10—H10B | 109.1 |
N4—C3—N3 | 118.5 (3) | C11—C10—H10B | 109.1 |
N4—C3—N2 | 117.2 (3) | H10A—C10—H10B | 107.8 |
N3—C3—N2 | 124.3 (3) | O4—C11—O3 | 124.6 (3) |
N4—C4—C5 | 112.4 (2) | O4—C11—C10 | 125.6 (3) |
N4—C4—H4A | 109.1 | O3—C11—C10 | 109.8 (2) |
C5—C4—H4A | 109.1 | O3—C12—H12A | 109.5 |
N4—C4—H4B | 109.1 | O3—C12—H12B | 109.5 |
C5—C4—H4B | 109.1 | H12A—C12—H12B | 109.5 |
H4A—C4—H4B | 107.9 | O3—C12—H12C | 109.5 |
O2—C5—O1 | 124.8 (3) | H12A—C12—H12C | 109.5 |
O2—C5—C4 | 125.2 (3) | H12B—C12—H12C | 109.5 |
O1—C5—C4 | 109.9 (2) | C5—O1—C6 | 115.8 (2) |
O1—C6—H6A | 109.5 | C11—O3—C12 | 114.9 (2) |
C3—N3—C1—N1 | 0.7 (4) | C8—N5—C7—N7 | −1.6 (4) |
C3—N3—C1—Cl1 | −179.70 (19) | C8—N5—C7—Cl3 | 179.3 (2) |
C2—N1—C1—N3 | 0.7 (4) | C9—N6—C8—N5 | 3.2 (4) |
C2—N1—C1—Cl1 | −178.9 (2) | C9—N6—C8—Cl4 | −176.48 (19) |
C3—N2—C2—N1 | −2.7 (4) | C7—N5—C8—N6 | −0.1 (4) |
C3—N2—C2—Cl2 | 176.07 (19) | C7—N5—C8—Cl4 | 179.6 (2) |
C1—N1—C2—N2 | 0.5 (4) | C10—N8—C9—N6 | −175.6 (2) |
C1—N1—C2—Cl2 | −178.3 (2) | C10—N8—C9—N7 | 3.4 (4) |
C4—N4—C3—N3 | −3.4 (4) | C8—N6—C9—N8 | 173.8 (2) |
C4—N4—C3—N2 | 175.9 (2) | C8—N6—C9—N7 | −5.1 (4) |
C1—N3—C3—N4 | 175.9 (2) | C7—N7—C9—N8 | −175.2 (2) |
C1—N3—C3—N2 | −3.4 (4) | C7—N7—C9—N6 | 3.7 (4) |
C2—N2—C3—N4 | −175.1 (2) | C9—N8—C10—C11 | −84.5 (3) |
C2—N2—C3—N3 | 4.3 (4) | N8—C10—C11—O4 | −18.0 (4) |
C3—N4—C4—C5 | 86.3 (3) | N8—C10—C11—O3 | 163.6 (2) |
N4—C4—C5—O2 | 21.8 (4) | O2—C5—O1—C6 | 4.0 (4) |
N4—C4—C5—O1 | −159.3 (2) | C4—C5—O1—C6 | −174.9 (3) |
C9—N7—C7—N5 | −0.1 (4) | O4—C11—O3—C12 | −4.2 (4) |
C9—N7—C7—Cl3 | 178.98 (19) | C10—C11—O3—C12 | 174.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2i | 0.95 (1) | 2.09 (1) | 3.028 (3) | 171 (3) |
N8—H8···N6ii | 0.94 (1) | 2.08 (1) | 3.022 (3) | 173 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C6H6Cl2N4O2 |
Mr | 237.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 7.3543 (4), 9.7523 (5), 13.4133 (7) |
α, β, γ (°) | 97.714 (3), 92.714 (3), 90.225 (3) |
V (Å3) | 952.19 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.18 × 0.16 × 0.04 |
Data collection | |
Diffractometer | Bruker X8 Kappa CCD APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.890, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23605, 5043, 3753 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.684 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.165, 1.04 |
No. of reflections | 5043 |
No. of parameters | 261 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.78, −0.42 |
Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2i | 0.945 (10) | 2.092 (12) | 3.028 (3) | 171 (3) |
N8—H8···N6ii | 0.943 (10) | 2.083 (11) | 3.022 (3) | 173 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+1, −z+2. |
Acknowledgements
We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support and also for specific funding toward the purchase of the single-crystal diffractometer. SV wishes to acknowledge the Associated Laboratory CICECO for a research grant.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blotny, G. (2006). Tetrahedron, 62, 9507–9522. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Giacomelli, G., Porcheddu, A. & de Luca, L. (2004). Curr. Org. Chem. 8, 1497–1519. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383. Google Scholar
Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244. Web of Science CSD CrossRef CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097–1110. Web of Science CrossRef CAS Google Scholar
Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167. Web of Science CSD CrossRef PubMed CAS Google Scholar
Vilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., de Zea Bermudez, V., Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, o1970. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, S. N., Bai, J., Li, Y. Z., Pan, Y., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1084–1095. Web of Science CSD CrossRef CAS Google Scholar
Wang, S. N., Bai, J., Xing, H., Li, Y., Song, Y., Pan, Y., Scheer, M. & You, Z. (2007). Cryst. Growth. Des. 7, 747–754. Web of Science CSD CrossRef CAS Google Scholar
Wang, S. N., Xing, H., Li, Y. Z., Bai, J., Scheer, M., Pan, Y. & You, X. Z. (2007). Chem. Commun. pp. 2293–2295. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Worldwide research on 1,3,5-triazine derivatives has increased quite considerably in recent years driven by the versatility of this molecule which allows the nucleophilic substitution of the chloride atoms by various functional groups such as carboxylic acids, amines, amides, chlorides, nitriles, among others (Blotny, 2006; Giacomelli et al., 2004). These reactions allow the engineering of novel derivative compounds which exhibit markedly different properties from their precursors. Hence, the isolated products can be ultimately employed in various areas such as in pharmaceutical sciences, in the textile industry, and in analytical chemistry. Following our interest in crystal engineering (Vilela et al., 2009; Shi et al., 2008; Paz & Klinowski, 2003, 2007; Paz et al., 2002, 2005), we started using 2,4,6-trichloro-1,3,5-triazine as a molecular canvas for the preparation of novel multipodal organic ligands. A search in the literature and in the Cambridge Structural Database (CSD, Version of November 2008 with three updates; Allen, 2002) shows that the group of Bai (Wang, Xing et al., 2007; Wang, Bai, Xing et al., 2007; Wang, Bai, Li et al., 2007) reported the only known examples of transition metal coordination polymers containing N,N',N''-1,3,5-triazine-2,4,6-triyltrisglycine. We intend to further develop their concept by preparing mono-, di- and tri-substitued derivatives with several amino acid pendant groups. By using glycine methyl ester hydrochloride (Vilela et al., 2009) we isolated the pure title compound (i.e., the monosubstituted derivative, I).
At 150 K compound (I) contains two identical molecular units in the asymmetric unit (Fig. 1). The bond lengths and angles observed for the two molecules are statistically identical. The pendant methoxycarbonyl group exhibits considerable conformational flexibility due to the possibility of rotation around the —CH2— moiety. Indeed, while the rings and the —NH— moiety of the two crystallographically independent molecular units are almost co-planar, the pendant group is rotated by ca 180° (Fig. 2), with this feature arising with the objective to minimize steric repulsion in the crystal structure (see below).
The co-planarity of the —NH— bond with the ring of each molecular unit seems to be promoted by the existence of two strong (dD···A being ca 3.02 Å) and highly directional [<(DHA) angles above 170° - see Table 1] N—H···N hydrogen bonding interactions that form a R22(8) graph set motif (Bernstein et al., 1995). This arrangement leads to the existence of supramolecular dimers (one for each molecular unit) in the crystal structure, with Fig. 3 depicting one of these. The close packing in the solid-state is based on the spatial interdigitation of the two dimers to effectively occupy the available space, hence the two conformations for the pendant groups which ultimately help promoting a more effective packing (Fig. 4).