organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­chloro­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 20 July 2009; accepted 21 July 2009; online 25 July 2009)

In the crystal structure of the title compound, C14H13Cl2NO2S, the configurations of the N—C bond with respect to the S=O bonds are trans and gauche. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −69.7 (2)°. The conformation of the N—H bond is syn to the 3-chloro group in the substituted aniline ring. The two benzene rings are tilted with respect to each other by 82.4 (1)°. The presence of N—H⋯O(S) hydrogen bonding packs the mol­ecules into supra­molecular chains along the b axis.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.]; 2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o1940.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO2S

  • Mr = 330.21

  • Monoclinic, P 21 /c

  • a = 8.8046 (7) Å

  • b = 9.2688 (8) Å

  • c = 18.947 (1) Å

  • β = 99.644 (8)°

  • V = 1524.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 299 K

  • 0.44 × 0.40 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.790, Tmax = 0.815

  • 10274 measured reflections

  • 3064 independent reflections

  • 2618 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.05

  • 3064 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.833 (16) 2.176 (17) 2.984 (2) 164 (2)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008, 2009a, b), in the present work, the structure of 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide (I) has been determined. The conformations of the N—C bond in the C—SO2—NH—C segment are trans and gauche to the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -69.7 (2)°, compared to the values of -48.2 (2)° in 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide (II) (Gowda et al., 2009b), and 46.1 (3)° and 47.7 (3)° in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (III) (Gowda et al., 2009a). The conformation of the N—H bond is syn to the meta-chloro group in the substituted aniline ring. The two benzene rings in (I) are tilted by 82.4 (1)° to each other compared to the values of 68.9 (1)° in II, and 67.5 (1)° and 72.9 (1)° in III. The other bond parameters in (I) are similar to those observed in II, III, and other aryl sulfonamides (Gowda et al., 2008; Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) is via N—H···O(S) hydrogen bonding (Table 1) leading to a supramolecular chain.

Related literature top

For our study of effect of substituents on the structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2008; 2009a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

