Experimental
Crystal data
C14H19NO3 Mr = 249.30 Tetragonal, I 4/m a = 19.938 (2) Å c = 7.0367 (9) Å V = 2797.3 (5) Å3 Z = 8 Cu Kα radiation μ = 0.67 mm−1 T = 299 K 0.40 × 0.28 × 0.25 mm
|
Data collection
Enraf–Nonius CAD-4 diffractometer Absorption correction: none 4040 measured reflections 1367 independent reflections 1201 reflections with I > 2σ(I) Rint = 0.044 3 standard reflections frequency: 120 min intensity decay: 1.0%
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1N⋯O2i | 0.85 (3) | 2.15 (3) | 2.995 (3) | 176 (3) | Symmetry code: (i) -x+1, -y, -z. | |
Data collection: CAD-4-PC (Enraf–Nonius, 1996
); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987
); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: PLATON (Spek, 2009
); software used to prepare material for publication: SHELXL97.
Supporting information
A solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with a solution of 3,5-dimethylaniline (0.025 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dimethylaniline. The resultant solid N-(3,5-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. N-(3,5-Dimethylphenyl)succinamic acid was recrystallized into ethyl N-(3,5-dimethylphenyl)succinamate (I) from hot ethanol. The rod like colourless single crystals of (I) were grown in hot ethanolic solution by slow evaporation.
The H atoms of the NH group, of C11 and C12 were located in a difference map and their position refined [N—H = 0.85 (3) Å, C—H = 0.98 (4)–1.03 (3) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Ethyl 3-[(3,5-dimethylphenyl)aminocarbonyl]propanoate
top Crystal data top C14H19NO3 | Dx = 1.184 Mg m−3 |
Mr = 249.30 | Cu Kα radiation, λ = 1.54180 Å |
Tetragonal, I4/m | Cell parameters from 25 reflections |
Hall symbol: -I 4 | θ = 4.4–20.5° |
a = 19.938 (2) Å | µ = 0.67 mm−1 |
c = 7.0367 (9) Å | T = 299 K |
V = 2797.3 (5) Å3 | Rod, colourless |
Z = 8 | 0.40 × 0.28 × 0.25 mm |
F(000) = 1072 | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.044 |
Radiation source: fine-focus sealed tube | θmax = 67.0°, θmin = 3.1° |
Graphite monochromator | h = −16→23 |
ω/2θ scans | k = −16→23 |
4040 measured reflections | l = −3→8 |
1367 independent reflections | 3 standard reflections every 120 min |
1201 reflections with I > 2σ(I) | intensity decay: 1.0% |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.169 | w = 1/[σ2(Fo2) + (0.1022P)2 + 1.0554P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
1367 reflections | Δρmax = 0.32 e Å−3 |
120 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0012 (3) |
Crystal data top C14H19NO3 | Z = 8 |
Mr = 249.30 | Cu Kα radiation |
Tetragonal, I4/m | µ = 0.67 mm−1 |
a = 19.938 (2) Å | T = 299 K |
c = 7.0367 (9) Å | 0.40 × 0.28 × 0.25 mm |
V = 2797.3 (5) Å3 | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.044 |
4040 measured reflections | 3 standard reflections every 120 min |
1367 independent reflections | intensity decay: 1.0% |
1201 reflections with I > 2σ(I) | |
Refinement top R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.169 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.32 e Å−3 |
1367 reflections | Δρmin = −0.32 e Å−3 |
120 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.60839 (11) | 0.20945 (11) | 0.0000 | 0.0465 (6) | |
C2 | 0.67561 (12) | 0.19085 (12) | 0.0000 | 0.0513 (6) | |
H2 | 0.6869 | 0.1456 | 0.0000 | 0.062* | |
C3 | 0.72584 (12) | 0.23863 (13) | 0.0000 | 0.0532 (6) | |
C4 | 0.70778 (13) | 0.30566 (14) | 0.0000 | 0.0579 (7) | |
H4 | 0.7411 | 0.3383 | 0.0000 | 0.070* | |
C5 | 0.64153 (13) | 0.32504 (12) | 0.0000 | 0.0562 (7) | |
C6 | 0.59123 (12) | 0.27666 (12) | 0.0000 | 0.0522 (6) | |
H6 | 0.5464 | 0.2894 | 0.0000 | 0.063* | |
C7 | 0.49362 (12) | 0.15957 (11) | 0.0000 | 0.0506 (6) | |
C8 | 0.45900 (11) | 0.09187 (12) | 0.0000 | 0.0543 (7) | |
H8A | 0.4728 | 0.0668 | −0.1115 | 0.065* | 0.50 |
H8B | 0.4728 | 0.0668 | 0.1115 | 0.065* | 0.50 |
C9 | 0.38416 (12) | 0.09873 (11) | 0.0000 | 0.0515 (6) | |
H9A | 0.3708 | 0.1242 | 0.1113 | 0.062* | 0.50 |
H9B | 0.3708 | 0.1242 | −0.1113 | 0.062* | 0.50 |
C10 | 0.34741 (11) | 0.03335 (12) | 0.0000 | 0.0491 (6) | |
C11 | 0.23912 (14) | −0.01607 (15) | 0.0000 | 0.0666 (8) | |
H11 | 0.2470 (10) | −0.0432 (11) | 0.118 (3) | 0.080* | |
C12 | 0.16867 (16) | 0.0096 (2) | 0.0000 | 0.0849 (10) | |
H12A | 0.139 (2) | −0.029 (2) | 0.0000 | 0.102* | |
H12B | 0.1605 (12) | 0.0349 (13) | 0.126 (4) | 0.102* | |
C13 | 0.79850 (13) | 0.21804 (16) | 0.0000 | 0.0652 (7) | |
H13A | 0.8077 | 0.1916 | −0.1110 | 0.078* | 0.50 |
H13B | 0.8078 | 0.1920 | 0.1118 | 0.078* | 0.50 |
H13C | 0.8263 | 0.2573 | −0.0007 | 0.078* | |
C14 | 0.62237 (18) | 0.39835 (14) | 0.0000 | 0.0829 (10) | |
H14A | 0.6403 | 0.4196 | −0.1113 | 0.099* | 0.50 |
H14B | 0.6402 | 0.4196 | 0.1115 | 0.099* | 0.50 |
H14C | 0.5744 | 0.4024 | −0.0003 | 0.099* | |
N1 | 0.56095 (10) | 0.15635 (10) | 0.0000 | 0.0519 (6) | |
H1N | 0.5776 (15) | 0.1170 (16) | 0.0000 | 0.062* | |
O1 | 0.46202 (9) | 0.21173 (9) | 0.0000 | 0.0821 (8) | |
O2 | 0.37347 (9) | −0.02118 (8) | 0.0000 | 0.0701 (7) | |
O3 | 0.28217 (8) | 0.04272 (8) | 0.0000 | 0.0614 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0444 (12) | 0.0435 (12) | 0.0516 (12) | −0.0050 (9) | 0.000 | 0.000 |
C2 | 0.0475 (13) | 0.0481 (13) | 0.0583 (13) | −0.0009 (9) | 0.000 | 0.000 |
C3 | 0.0465 (12) | 0.0632 (15) | 0.0498 (12) | −0.0103 (10) | 0.000 | 0.000 |
C4 | 0.0567 (15) | 0.0593 (15) | 0.0578 (14) | −0.0177 (11) | 0.000 | 0.000 |
C5 | 0.0621 (15) | 0.0464 (13) | 0.0601 (14) | −0.0105 (10) | 0.000 | 0.000 |
C6 | 0.0494 (13) | 0.0426 (12) | 0.0645 (14) | −0.0036 (9) | 0.000 | 0.000 |
C7 | 0.0433 (12) | 0.0411 (12) | 0.0673 (15) | 0.0014 (9) | 0.000 | 0.000 |
C8 | 0.0432 (13) | 0.0422 (13) | 0.0775 (16) | −0.0015 (9) | 0.000 | 0.000 |
C9 | 0.0447 (13) | 0.0425 (12) | 0.0673 (15) | 0.0006 (9) | 0.000 | 0.000 |
C10 | 0.0430 (12) | 0.0449 (12) | 0.0594 (14) | 0.0013 (9) | 0.000 | 0.000 |
C11 | 0.0497 (14) | 0.0559 (15) | 0.094 (2) | −0.0124 (11) | 0.000 | 0.000 |
C12 | 0.0490 (16) | 0.094 (3) | 0.112 (3) | −0.0109 (15) | 0.000 | 0.000 |
C13 | 0.0460 (14) | 0.0815 (19) | 0.0681 (16) | −0.0094 (12) | 0.000 | 0.000 |
C14 | 0.083 (2) | 0.0443 (15) | 0.121 (3) | −0.0118 (13) | 0.000 | 0.000 |
N1 | 0.0424 (11) | 0.0367 (10) | 0.0768 (14) | −0.0013 (8) | 0.000 | 0.000 |
O1 | 0.0481 (10) | 0.0416 (10) | 0.157 (2) | 0.0021 (7) | 0.000 | 0.000 |
O2 | 0.0514 (10) | 0.0397 (10) | 0.1193 (18) | 0.0015 (7) | 0.000 | 0.000 |
O3 | 0.0420 (9) | 0.0458 (9) | 0.0965 (14) | −0.0017 (7) | 0.000 | 0.000 |
Geometric parameters (Å, º) top C1—C6 | 1.383 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.391 (3) | C9—H9B | 0.9700 |
C1—N1 | 1.420 (3) | C10—O2 | 1.205 (3) |
C2—C3 | 1.382 (3) | C10—O3 | 1.314 (3) |
C2—H2 | 0.9300 | C11—H11i | 1.00 (2) |
C3—C4 | 1.384 (4) | C11—O3 | 1.453 (3) |
C3—C13 | 1.506 (4) | C11—C12 | 1.495 (4) |
C4—C5 | 1.376 (4) | C11—H11 | 1.00 (2) |
C4—H4 | 0.9300 | C12—H12Bi | 1.03 (3) |
C5—C6 | 1.392 (3) | C12—H12A | 0.98 (4) |
C5—C14 | 1.511 (4) | C12—H12B | 1.03 (3) |
C6—H6 | 0.9300 | C13—H13A | 0.9600 |
C7—O1 | 1.216 (3) | C13—H13B | 0.9600 |
C7—N1 | 1.344 (3) | C13—H13C | 0.9600 |
C7—C8 | 1.516 (3) | C14—H14A | 0.9600 |
C8—C9 | 1.498 (3) | C14—H14B | 0.9600 |
C8—H8A | 0.9700 | C14—H14C | 0.9600 |
C8—H8B | 0.9700 | N1—H1N | 0.85 (3) |
C9—C10 | 1.495 (3) | | |
| | | |
C6—C1—C2 | 119.8 (2) | H9A—C9—H9B | 107.6 |
C6—C1—N1 | 123.9 (2) | O2—C10—O3 | 123.7 (2) |
C2—C1—N1 | 116.3 (2) | O2—C10—C9 | 125.1 (2) |
C3—C2—C1 | 121.0 (2) | O3—C10—C9 | 111.17 (19) |
C3—C2—H2 | 119.5 | H11i—C11—O3 | 110.1 (12) |
C1—C2—H2 | 119.5 | H11i—C11—C12 | 109.4 (12) |
C2—C3—C4 | 118.5 (2) | O3—C11—C12 | 106.2 (2) |
C2—C3—C13 | 120.6 (3) | H11i—C11—H11 | 112 (3) |
C4—C3—C13 | 120.9 (2) | O3—C11—H11 | 110.1 (12) |
C5—C4—C3 | 121.4 (2) | C12—C11—H11 | 109.4 (12) |
C5—C4—H4 | 119.3 | H12Bi—C12—C11 | 108.4 (14) |
C3—C4—H4 | 119.3 | H12Bi—C12—H12A | 106.9 (16) |
C4—C5—C6 | 119.8 (2) | C11—C12—H12A | 107 (2) |
C4—C5—C14 | 121.0 (2) | H12Bi—C12—H12B | 118 (3) |
C6—C5—C14 | 119.2 (3) | C11—C12—H12B | 108.4 (14) |
C1—C6—C5 | 119.6 (2) | H12A—C12—H12B | 106.9 (16) |
C1—C6—H6 | 120.2 | C3—C13—H13A | 109.5 |
C5—C6—H6 | 120.2 | C3—C13—H13B | 109.5 |
O1—C7—N1 | 123.9 (2) | H13A—C13—H13B | 109.5 |
O1—C7—C8 | 121.7 (2) | C3—C13—H13C | 109.5 |
N1—C7—C8 | 114.3 (2) | H13A—C13—H13C | 109.5 |
C9—C8—C7 | 111.8 (2) | H13B—C13—H13C | 109.5 |
C9—C8—H8A | 109.2 | C5—C14—H14A | 109.5 |
C7—C8—H8A | 109.2 | C5—C14—H14B | 109.5 |
C9—C8—H8B | 109.2 | H14A—C14—H14B | 109.5 |
C7—C8—H8B | 109.2 | C5—C14—H14C | 109.5 |
H8A—C8—H8B | 107.9 | H14A—C14—H14C | 109.5 |
C10—C9—C8 | 114.1 (2) | H14B—C14—H14C | 109.5 |
C10—C9—H9A | 108.7 | C7—N1—C1 | 129.0 (2) |
C8—C9—H9A | 108.7 | C7—N1—H1N | 116 (2) |
C10—C9—H9B | 108.7 | C1—N1—H1N | 115 (2) |
C8—C9—H9B | 108.7 | C10—O3—C11 | 118.0 (2) |
| | | |
C6—C1—C2—C3 | 0.0 | C7—C8—C9—C10 | 180.0 |
N1—C1—C2—C3 | 180.0 | C8—C9—C10—O2 | 0.0 |
C1—C2—C3—C4 | 0.0 | C8—C9—C10—O3 | 180.0 |
C1—C2—C3—C13 | 180.0 | H11i—C11—C12—H12Bi | −54 (2) |
C2—C3—C4—C5 | 0.0 | O3—C11—C12—H12Bi | 64.8 (16) |
C13—C3—C4—C5 | 180.0 | O1—C7—N1—C1 | 0.0 |
C3—C4—C5—C6 | 0.0 | C8—C7—N1—C1 | 180.0 |
C3—C4—C5—C14 | 180.0 | C6—C1—N1—C7 | 0.0 |
C2—C1—C6—C5 | 0.0 | C2—C1—N1—C7 | 180.0 |
N1—C1—C6—C5 | 180.0 | O2—C10—O3—C11 | 0.0 |
C4—C5—C6—C1 | 0.0 | C9—C10—O3—C11 | 180.0 |
C14—C5—C6—C1 | 180.0 | H11i—C11—O3—C10 | −61.7 (13) |
O1—C7—C8—C9 | 0.0 | C12—C11—O3—C10 | 180.0 |
N1—C7—C8—C9 | 180.0 | | |
Symmetry code: (i) x, y, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2ii | 0.85 (3) | 2.15 (3) | 2.995 (3) | 176 (3) |
Symmetry code: (ii) −x+1, −y, −z. |
Experimental details
Crystal data |
Chemical formula | C14H19NO3 |
Mr | 249.30 |
Crystal system, space group | Tetragonal, I4/m |
Temperature (K) | 299 |
a, c (Å) | 19.938 (2), 7.0367 (9) |
V (Å3) | 2797.3 (5) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.40 × 0.28 × 0.25 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4040, 1367, 1201 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.597 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.169, 1.11 |
No. of reflections | 1367 |
No. of parameters | 120 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.32 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.85 (3) | 2.15 (3) | 2.995 (3) | 176 (3) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a resumption of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
As a part of studying the effect of ring and side chain substitutions on the structures of the substituted amides (Gowda et al., 2009a,b,c), the crystal structure of ethyl N-(3,5-dimethylphenyl)succinamate (I) has been determined. The non-hydrogen atoms lie on a crystallographic mirror plane. The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other (Fig. 1). Likewise, the amide-O atom and ester carbonyl-O atoms are trans to each other. The C=O and O—CH2 bonds of the ester group are in syn positions to each other, similar to that observed between the C=O and O—H bonds in the crystal structures of N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009a).
The presence of N—H···O hydrogen bonds connect the molecules into centrosymmetric dimers (Table 1).