organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[(3,5-di­methyl­phen­yl)amino­carbon­yl]propanoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 July 2009; accepted 24 July 2009; online 29 July 2009)

The non-H atoms in the title compound, C14H19NO3, lie on a mirror plane. The amide O and ester carbonyl O atoms are trans to each other. Furthermore, the C=O and O—CH2 bonds of the ester group are syn with respect to each other. In the crystal, mol­ecules are packed into centrosymmetric dimers through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.],c[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19NO3

  • Mr = 249.30

  • Tetragonal, I 4/m

  • a = 19.938 (2) Å

  • c = 7.0367 (9) Å

  • V = 2797.3 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 299 K

  • 0.40 × 0.28 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4040 measured reflections

  • 1367 independent reflections

  • 1201 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.169

  • S = 1.11

  • 1367 reflections

  • 120 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (3) 2.15 (3) 2.995 (3) 176 (3)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the structures of the substituted amides (Gowda et al., 2009a,b,c), the crystal structure of ethyl N-(3,5-dimethylphenyl)succinamate (I) has been determined. The non-hydrogen atoms lie on a crystallographic mirror plane. The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other (Fig. 1). Likewise, the amide-O atom and ester carbonyl-O atoms are trans to each other. The C=O and O—CH2 bonds of the ester group are in syn positions to each other, similar to that observed between the C=O and O—H bonds in the crystal structures of N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009a).

The presence of N—H···O hydrogen bonds connect the molecules into centrosymmetric dimers (Table 1).

Related literature top

For related structures, see: Gowda et al. (2009a,b,c).

Experimental top

A solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with a solution of 3,5-dimethylaniline (0.025 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dimethylaniline. The resultant solid N-(3,5-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. N-(3,5-Dimethylphenyl)succinamic acid was recrystallized into ethyl N-(3,5-dimethylphenyl)succinamate (I) from hot ethanol. The rod like colourless single crystals of (I) were grown in hot ethanolic solution by slow evaporation.

Refinement top

The H atoms of the NH group, of C11 and C12 were located in a difference map and their position refined [N—H = 0.85 (3) Å, C—H = 0.98 (4)–1.03 (3) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling and the displacement ellipsoids are at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds shown as dashed lines.
Ethyl 3-[(3,5-dimethylphenyl)aminocarbonyl]propanoate top
Crystal data top
C14H19NO3Dx = 1.184 Mg m3
Mr = 249.30Cu Kα radiation, λ = 1.54180 Å
Tetragonal, I4/mCell parameters from 25 reflections
Hall symbol: -I 4θ = 4.4–20.5°
a = 19.938 (2) ŵ = 0.67 mm1
c = 7.0367 (9) ÅT = 299 K
V = 2797.3 (5) Å3Rod, colourless
Z = 80.40 × 0.28 × 0.25 mm
F(000) = 1072
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 3.1°
Graphite monochromatorh = 1623
ω/2θ scansk = 1623
4040 measured reflectionsl = 38
1367 independent reflections3 standard reflections every 120 min
1201 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1022P)2 + 1.0554P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1367 reflectionsΔρmax = 0.32 e Å3
120 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (3)
Crystal data top
C14H19NO3Z = 8
Mr = 249.30Cu Kα radiation
Tetragonal, I4/mµ = 0.67 mm1
a = 19.938 (2) ÅT = 299 K
c = 7.0367 (9) Å0.40 × 0.28 × 0.25 mm
V = 2797.3 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.044
4040 measured reflections3 standard reflections every 120 min
1367 independent reflections intensity decay: 1.0%
1201 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.32 e Å3
1367 reflectionsΔρmin = 0.32 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.60839 (11)0.20945 (11)0.00000.0465 (6)
C20.67561 (12)0.19085 (12)0.00000.0513 (6)
H20.68690.14560.00000.062*
C30.72584 (12)0.23863 (13)0.00000.0532 (6)
C40.70778 (13)0.30566 (14)0.00000.0579 (7)
H40.74110.33830.00000.070*
C50.64153 (13)0.32504 (12)0.00000.0562 (7)
C60.59123 (12)0.27666 (12)0.00000.0522 (6)
H60.54640.28940.00000.063*
C70.49362 (12)0.15957 (11)0.00000.0506 (6)
C80.45900 (11)0.09187 (12)0.00000.0543 (7)
H8A0.47280.06680.11150.065*0.50
H8B0.47280.06680.11150.065*0.50
C90.38416 (12)0.09873 (11)0.00000.0515 (6)
H9A0.37080.12420.11130.062*0.50
H9B0.37080.12420.11130.062*0.50
C100.34741 (11)0.03335 (12)0.00000.0491 (6)
C110.23912 (14)0.01607 (15)0.00000.0666 (8)
H110.2470 (10)0.0432 (11)0.118 (3)0.080*
C120.16867 (16)0.0096 (2)0.00000.0849 (10)
H12A0.139 (2)0.029 (2)0.00000.102*
H12B0.1605 (12)0.0349 (13)0.126 (4)0.102*
C130.79850 (13)0.21804 (16)0.00000.0652 (7)
H13A0.80770.19160.11100.078*0.50
H13B0.80780.19200.11180.078*0.50
H13C0.82630.25730.00070.078*
C140.62237 (18)0.39835 (14)0.00000.0829 (10)
H14A0.64030.41960.11130.099*0.50
H14B0.64020.41960.11150.099*0.50
H14C0.57440.40240.00030.099*
N10.56095 (10)0.15635 (10)0.00000.0519 (6)
H1N0.5776 (15)0.1170 (16)0.00000.062*
O10.46202 (9)0.21173 (9)0.00000.0821 (8)
O20.37347 (9)0.02118 (8)0.00000.0701 (7)
O30.28217 (8)0.04272 (8)0.00000.0614 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (12)0.0435 (12)0.0516 (12)0.0050 (9)0.0000.000
C20.0475 (13)0.0481 (13)0.0583 (13)0.0009 (9)0.0000.000
C30.0465 (12)0.0632 (15)0.0498 (12)0.0103 (10)0.0000.000
C40.0567 (15)0.0593 (15)0.0578 (14)0.0177 (11)0.0000.000
C50.0621 (15)0.0464 (13)0.0601 (14)0.0105 (10)0.0000.000
C60.0494 (13)0.0426 (12)0.0645 (14)0.0036 (9)0.0000.000
C70.0433 (12)0.0411 (12)0.0673 (15)0.0014 (9)0.0000.000
C80.0432 (13)0.0422 (13)0.0775 (16)0.0015 (9)0.0000.000
C90.0447 (13)0.0425 (12)0.0673 (15)0.0006 (9)0.0000.000
C100.0430 (12)0.0449 (12)0.0594 (14)0.0013 (9)0.0000.000
C110.0497 (14)0.0559 (15)0.094 (2)0.0124 (11)0.0000.000
C120.0490 (16)0.094 (3)0.112 (3)0.0109 (15)0.0000.000
C130.0460 (14)0.0815 (19)0.0681 (16)0.0094 (12)0.0000.000
C140.083 (2)0.0443 (15)0.121 (3)0.0118 (13)0.0000.000
N10.0424 (11)0.0367 (10)0.0768 (14)0.0013 (8)0.0000.000
O10.0481 (10)0.0416 (10)0.157 (2)0.0021 (7)0.0000.000
O20.0514 (10)0.0397 (10)0.1193 (18)0.0015 (7)0.0000.000
O30.0420 (9)0.0458 (9)0.0965 (14)0.0017 (7)0.0000.000
Geometric parameters (Å, º) top
C1—C61.383 (3)C9—H9A0.9700
C1—C21.391 (3)C9—H9B0.9700
C1—N11.420 (3)C10—O21.205 (3)
C2—C31.382 (3)C10—O31.314 (3)
C2—H20.9300C11—H11i1.00 (2)
C3—C41.384 (4)C11—O31.453 (3)
C3—C131.506 (4)C11—C121.495 (4)
C4—C51.376 (4)C11—H111.00 (2)
C4—H40.9300C12—H12Bi1.03 (3)
C5—C61.392 (3)C12—H12A0.98 (4)
C5—C141.511 (4)C12—H12B1.03 (3)
C6—H60.9300C13—H13A0.9600
C7—O11.216 (3)C13—H13B0.9600
C7—N11.344 (3)C13—H13C0.9600
C7—C81.516 (3)C14—H14A0.9600
C8—C91.498 (3)C14—H14B0.9600
C8—H8A0.9700C14—H14C0.9600
C8—H8B0.9700N1—H1N0.85 (3)
C9—C101.495 (3)
C6—C1—C2119.8 (2)H9A—C9—H9B107.6
C6—C1—N1123.9 (2)O2—C10—O3123.7 (2)
C2—C1—N1116.3 (2)O2—C10—C9125.1 (2)
C3—C2—C1121.0 (2)O3—C10—C9111.17 (19)
C3—C2—H2119.5H11i—C11—O3110.1 (12)
C1—C2—H2119.5H11i—C11—C12109.4 (12)
C2—C3—C4118.5 (2)O3—C11—C12106.2 (2)
C2—C3—C13120.6 (3)H11i—C11—H11112 (3)
C4—C3—C13120.9 (2)O3—C11—H11110.1 (12)
C5—C4—C3121.4 (2)C12—C11—H11109.4 (12)
C5—C4—H4119.3H12Bi—C12—C11108.4 (14)
C3—C4—H4119.3H12Bi—C12—H12A106.9 (16)
C4—C5—C6119.8 (2)C11—C12—H12A107 (2)
C4—C5—C14121.0 (2)H12Bi—C12—H12B118 (3)
C6—C5—C14119.2 (3)C11—C12—H12B108.4 (14)
C1—C6—C5119.6 (2)H12A—C12—H12B106.9 (16)
C1—C6—H6120.2C3—C13—H13A109.5
C5—C6—H6120.2C3—C13—H13B109.5
O1—C7—N1123.9 (2)H13A—C13—H13B109.5
O1—C7—C8121.7 (2)C3—C13—H13C109.5
N1—C7—C8114.3 (2)H13A—C13—H13C109.5
C9—C8—C7111.8 (2)H13B—C13—H13C109.5
C9—C8—H8A109.2C5—C14—H14A109.5
C7—C8—H8A109.2C5—C14—H14B109.5
C9—C8—H8B109.2H14A—C14—H14B109.5
C7—C8—H8B109.2C5—C14—H14C109.5
H8A—C8—H8B107.9H14A—C14—H14C109.5
C10—C9—C8114.1 (2)H14B—C14—H14C109.5
C10—C9—H9A108.7C7—N1—C1129.0 (2)
C8—C9—H9A108.7C7—N1—H1N116 (2)
C10—C9—H9B108.7C1—N1—H1N115 (2)
C8—C9—H9B108.7C10—O3—C11118.0 (2)
C6—C1—C2—C30.0C7—C8—C9—C10180.0
N1—C1—C2—C3180.0C8—C9—C10—O20.0
C1—C2—C3—C40.0C8—C9—C10—O3180.0
C1—C2—C3—C13180.0H11i—C11—C12—H12Bi54 (2)
C2—C3—C4—C50.0O3—C11—C12—H12Bi64.8 (16)
C13—C3—C4—C5180.0O1—C7—N1—C10.0
C3—C4—C5—C60.0C8—C7—N1—C1180.0
C3—C4—C5—C14180.0C6—C1—N1—C70.0
C2—C1—C6—C50.0C2—C1—N1—C7180.0
N1—C1—C6—C5180.0O2—C10—O3—C110.0
C4—C5—C6—C10.0C9—C10—O3—C11180.0
C14—C5—C6—C1180.0H11i—C11—O3—C1061.7 (13)
O1—C7—C8—C90.0C12—C11—O3—C10180.0
N1—C7—C8—C9180.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.85 (3)2.15 (3)2.995 (3)176 (3)
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H19NO3
Mr249.30
Crystal system, space groupTetragonal, I4/m
Temperature (K)299
a, c (Å)19.938 (2), 7.0367 (9)
V3)2797.3 (5)
Z8
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.40 × 0.28 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4040, 1367, 1201
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.169, 1.11
No. of reflections1367
No. of parameters120
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (3)2.15 (3)2.995 (3)176 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a resumption of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds