organic compounds
Ethyl 3-[(3,5-dimethylphenyl)aminocarbonyl]propanoate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The non-H atoms in the title compound, C14H19NO3, lie on a mirror plane. The amide O and ester carbonyl O atoms are trans to each other. Furthermore, the C=O and O—CH2 bonds of the ester group are syn with respect to each other. In the crystal, molecules are packed into centrosymmetric dimers through intermolecular N—H⋯O hydrogen bonds.
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809029511/tk2515sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029511/tk2515Isup2.hkl
A solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with a solution of 3,5-dimethylaniline (0.025 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dimethylaniline. The resultant solid N-(3,5-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. N-(3,5-Dimethylphenyl)succinamic acid was recrystallized into ethyl N-(3,5-dimethylphenyl)succinamate (I) from hot ethanol. The rod like colourless single crystals of (I) were grown in hot ethanolic solution by slow evaporation.
The H atoms of the NH group, of C11 and C12 were located in a difference map and their position refined [N—H = 0.85 (3) Å, C—H = 0.98 (4)–1.03 (3) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H19NO3 | Dx = 1.184 Mg m−3 |
Mr = 249.30 | Cu Kα radiation, λ = 1.54180 Å |
Tetragonal, I4/m | Cell parameters from 25 reflections |
Hall symbol: -I 4 | θ = 4.4–20.5° |
a = 19.938 (2) Å | µ = 0.67 mm−1 |
c = 7.0367 (9) Å | T = 299 K |
V = 2797.3 (5) Å3 | Rod, colourless |
Z = 8 | 0.40 × 0.28 × 0.25 mm |
F(000) = 1072 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.044 |
Radiation source: fine-focus sealed tube | θmax = 67.0°, θmin = 3.1° |
Graphite monochromator | h = −16→23 |
ω/2θ scans | k = −16→23 |
4040 measured reflections | l = −3→8 |
1367 independent reflections | 3 standard reflections every 120 min |
1201 reflections with I > 2σ(I) | intensity decay: 1.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.169 | w = 1/[σ2(Fo2) + (0.1022P)2 + 1.0554P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
1367 reflections | Δρmax = 0.32 e Å−3 |
120 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0012 (3) |
C14H19NO3 | Z = 8 |
Mr = 249.30 | Cu Kα radiation |
Tetragonal, I4/m | µ = 0.67 mm−1 |
a = 19.938 (2) Å | T = 299 K |
c = 7.0367 (9) Å | 0.40 × 0.28 × 0.25 mm |
V = 2797.3 (5) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.044 |
4040 measured reflections | 3 standard reflections every 120 min |
1367 independent reflections | intensity decay: 1.0% |
1201 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.169 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.32 e Å−3 |
1367 reflections | Δρmin = −0.32 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.60839 (11) | 0.20945 (11) | 0.0000 | 0.0465 (6) | |
C2 | 0.67561 (12) | 0.19085 (12) | 0.0000 | 0.0513 (6) | |
H2 | 0.6869 | 0.1456 | 0.0000 | 0.062* | |
C3 | 0.72584 (12) | 0.23863 (13) | 0.0000 | 0.0532 (6) | |
C4 | 0.70778 (13) | 0.30566 (14) | 0.0000 | 0.0579 (7) | |
H4 | 0.7411 | 0.3383 | 0.0000 | 0.070* | |
C5 | 0.64153 (13) | 0.32504 (12) | 0.0000 | 0.0562 (7) | |
C6 | 0.59123 (12) | 0.27666 (12) | 0.0000 | 0.0522 (6) | |
H6 | 0.5464 | 0.2894 | 0.0000 | 0.063* | |
C7 | 0.49362 (12) | 0.15957 (11) | 0.0000 | 0.0506 (6) | |
C8 | 0.45900 (11) | 0.09187 (12) | 0.0000 | 0.0543 (7) | |
H8A | 0.4728 | 0.0668 | −0.1115 | 0.065* | 0.50 |
H8B | 0.4728 | 0.0668 | 0.1115 | 0.065* | 0.50 |
C9 | 0.38416 (12) | 0.09873 (11) | 0.0000 | 0.0515 (6) | |
H9A | 0.3708 | 0.1242 | 0.1113 | 0.062* | 0.50 |
H9B | 0.3708 | 0.1242 | −0.1113 | 0.062* | 0.50 |
C10 | 0.34741 (11) | 0.03335 (12) | 0.0000 | 0.0491 (6) | |
C11 | 0.23912 (14) | −0.01607 (15) | 0.0000 | 0.0666 (8) | |
H11 | 0.2470 (10) | −0.0432 (11) | 0.118 (3) | 0.080* | |
C12 | 0.16867 (16) | 0.0096 (2) | 0.0000 | 0.0849 (10) | |
H12A | 0.139 (2) | −0.029 (2) | 0.0000 | 0.102* | |
H12B | 0.1605 (12) | 0.0349 (13) | 0.126 (4) | 0.102* | |
C13 | 0.79850 (13) | 0.21804 (16) | 0.0000 | 0.0652 (7) | |
H13A | 0.8077 | 0.1916 | −0.1110 | 0.078* | 0.50 |
H13B | 0.8078 | 0.1920 | 0.1118 | 0.078* | 0.50 |
H13C | 0.8263 | 0.2573 | −0.0007 | 0.078* | |
C14 | 0.62237 (18) | 0.39835 (14) | 0.0000 | 0.0829 (10) | |
H14A | 0.6403 | 0.4196 | −0.1113 | 0.099* | 0.50 |
H14B | 0.6402 | 0.4196 | 0.1115 | 0.099* | 0.50 |
H14C | 0.5744 | 0.4024 | −0.0003 | 0.099* | |
N1 | 0.56095 (10) | 0.15635 (10) | 0.0000 | 0.0519 (6) | |
H1N | 0.5776 (15) | 0.1170 (16) | 0.0000 | 0.062* | |
O1 | 0.46202 (9) | 0.21173 (9) | 0.0000 | 0.0821 (8) | |
O2 | 0.37347 (9) | −0.02118 (8) | 0.0000 | 0.0701 (7) | |
O3 | 0.28217 (8) | 0.04272 (8) | 0.0000 | 0.0614 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0444 (12) | 0.0435 (12) | 0.0516 (12) | −0.0050 (9) | 0.000 | 0.000 |
C2 | 0.0475 (13) | 0.0481 (13) | 0.0583 (13) | −0.0009 (9) | 0.000 | 0.000 |
C3 | 0.0465 (12) | 0.0632 (15) | 0.0498 (12) | −0.0103 (10) | 0.000 | 0.000 |
C4 | 0.0567 (15) | 0.0593 (15) | 0.0578 (14) | −0.0177 (11) | 0.000 | 0.000 |
C5 | 0.0621 (15) | 0.0464 (13) | 0.0601 (14) | −0.0105 (10) | 0.000 | 0.000 |
C6 | 0.0494 (13) | 0.0426 (12) | 0.0645 (14) | −0.0036 (9) | 0.000 | 0.000 |
C7 | 0.0433 (12) | 0.0411 (12) | 0.0673 (15) | 0.0014 (9) | 0.000 | 0.000 |
C8 | 0.0432 (13) | 0.0422 (13) | 0.0775 (16) | −0.0015 (9) | 0.000 | 0.000 |
C9 | 0.0447 (13) | 0.0425 (12) | 0.0673 (15) | 0.0006 (9) | 0.000 | 0.000 |
C10 | 0.0430 (12) | 0.0449 (12) | 0.0594 (14) | 0.0013 (9) | 0.000 | 0.000 |
C11 | 0.0497 (14) | 0.0559 (15) | 0.094 (2) | −0.0124 (11) | 0.000 | 0.000 |
C12 | 0.0490 (16) | 0.094 (3) | 0.112 (3) | −0.0109 (15) | 0.000 | 0.000 |
C13 | 0.0460 (14) | 0.0815 (19) | 0.0681 (16) | −0.0094 (12) | 0.000 | 0.000 |
C14 | 0.083 (2) | 0.0443 (15) | 0.121 (3) | −0.0118 (13) | 0.000 | 0.000 |
N1 | 0.0424 (11) | 0.0367 (10) | 0.0768 (14) | −0.0013 (8) | 0.000 | 0.000 |
O1 | 0.0481 (10) | 0.0416 (10) | 0.157 (2) | 0.0021 (7) | 0.000 | 0.000 |
O2 | 0.0514 (10) | 0.0397 (10) | 0.1193 (18) | 0.0015 (7) | 0.000 | 0.000 |
O3 | 0.0420 (9) | 0.0458 (9) | 0.0965 (14) | −0.0017 (7) | 0.000 | 0.000 |
C1—C6 | 1.383 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.391 (3) | C9—H9B | 0.9700 |
C1—N1 | 1.420 (3) | C10—O2 | 1.205 (3) |
C2—C3 | 1.382 (3) | C10—O3 | 1.314 (3) |
C2—H2 | 0.9300 | C11—H11i | 1.00 (2) |
C3—C4 | 1.384 (4) | C11—O3 | 1.453 (3) |
C3—C13 | 1.506 (4) | C11—C12 | 1.495 (4) |
C4—C5 | 1.376 (4) | C11—H11 | 1.00 (2) |
C4—H4 | 0.9300 | C12—H12Bi | 1.03 (3) |
C5—C6 | 1.392 (3) | C12—H12A | 0.98 (4) |
C5—C14 | 1.511 (4) | C12—H12B | 1.03 (3) |
C6—H6 | 0.9300 | C13—H13A | 0.9600 |
C7—O1 | 1.216 (3) | C13—H13B | 0.9600 |
C7—N1 | 1.344 (3) | C13—H13C | 0.9600 |
C7—C8 | 1.516 (3) | C14—H14A | 0.9600 |
C8—C9 | 1.498 (3) | C14—H14B | 0.9600 |
C8—H8A | 0.9700 | C14—H14C | 0.9600 |
C8—H8B | 0.9700 | N1—H1N | 0.85 (3) |
C9—C10 | 1.495 (3) | ||
C6—C1—C2 | 119.8 (2) | H9A—C9—H9B | 107.6 |
C6—C1—N1 | 123.9 (2) | O2—C10—O3 | 123.7 (2) |
C2—C1—N1 | 116.3 (2) | O2—C10—C9 | 125.1 (2) |
C3—C2—C1 | 121.0 (2) | O3—C10—C9 | 111.17 (19) |
C3—C2—H2 | 119.5 | H11i—C11—O3 | 110.1 (12) |
C1—C2—H2 | 119.5 | H11i—C11—C12 | 109.4 (12) |
C2—C3—C4 | 118.5 (2) | O3—C11—C12 | 106.2 (2) |
C2—C3—C13 | 120.6 (3) | H11i—C11—H11 | 112 (3) |
C4—C3—C13 | 120.9 (2) | O3—C11—H11 | 110.1 (12) |
C5—C4—C3 | 121.4 (2) | C12—C11—H11 | 109.4 (12) |
C5—C4—H4 | 119.3 | H12Bi—C12—C11 | 108.4 (14) |
C3—C4—H4 | 119.3 | H12Bi—C12—H12A | 106.9 (16) |
C4—C5—C6 | 119.8 (2) | C11—C12—H12A | 107 (2) |
C4—C5—C14 | 121.0 (2) | H12Bi—C12—H12B | 118 (3) |
C6—C5—C14 | 119.2 (3) | C11—C12—H12B | 108.4 (14) |
C1—C6—C5 | 119.6 (2) | H12A—C12—H12B | 106.9 (16) |
C1—C6—H6 | 120.2 | C3—C13—H13A | 109.5 |
C5—C6—H6 | 120.2 | C3—C13—H13B | 109.5 |
O1—C7—N1 | 123.9 (2) | H13A—C13—H13B | 109.5 |
O1—C7—C8 | 121.7 (2) | C3—C13—H13C | 109.5 |
N1—C7—C8 | 114.3 (2) | H13A—C13—H13C | 109.5 |
C9—C8—C7 | 111.8 (2) | H13B—C13—H13C | 109.5 |
C9—C8—H8A | 109.2 | C5—C14—H14A | 109.5 |
C7—C8—H8A | 109.2 | C5—C14—H14B | 109.5 |
C9—C8—H8B | 109.2 | H14A—C14—H14B | 109.5 |
C7—C8—H8B | 109.2 | C5—C14—H14C | 109.5 |
H8A—C8—H8B | 107.9 | H14A—C14—H14C | 109.5 |
C10—C9—C8 | 114.1 (2) | H14B—C14—H14C | 109.5 |
C10—C9—H9A | 108.7 | C7—N1—C1 | 129.0 (2) |
C8—C9—H9A | 108.7 | C7—N1—H1N | 116 (2) |
C10—C9—H9B | 108.7 | C1—N1—H1N | 115 (2) |
C8—C9—H9B | 108.7 | C10—O3—C11 | 118.0 (2) |
C6—C1—C2—C3 | 0.0 | C7—C8—C9—C10 | 180.0 |
N1—C1—C2—C3 | 180.0 | C8—C9—C10—O2 | 0.0 |
C1—C2—C3—C4 | 0.0 | C8—C9—C10—O3 | 180.0 |
C1—C2—C3—C13 | 180.0 | H11i—C11—C12—H12Bi | −54 (2) |
C2—C3—C4—C5 | 0.0 | O3—C11—C12—H12Bi | 64.8 (16) |
C13—C3—C4—C5 | 180.0 | O1—C7—N1—C1 | 0.0 |
C3—C4—C5—C6 | 0.0 | C8—C7—N1—C1 | 180.0 |
C3—C4—C5—C14 | 180.0 | C6—C1—N1—C7 | 0.0 |
C2—C1—C6—C5 | 0.0 | C2—C1—N1—C7 | 180.0 |
N1—C1—C6—C5 | 180.0 | O2—C10—O3—C11 | 0.0 |
C4—C5—C6—C1 | 0.0 | C9—C10—O3—C11 | 180.0 |
C14—C5—C6—C1 | 180.0 | H11i—C11—O3—C10 | −61.7 (13) |
O1—C7—C8—C9 | 0.0 | C12—C11—O3—C10 | 180.0 |
N1—C7—C8—C9 | 180.0 |
Symmetry code: (i) x, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2ii | 0.85 (3) | 2.15 (3) | 2.995 (3) | 176 (3) |
Symmetry code: (ii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H19NO3 |
Mr | 249.30 |
Crystal system, space group | Tetragonal, I4/m |
Temperature (K) | 299 |
a, c (Å) | 19.938 (2), 7.0367 (9) |
V (Å3) | 2797.3 (5) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.40 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4040, 1367, 1201 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.169, 1.11 |
No. of reflections | 1367 |
No. of parameters | 120 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.32 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.85 (3) | 2.15 (3) | 2.995 (3) | 176 (3) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a resumption of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of studying the effect of ring and side chain substitutions on the structures of the substituted amides (Gowda et al., 2009a,b,c), the crystal structure of ethyl N-(3,5-dimethylphenyl)succinamate (I) has been determined. The non-hydrogen atoms lie on a crystallographic mirror plane. The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other (Fig. 1). Likewise, the amide-O atom and ester carbonyl-O atoms are trans to each other. The C=O and O—CH2 bonds of the ester group are in syn positions to each other, similar to that observed between the C=O and O—H bonds in the crystal structures of N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009a).
The presence of N—H···O hydrogen bonds connect the molecules into centrosymmetric dimers (Table 1).