A solution of 1,3-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 3,4-dichloroaniline in a stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice-cold water (100 ml). The resultant solid, 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide, was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The prisms used in the X-ray analysis were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in difference map and was refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.96 Å], and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level
N-(3,4-Dichlorophenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C14H13Cl2NO2SF(000) = 680
Mr = 330.21Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4751 reflections
a = 8.8046 (7) Åθ = 3.0–27.6°
b = 9.2688 (8) ŵ = 0.56 mm1
c = 18.947 (1) ÅT = 299 K
β = 99.644 (8)°Prism, colourless
V = 1524.4 (2) Å30.44 × 0.40 × 0.38 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3064 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 910
Tmin = 0.790, Tmax = 0.815k = 1111
10274 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.7353P]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max = 0.007
186 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
C14H13Cl2NO2SV = 1524.4 (2) Å3
Mr = 330.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8046 (7) ŵ = 0.56 mm1
b = 9.2688 (8) ÅT = 299 K
c = 18.947 (1) Å0.44 × 0.40 × 0.38 mm
β = 99.644 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3064 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2618 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.815Rint = 0.013
10274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3064 reflectionsΔρmin = 0.39 e Å3
186 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7751 (2)0.1105 (2)0.26937 (9)0.0342 (4)
C20.7595 (2)0.0272 (2)0.32852 (10)0.0405 (4)
H20.84070.03080.34970.049*
C30.6243 (2)0.0301 (2)0.35611 (10)0.0425 (5)
C40.5020 (2)0.1148 (2)0.32506 (10)0.0425 (5)
C50.5178 (2)0.1972 (3)0.26616 (10)0.0472 (5)
H50.43600.25440.24490.057*
C60.6528 (2)0.1963 (2)0.23813 (10)0.0441 (5)
H60.66180.25290.19850.053*
C70.8600 (2)0.1276 (2)0.09846 (9)0.0334 (4)
C80.8733 (2)0.0147 (2)0.07500 (10)0.0363 (4)
C90.7833 (2)0.0518 (2)0.01025 (10)0.0410 (4)
H90.79070.14530.00670.049*
C100.6828 (2)0.0432 (2)0.03070 (10)0.0403 (4)
C110.6726 (2)0.1824 (2)0.00542 (10)0.0434 (5)
H110.60570.24790.03170.052*
C120.7608 (2)0.2250 (2)0.05836 (10)0.0406 (4)
H120.75370.31910.07460.049*
C130.9776 (3)0.1262 (2)0.11551 (13)0.0515 (5)
H13A0.93960.15190.15840.062*
H13B1.07970.08740.12770.062*
H13C0.98000.21030.08620.062*
C140.5881 (3)0.0036 (3)0.10031 (11)0.0529 (5)
H14A0.58550.10710.10260.064*
H14B0.63310.03360.13940.064*
H14C0.48510.03280.10350.064*
N10.91696 (19)0.1015 (2)0.24438 (8)0.0407 (4)
H1N0.976 (2)0.035 (2)0.2605 (12)0.049*
O10.92732 (17)0.33947 (15)0.18616 (7)0.0471 (4)
O21.12802 (16)0.15602 (19)0.18124 (8)0.0530 (4)
Cl10.61158 (9)0.07351 (7)0.43079 (4)0.0753 (2)
Cl20.33330 (7)0.12189 (9)0.36022 (3)0.0680 (2)
S10.96962 (5)0.19135 (5)0.17881 (2)0.03717 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (10)0.0348 (9)0.0301 (8)0.0019 (7)0.0057 (7)0.0059 (7)
C20.0482 (11)0.0329 (10)0.0418 (10)0.0070 (8)0.0121 (8)0.0008 (8)
C30.0561 (12)0.0323 (10)0.0428 (10)0.0013 (9)0.0190 (9)0.0015 (8)
C40.0378 (10)0.0490 (12)0.0424 (10)0.0053 (9)0.0116 (8)0.0117 (9)
C50.0372 (11)0.0635 (14)0.0389 (10)0.0079 (9)0.0010 (8)0.0018 (9)
C60.0414 (11)0.0577 (13)0.0325 (9)0.0056 (9)0.0045 (8)0.0039 (9)
C70.0347 (9)0.0356 (10)0.0313 (8)0.0044 (7)0.0093 (7)0.0007 (7)
C80.0373 (9)0.0337 (9)0.0398 (9)0.0012 (8)0.0121 (7)0.0019 (7)
C90.0476 (11)0.0346 (10)0.0421 (10)0.0028 (8)0.0112 (8)0.0050 (8)
C100.0438 (11)0.0453 (11)0.0330 (9)0.0057 (9)0.0100 (8)0.0020 (8)
C110.0520 (12)0.0418 (11)0.0353 (9)0.0052 (9)0.0037 (8)0.0059 (8)
C120.0517 (11)0.0336 (10)0.0370 (9)0.0028 (8)0.0087 (8)0.0008 (8)
C130.0532 (13)0.0401 (11)0.0588 (13)0.0051 (10)0.0027 (10)0.0035 (10)
C140.0577 (13)0.0602 (14)0.0391 (11)0.0061 (11)0.0032 (9)0.0050 (10)
N10.0381 (9)0.0497 (10)0.0350 (8)0.0079 (7)0.0080 (7)0.0061 (7)
O10.0542 (9)0.0374 (8)0.0481 (8)0.0112 (6)0.0038 (6)0.0065 (6)
O20.0326 (7)0.0724 (11)0.0544 (9)0.0062 (7)0.0087 (6)0.0024 (7)
Cl10.0973 (5)0.0599 (4)0.0818 (5)0.0169 (3)0.0531 (4)0.0292 (3)
Cl20.0443 (3)0.0965 (5)0.0679 (4)0.0024 (3)0.0234 (3)0.0037 (3)
S10.0339 (2)0.0413 (3)0.0365 (2)0.00631 (19)0.00630 (18)0.00184 (19)
Geometric parameters (Å, º) top
C1—C21.387 (3)C9—C101.389 (3)
C1—C61.389 (3)C9—H90.9300
C1—N11.410 (2)C10—C111.385 (3)
C2—C31.379 (3)C10—C141.501 (3)
C2—H20.9300C11—C121.380 (3)
C3—C41.382 (3)C11—H110.9300
C3—Cl11.729 (2)C12—H120.9300
C4—C51.378 (3)C13—H13A0.9600
C4—Cl21.7283 (19)C13—H13B0.9600
C5—C61.381 (3)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C121.391 (3)C14—H14C0.9600
C7—C81.403 (3)N1—S11.6264 (17)
C7—S11.7623 (18)N1—H1N0.833 (16)
C8—C91.387 (3)O1—S11.4353 (15)
C8—C131.505 (3)O2—S11.4258 (15)
C2—C1—C6119.25 (18)C9—C10—C14121.03 (19)
C2—C1—N1116.83 (17)C12—C11—C10120.66 (18)
C6—C1—N1123.92 (17)C12—C11—H11119.7
C3—C2—C1120.29 (18)C10—C11—H11119.7
C3—C2—H2119.9C11—C12—C7120.17 (18)
C1—C2—H2119.9C11—C12—H12119.9
C2—C3—C4120.68 (18)C7—C12—H12119.9
C2—C3—Cl1118.55 (16)C8—C13—H13A109.5
C4—C3—Cl1120.77 (15)C8—C13—H13B109.5
C5—C4—C3118.87 (18)H13A—C13—H13B109.5
C5—C4—Cl2120.05 (16)C8—C13—H13C109.5
C3—C4—Cl2121.06 (16)H13A—C13—H13C109.5
C4—C5—C6121.20 (19)H13B—C13—H13C109.5
C4—C5—H5119.4C10—C14—H14A109.5
C6—C5—H5119.4C10—C14—H14B109.5
C5—C6—C1119.71 (18)H14A—C14—H14B109.5
C5—C6—H6120.1C10—C14—H14C109.5
C1—C6—H6120.1H14A—C14—H14C109.5
C12—C7—C8121.01 (17)H14B—C14—H14C109.5
C12—C7—S1117.22 (14)C1—N1—S1127.44 (14)
C8—C7—S1121.76 (14)C1—N1—H1N117.1 (16)
C9—C8—C7116.59 (17)S1—N1—H1N114.8 (16)
C9—C8—C13119.36 (18)O2—S1—O1119.00 (9)
C7—C8—C13124.05 (18)O2—S1—N1105.08 (9)
C8—C9—C10123.55 (18)O1—S1—N1107.69 (9)
C8—C9—H9118.2O2—S1—C7109.99 (9)
C10—C9—H9118.2O1—S1—C7106.92 (9)
C11—C10—C9118.01 (18)N1—S1—C7107.66 (9)
C11—C10—C14120.96 (19)
C6—C1—C2—C30.2 (3)C8—C9—C10—C110.2 (3)
N1—C1—C2—C3179.96 (17)C8—C9—C10—C14179.83 (18)
C1—C2—C3—C40.5 (3)C9—C10—C11—C120.4 (3)
C1—C2—C3—Cl1179.00 (14)C14—C10—C11—C12179.54 (19)
C2—C3—C4—C50.3 (3)C10—C11—C12—C70.7 (3)
Cl1—C3—C4—C5179.16 (16)C8—C7—C12—C110.3 (3)
C2—C3—C4—Cl2178.74 (15)S1—C7—C12—C11179.45 (15)
Cl1—C3—C4—Cl20.7 (2)C2—C1—N1—S1177.17 (15)
C3—C4—C5—C60.1 (3)C6—C1—N1—S13.1 (3)
Cl2—C4—C5—C6178.33 (16)C1—N1—S1—O2173.04 (16)
C4—C5—C6—C10.4 (3)C1—N1—S1—O145.23 (19)
C2—C1—C6—C50.2 (3)C1—N1—S1—C769.74 (18)
N1—C1—C6—C5179.52 (18)C12—C7—S1—O2129.57 (15)
C12—C7—C8—C90.3 (3)C8—C7—S1—O249.56 (17)
S1—C7—C8—C9178.82 (13)C12—C7—S1—O10.97 (17)
C12—C7—C8—C13179.77 (19)C8—C7—S1—O1179.90 (14)
S1—C7—C8—C131.1 (3)C12—C7—S1—N1116.45 (15)
C7—C8—C9—C100.6 (3)C8—C7—S1—N164.42 (16)
C13—C8—C9—C10179.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.18 (2)2.984 (2)164 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO2S
Mr330.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.8046 (7), 9.2688 (8), 18.947 (1)
β (°) 99.644 (8)
V3)1524.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.44 × 0.40 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.790, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
10274, 3064, 2618
Rint0.013
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.05
No. of reflections3064
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.833 (16)2.176 (17)2.984 (2)164 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o1940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds