inorganic compounds
The lanthanum(III) molybdate(VI) La4Mo7O27
aInstitute of Crystallography, University of Cologne, 50674 Cologne, Germany
*Correspondence e-mail: bvdwolf@uni-koeln.de
Crystals of the orthorhombic phase La4Mo7O27 (lanthanum molybdenum oxide) were obtained from a non-stoichiometric melt in the pseudo-ternary system La2O3–MoO3–B2O3. In the distorted square-antiprismatic [LaO8] and monocapped square-antiprismatic [LaO9] polyhedra are connected via common edges and faces into chains along [010]. These chains are arranged in layers that alternate with layers of [MoO4] and [MoO5] polyhedra parallel to (001). In the molybdate layers, a distorted [MoO5] trigonal bipyramid is axially connected to two [MoO4] tetrahedra, forming a [Mo3O11] unit.
Related literature
The isoformular compounds Eu4Mo7O27 (Naruke & Yamase, 2001) and Gd4Mo7O27 (Naruke & Yamase, 2002) have a similar structure, but have monoclinic symmetry. Parameters needed to calculate bond-valence sums from bond lengths were taken from Brown & Altermatt (1985).
Experimental
Crystal data
|
Data collection
Data collection: MACH3 (Enraf–Nonius, 1993); cell MACH3; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809026415/wm2242sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026415/wm2242Isup2.hkl
Single crystals of La4Mo7O27 of ca 0.01 mm3 in volume were synthesized by heating a homogenized powder mixture of La2O3 (99.99%, Chempur), H3BO3 (99.8%, Merck) and MoO3 (99.95%, Alfa Aesar) in a molar ratio of 0.16: 0.16: 0.68 in a covered platinum crucible in air atmosphere to 1023 K. After 95 h at this temperature the sample was quenched in air, washed with water, heated to 1100 K, cooled with 0.0013 K/min to 1093 K and quenched again in air. After a further similar heating-cooling cycle, colourless clear crystals of La4Mo7O27 were obtained and separated mechanically from the solidified melt.
In the final difference Fourier map the highest peak is 0.98 Å from atom O61 and the deepest hole is 0.78 Å from atom Mo7.
Data collection: MACH3 (Enraf–Nonius, 1993); cell
MACH3 (Enraf–Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).La4Mo7O27 | F(000) = 2952 |
Mr = 1659.22 | Dx = 4.647 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 25 reflections |
a = 14.1443 (14) Å | θ = 20.8–27.4° |
b = 7.2931 (4) Å | µ = 10.71 mm−1 |
c = 22.9916 (13) Å | T = 295 K |
V = 2371.7 (3) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.23 × 0.22 mm |
Nonius MACH3 diffractometer | 6225 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed X-ray tube | Rint = 0.042 |
Graphite monochromator | θmax = 30.4°, θmin = 2.8° |
ω/2θ scans | h = −20→20 |
Absorption correction: ψ scan (MolEN; Fair, 1990) | k = −10→10 |
Tmin = 0.841, Tmax = 0.999 | l = −32→32 |
17773 measured reflections | 3 standard reflections every 100 reflections |
7202 independent reflections | intensity decay: −4.1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.04P)2 + 3.1563P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.028 | (Δ/σ)max = 0.001 |
wR(F2) = 0.076 | Δρmax = 2.27 e Å−3 |
S = 1.05 | Δρmin = −1.35 e Å−3 |
7202 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
345 parameters | Extinction coefficient: 0.00021 (2) |
1 restraint | Absolute structure: Flack (1983), 3515 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.039 (14) |
La4Mo7O27 | V = 2371.7 (3) Å3 |
Mr = 1659.22 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 14.1443 (14) Å | µ = 10.71 mm−1 |
b = 7.2931 (4) Å | T = 295 K |
c = 22.9916 (13) Å | 0.25 × 0.23 × 0.22 mm |
Nonius MACH3 diffractometer | 6225 reflections with I > 2σ(I) |
Absorption correction: ψ scan (MolEN; Fair, 1990) | Rint = 0.042 |
Tmin = 0.841, Tmax = 0.999 | 3 standard reflections every 100 reflections |
17773 measured reflections | intensity decay: −4.1% |
7202 independent reflections |
R[F2 > 2σ(F2)] = 0.028 | 1 restraint |
wR(F2) = 0.076 | Δρmax = 2.27 e Å−3 |
S = 1.05 | Δρmin = −1.35 e Å−3 |
7202 reflections | Absolute structure: Flack (1983), 3515 Friedel pairs |
345 parameters | Absolute structure parameter: 0.039 (14) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.66087 (3) | 0.01728 (6) | −0.111991 (17) | 0.00665 (9) | |
La2 | 0.53737 (3) | −0.51499 (6) | −0.346670 (18) | 0.00663 (8) | |
La3 | 0.40385 (3) | −0.00377 (6) | −0.348693 (18) | 0.00607 (8) | |
La4 | 0.79779 (3) | −0.49072 (6) | −0.105332 (18) | 0.00796 (9) | |
Mo1 | 0.56718 (5) | −0.50458 (8) | −0.17097 (3) | 0.00648 (12) | |
Mo2 | 0.52350 (5) | −0.21023 (9) | −0.48626 (3) | 0.00797 (12) | |
Mo3 | 0.63252 (5) | −0.01478 (9) | −0.28977 (3) | 0.00647 (12) | |
Mo4 | 0.88677 (5) | −0.00727 (8) | −0.16706 (3) | 0.00596 (12) | |
Mo5 | 0.42705 (5) | −0.67540 (9) | −0.50044 (3) | 0.00924 (12) | |
Mo6 | 0.80799 (5) | −0.48959 (8) | −0.29088 (3) | 0.00678 (12) | |
Mo7 | 0.69027 (5) | 0.18663 (9) | −0.46606 (3) | 0.00880 (12) | |
O11 | 0.6097 (5) | −0.2827 (9) | −0.1607 (3) | 0.0194 (13) | |
O12 | 0.5618 (5) | −0.5645 (9) | −0.2443 (2) | 0.0153 (12) | |
O13 | 0.9529 (4) | −0.4730 (10) | −0.1422 (3) | 0.0217 (15) | |
O14 | 0.6456 (4) | 0.3508 (8) | −0.1297 (2) | 0.0112 (11) | |
O21 | 0.6007 (4) | −0.3416 (9) | −0.5274 (3) | 0.0157 (12) | |
O22 | 0.4384 (4) | −0.0813 (9) | −0.5225 (3) | 0.0158 (12) | |
O23 | 0.5073 (4) | −0.2372 (8) | −0.4093 (2) | 0.0120 (11) | |
O24 | 0.6147 (5) | −0.0175 (8) | −0.4721 (3) | 0.0155 (12) | |
O31 | 0.6554 (5) | 0.0575 (9) | −0.2186 (2) | 0.0148 (12) | |
O32 | 0.5662 (4) | −0.8518 (8) | −0.3325 (2) | 0.0118 (11) | |
O33 | 0.5583 (4) | −0.2059 (8) | −0.2937 (3) | 0.0131 (12) | |
O34 | 0.2400 (4) | 0.0632 (9) | −0.3232 (3) | 0.0169 (13) | |
O41 | 0.4954 (5) | 0.0377 (10) | −0.1345 (3) | 0.0185 (13) | |
O42 | 0.4018 (5) | 0.0247 (10) | −0.2425 (3) | 0.0198 (14) | |
O43 | 0.8293 (5) | 0.1988 (9) | −0.1478 (3) | 0.0193 (14) | |
O44 | 0.8030 (4) | −0.1691 (8) | −0.1377 (3) | 0.0120 (11) | |
O51 | 0.4290 (5) | −0.7789 (10) | −0.4302 (3) | 0.0236 (15) | |
O52 | 0.4298 (4) | −0.4333 (8) | −0.4899 (3) | 0.0189 (13) | |
O53 | 0.5258 (5) | −0.7338 (9) | −0.5387 (3) | 0.0191 (13) | |
O54 | 0.3242 (5) | −0.7323 (8) | −0.5428 (3) | 0.0137 (12) | |
O61 | 0.7039 (5) | −0.4836 (9) | −0.3311 (3) | 0.0166 (13) | |
O62 | 0.7826 (5) | −0.4752 (9) | −0.2169 (3) | 0.0153 (13) | |
O63 | 0.3730 (5) | −0.3124 (9) | −0.3092 (3) | 0.0215 (14) | |
O64 | 0.3901 (5) | −0.6789 (9) | −0.3162 (3) | 0.0173 (13) | |
O71 | 0.6315 (5) | 0.3739 (8) | −0.4350 (3) | 0.0164 (13) | |
O72 | 0.7380 (4) | 0.2446 (8) | −0.5355 (3) | 0.0141 (12) | |
O73 | 0.7859 (5) | 0.1294 (9) | −0.4229 (3) | 0.0189 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00731 (18) | 0.00518 (17) | 0.00747 (19) | 0.00098 (14) | 0.00029 (15) | 0.00006 (17) |
La2 | 0.00777 (18) | 0.00519 (18) | 0.00694 (18) | 0.00041 (14) | −0.00001 (15) | 0.00120 (17) |
La3 | 0.00763 (18) | 0.00497 (18) | 0.00560 (17) | −0.00037 (14) | 0.00081 (15) | −0.00027 (15) |
La4 | 0.0102 (2) | 0.00603 (19) | 0.00765 (19) | −0.00306 (15) | 0.00111 (15) | −0.00116 (16) |
Mo1 | 0.0075 (3) | 0.0049 (3) | 0.0070 (3) | 0.0002 (2) | −0.0010 (2) | −0.0005 (2) |
Mo2 | 0.0105 (3) | 0.0084 (3) | 0.0050 (3) | 0.0013 (2) | 0.0007 (2) | 0.0003 (2) |
Mo3 | 0.0072 (3) | 0.0059 (3) | 0.0063 (3) | 0.0004 (2) | −0.0009 (2) | 0.0008 (2) |
Mo4 | 0.0063 (3) | 0.0051 (3) | 0.0065 (3) | −0.0005 (2) | 0.0011 (2) | 0.0000 (2) |
Mo5 | 0.0138 (3) | 0.0077 (3) | 0.0062 (3) | −0.0019 (2) | −0.0017 (2) | −0.0001 (2) |
Mo6 | 0.0069 (3) | 0.0061 (3) | 0.0073 (3) | −0.0007 (2) | 0.0006 (2) | −0.0009 (2) |
Mo7 | 0.0104 (3) | 0.0103 (3) | 0.0058 (2) | −0.0017 (2) | −0.0001 (2) | 0.0017 (2) |
O11 | 0.031 (4) | 0.013 (3) | 0.014 (3) | −0.004 (3) | 0.003 (3) | −0.002 (2) |
O12 | 0.030 (4) | 0.012 (3) | 0.004 (2) | −0.004 (3) | −0.003 (2) | −0.002 (2) |
O13 | 0.006 (3) | 0.031 (4) | 0.028 (4) | −0.001 (3) | 0.005 (3) | 0.000 (3) |
O14 | 0.009 (3) | 0.011 (3) | 0.014 (3) | 0.000 (2) | −0.002 (2) | −0.002 (2) |
O21 | 0.012 (3) | 0.015 (3) | 0.020 (3) | −0.001 (2) | 0.008 (2) | −0.007 (2) |
O22 | 0.012 (3) | 0.021 (3) | 0.015 (3) | −0.002 (2) | −0.006 (2) | 0.004 (2) |
O23 | 0.018 (3) | 0.010 (3) | 0.008 (3) | 0.004 (2) | 0.002 (2) | 0.001 (2) |
O24 | 0.014 (3) | 0.015 (3) | 0.018 (3) | −0.007 (2) | 0.000 (3) | 0.001 (2) |
O31 | 0.024 (3) | 0.015 (3) | 0.006 (2) | −0.001 (3) | −0.006 (2) | 0.000 (2) |
O32 | 0.012 (3) | 0.009 (3) | 0.015 (3) | 0.004 (2) | −0.005 (2) | 0.002 (2) |
O33 | 0.014 (3) | 0.011 (3) | 0.014 (3) | −0.006 (2) | −0.001 (2) | 0.000 (2) |
O34 | 0.008 (3) | 0.023 (3) | 0.020 (3) | 0.000 (2) | 0.003 (2) | −0.002 (3) |
O41 | 0.012 (3) | 0.025 (3) | 0.018 (3) | 0.005 (3) | −0.004 (2) | 0.000 (3) |
O42 | 0.028 (4) | 0.023 (3) | 0.009 (3) | 0.001 (3) | 0.001 (2) | 0.001 (2) |
O43 | 0.026 (4) | 0.013 (3) | 0.019 (3) | 0.002 (3) | −0.004 (3) | −0.010 (2) |
O44 | 0.011 (3) | 0.008 (2) | 0.017 (3) | 0.001 (2) | 0.005 (2) | −0.004 (2) |
O51 | 0.029 (4) | 0.031 (4) | 0.011 (3) | 0.000 (3) | 0.001 (3) | 0.010 (3) |
O52 | 0.015 (3) | 0.008 (3) | 0.034 (4) | −0.003 (2) | 0.005 (3) | −0.006 (3) |
O53 | 0.025 (4) | 0.016 (3) | 0.015 (3) | 0.004 (3) | 0.003 (3) | −0.006 (2) |
O54 | 0.015 (3) | 0.014 (3) | 0.011 (3) | −0.002 (2) | −0.006 (2) | 0.000 (2) |
O61 | 0.010 (3) | 0.027 (4) | 0.012 (3) | 0.000 (3) | −0.005 (2) | −0.001 (2) |
O62 | 0.022 (3) | 0.018 (3) | 0.006 (2) | 0.004 (3) | 0.002 (2) | 0.000 (2) |
O63 | 0.028 (4) | 0.015 (3) | 0.021 (3) | −0.004 (3) | 0.003 (3) | 0.007 (3) |
O64 | 0.013 (3) | 0.009 (3) | 0.029 (3) | 0.000 (2) | 0.001 (3) | −0.004 (3) |
O71 | 0.021 (3) | 0.015 (3) | 0.014 (3) | 0.003 (2) | −0.002 (2) | −0.005 (2) |
O72 | 0.012 (3) | 0.021 (3) | 0.010 (3) | 0.003 (2) | 0.001 (2) | 0.003 (2) |
O73 | 0.015 (3) | 0.024 (3) | 0.018 (3) | −0.003 (3) | −0.004 (2) | 0.008 (3) |
La1—O41 | 2.402 (7) | La4—O14v | 2.506 (6) |
La1—O31 | 2.470 (6) | La4—O21iii | 2.540 (6) |
La1—O14 | 2.476 (6) | La4—O72viii | 2.561 (6) |
La1—O44 | 2.498 (6) | La4—O62 | 2.578 (6) |
La1—O22i | 2.535 (6) | La4—O54ii | 2.773 (6) |
La1—O11 | 2.562 (6) | La4—Mo1 | 3.5955 (9) |
La1—O54ii | 2.625 (6) | La4—La1v | 4.0804 (6) |
La1—O72iii | 2.809 (6) | Mo1—O11 | 1.742 (6) |
La1—O43 | 2.847 (7) | Mo1—O12 | 1.742 (6) |
La1—Mo4 | 3.4416 (9) | Mo1—O13vi | 1.754 (6) |
La1—La4iv | 4.0804 (6) | Mo1—O14v | 1.801 (6) |
La1—La4 | 4.1834 (7) | Mo2—O21 | 1.734 (6) |
La2—O61 | 2.394 (6) | Mo2—O22 | 1.740 (6) |
La2—O12 | 2.407 (6) | Mo2—O23 | 1.796 (6) |
La2—O64 | 2.502 (7) | Mo2—O24 | 1.936 (6) |
La2—O32 | 2.511 (6) | Mo2—O52 | 2.100 (6) |
La2—O23 | 2.521 (6) | Mo3—O34ix | 1.740 (6) |
La2—O71v | 2.559 (6) | Mo3—O33 | 1.747 (6) |
La2—O33 | 2.579 (6) | Mo3—O31 | 1.749 (6) |
La2—O63 | 2.886 (7) | Mo3—O32iv | 1.805 (6) |
La2—O51 | 3.121 (7) | Mo4—O41ix | 1.723 (7) |
La2—Mo6vi | 3.4889 (9) | Mo4—O42ix | 1.753 (6) |
La2—La3v | 4.0344 (6) | Mo4—O43 | 1.765 (6) |
La2—La3 | 4.1797 (6) | Mo4—O44 | 1.804 (6) |
La3—O34 | 2.439 (6) | Mo5—O53 | 1.704 (7) |
La3—O42 | 2.450 (6) | Mo5—O52 | 1.782 (6) |
La3—O63 | 2.466 (6) | Mo5—O51 | 1.784 (6) |
La3—O64iv | 2.492 (6) | Mo5—O54 | 1.799 (6) |
La3—O51iv | 2.515 (6) | Mo6—O61 | 1.739 (6) |
La3—O73vii | 2.557 (6) | Mo6—O62 | 1.741 (6) |
La3—O32iv | 2.577 (6) | Mo6—O63x | 1.763 (7) |
La3—O23 | 2.642 (6) | Mo6—O64x | 1.788 (6) |
La3—O33 | 2.923 (6) | Mo6—La2x | 3.4889 (9) |
La3—Mo3 | 3.5076 (9) | Mo7—O73 | 1.728 (6) |
La3—La2iv | 4.0344 (6) | Mo7—O71 | 1.752 (6) |
La4—O13 | 2.356 (6) | Mo7—O72 | 1.784 (6) |
La4—O44 | 2.462 (6) | Mo7—O24 | 1.838 (6) |
La4—O43v | 2.505 (6) | ||
O41—La1—O31 | 75.5 (2) | O51iv—La3—O32iv | 72.6 (2) |
O41—La1—O14 | 79.6 (2) | O73vii—La3—O32iv | 146.4 (2) |
O31—La1—O14 | 73.56 (19) | O34—La3—O23 | 141.4 (2) |
O41—La1—O44 | 140.1 (2) | O42—La3—O23 | 125.9 (2) |
O31—La1—O44 | 81.7 (2) | O63—La3—O23 | 72.8 (2) |
O14—La1—O44 | 124.46 (19) | O64iv—La3—O23 | 144.5 (2) |
O41—La1—O22i | 67.9 (2) | O51iv—La3—O23 | 87.1 (2) |
O31—La1—O22i | 140.0 (2) | O73vii—La3—O23 | 77.2 (2) |
O14—La1—O22i | 84.5 (2) | O32iv—La3—O23 | 81.95 (19) |
O44—La1—O22i | 137.6 (2) | O34—La3—O33 | 135.00 (19) |
O41—La1—O11 | 71.6 (2) | O42—La3—O33 | 67.7 (2) |
O31—La1—O11 | 70.1 (2) | O63—La3—O33 | 60.8 (2) |
O14—La1—O11 | 137.9 (2) | O64iv—La3—O33 | 114.10 (19) |
O44—La1—O11 | 70.1 (2) | O51iv—La3—O33 | 123.0 (2) |
O22i—La1—O11 | 110.8 (2) | O73vii—La3—O33 | 126.56 (19) |
O41—La1—O54ii | 104.9 (2) | O32iv—La3—O33 | 59.22 (17) |
O31—La1—O54ii | 134.2 (2) | O23—La3—O33 | 59.25 (17) |
O14—La1—O54ii | 152.20 (19) | O13—La4—O44 | 79.1 (2) |
O44—La1—O54ii | 69.36 (19) | O13—La4—O43v | 75.1 (2) |
O22i—La1—O54ii | 72.5 (2) | O44—La4—O43v | 137.6 (2) |
O11—La1—O54ii | 67.1 (2) | O13—La4—O14v | 138.1 (2) |
O41—La1—O72iii | 126.5 (2) | O44—La4—O14v | 113.4 (2) |
O31—La1—O72iii | 124.6 (2) | O43v—La4—O14v | 69.5 (2) |
O14—La1—O72iii | 64.38 (18) | O13—La4—O21iii | 72.8 (2) |
O44—La1—O72iii | 93.38 (19) | O44—La4—O21iii | 77.8 (2) |
O22i—La1—O72iii | 70.44 (19) | O43v—La4—O21iii | 124.1 (2) |
O11—La1—O72iii | 157.2 (2) | O14v—La4—O21iii | 147.2 (2) |
O54ii—La1—O72iii | 92.70 (18) | O13—La4—O72viii | 116.8 (2) |
O41—La1—O43 | 136.4 (2) | O44—La4—O72viii | 155.97 (19) |
O31—La1—O43 | 71.6 (2) | O43v—La4—O72viii | 66.3 (2) |
O14—La1—O43 | 64.43 (19) | O14v—La4—O72viii | 67.87 (19) |
O44—La1—O43 | 60.74 (19) | O21iii—La4—O72viii | 89.5 (2) |
O22i—La1—O43 | 127.78 (19) | O13—La4—O62 | 73.5 (2) |
O11—La1—O43 | 120.5 (2) | O44—La4—O62 | 70.1 (2) |
O54ii—La1—O43 | 118.4 (2) | O43v—La4—O62 | 70.5 (2) |
O72iii—La1—O43 | 58.68 (17) | O14v—La4—O62 | 74.1 (2) |
O61—La2—O12 | 74.2 (2) | O21iii—La4—O62 | 136.9 (2) |
O61—La2—O64 | 145.4 (2) | O72viii—La4—O62 | 129.9 (2) |
O12—La2—O64 | 76.9 (2) | O13—La4—O54ii | 137.2 (2) |
O61—La2—O32 | 85.1 (2) | O44—La4—O54ii | 67.43 (18) |
O12—La2—O32 | 72.7 (2) | O43v—La4—O54ii | 147.4 (2) |
O64—La2—O32 | 68.4 (2) | O14v—La4—O54ii | 81.49 (19) |
O61—La2—O23 | 100.1 (2) | O21iii—La4—O54ii | 74.64 (19) |
O12—La2—O23 | 134.7 (2) | O72viii—La4—O54ii | 89.67 (18) |
O64—La2—O23 | 113.8 (2) | O62—La4—O54ii | 115.98 (19) |
O32—La2—O23 | 152.58 (19) | O11—Mo1—O12 | 112.3 (3) |
O61—La2—O71v | 68.7 (2) | O11—Mo1—O13vi | 110.7 (3) |
O12—La2—O71v | 130.8 (2) | O12—Mo1—O13vi | 107.5 (3) |
O64—La2—O71v | 120.3 (2) | O11—Mo1—O14v | 105.1 (3) |
O32—La2—O71v | 73.1 (2) | O12—Mo1—O14v | 112.9 (3) |
O23—La2—O71v | 83.65 (19) | O13vi—Mo1—O14v | 108.4 (3) |
O61—La2—O33 | 74.5 (2) | O21—Mo2—O22 | 118.2 (3) |
O12—La2—O33 | 69.7 (2) | O21—Mo2—O23 | 123.9 (3) |
O64—La2—O33 | 112.4 (2) | O22—Mo2—O23 | 116.3 (3) |
O32—La2—O33 | 140.80 (18) | O21—Mo2—O24 | 94.2 (3) |
O23—La2—O33 | 65.57 (19) | O22—Mo2—O24 | 98.6 (3) |
O71v—La2—O33 | 126.2 (2) | O23—Mo2—O24 | 90.0 (3) |
O61—La2—O63 | 134.4 (2) | O21—Mo2—O52 | 87.0 (3) |
O12—La2—O63 | 84.3 (2) | O22—Mo2—O52 | 87.9 (3) |
O64—La2—O63 | 59.4 (2) | O23—Mo2—O52 | 82.8 (3) |
O32—La2—O63 | 126.34 (19) | O24—Mo2—O52 | 171.9 (3) |
O23—La2—O63 | 67.86 (18) | O34ix—Mo3—O33 | 109.9 (3) |
O71v—La2—O63 | 144.88 (19) | O34ix—Mo3—O31 | 108.2 (3) |
O33—La2—O63 | 60.28 (19) | O33—Mo3—O31 | 113.6 (3) |
O61—La2—O51 | 129.4 (2) | O34ix—Mo3—O32iv | 110.3 (3) |
O12—La2—O51 | 125.4 (2) | O33—Mo3—O32iv | 100.7 (3) |
O64—La2—O51 | 57.9 (2) | O31—Mo3—O32iv | 114.0 (3) |
O32—La2—O51 | 63.67 (18) | O41ix—Mo4—O42ix | 108.2 (3) |
O23—La2—O51 | 93.53 (18) | O41ix—Mo4—O43 | 114.2 (3) |
O71v—La2—O51 | 64.7 (2) | O42ix—Mo4—O43 | 111.5 (3) |
O33—La2—O51 | 152.36 (19) | O41ix—Mo4—O44 | 109.7 (3) |
O63—La2—O51 | 96.0 (2) | O42ix—Mo4—O44 | 113.8 (3) |
O34—La3—O42 | 74.5 (2) | O43—Mo4—O44 | 99.3 (3) |
O34—La3—O63 | 85.8 (2) | O53—Mo5—O52 | 107.4 (3) |
O42—La3—O63 | 73.0 (2) | O53—Mo5—O51 | 110.4 (3) |
O34—La3—O64iv | 70.3 (2) | O52—Mo5—O51 | 107.2 (3) |
O42—La3—O64iv | 67.6 (2) | O53—Mo5—O54 | 109.0 (3) |
O63—La3—O64iv | 138.0 (2) | O52—Mo5—O54 | 108.6 (3) |
O34—La3—O51iv | 100.5 (2) | O51—Mo5—O54 | 113.9 (3) |
O42—La3—O51iv | 133.5 (2) | O61—Mo6—O62 | 110.1 (3) |
O63—La3—O51iv | 153.4 (2) | O61—Mo6—O63x | 109.6 (3) |
O64iv—La3—O51iv | 67.3 (2) | O62—Mo6—O63x | 113.0 (3) |
O34—La3—O73vii | 67.2 (2) | O61—Mo6—O64x | 111.1 (3) |
O42—La3—O73vii | 133.4 (2) | O62—Mo6—O64x | 114.2 (3) |
O63—La3—O73vii | 78.7 (2) | O63x—Mo6—O64x | 98.4 (3) |
O64iv—La3—O73vii | 119.3 (2) | O73—Mo7—O71 | 109.0 (3) |
O51iv—La3—O73vii | 80.2 (2) | O73—Mo7—O72 | 106.0 (3) |
O34—La3—O32iv | 136.5 (2) | O71—Mo7—O72 | 111.1 (3) |
O42—La3—O32iv | 80.2 (2) | O73—Mo7—O24 | 107.6 (3) |
O63—La3—O32iv | 119.8 (2) | O71—Mo7—O24 | 112.8 (3) |
O64iv—La3—O32iv | 67.5 (2) | O72—Mo7—O24 | 110.1 (3) |
Symmetry codes: (i) −x+1, −y, z+1/2; (ii) −x+1, −y−1, z+1/2; (iii) −x+3/2, y, z+1/2; (iv) x, y+1, z; (v) x, y−1, z; (vi) x−1/2, −y−1, z; (vii) x−1/2, −y, z; (viii) −x+3/2, y−1, z+1/2; (ix) x+1/2, −y, z; (x) x+1/2, −y−1, z. |
Experimental details
Crystal data | |
Chemical formula | La4Mo7O27 |
Mr | 1659.22 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 295 |
a, b, c (Å) | 14.1443 (14), 7.2931 (4), 22.9916 (13) |
V (Å3) | 2371.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.71 |
Crystal size (mm) | 0.25 × 0.23 × 0.22 |
Data collection | |
Diffractometer | Nonius MACH3 diffractometer |
Absorption correction | ψ scan (MolEN; Fair, 1990) |
Tmin, Tmax | 0.841, 0.999 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17773, 7202, 6225 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.713 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.076, 1.05 |
No. of reflections | 7202 |
No. of parameters | 345 |
No. of restraints | 1 |
Δρmax, Δρmin (e Å−3) | 2.27, −1.35 |
Absolute structure | Flack (1983), 3515 Friedel pairs |
Absolute structure parameter | 0.039 (14) |
Computer programs: MACH3 (Enraf–Nonius, 1993), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under project BE 2147/6–1&2.
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Enraf–Nonius (1993). MACH3 Server Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Naruke, H. & Yamase, T. (2001). J. Solid State Chem. 161, 85–92. Web of Science CrossRef CAS Google Scholar
Naruke, H. & Yamase, T. (2002). Acta Cryst. E58, i62–i64. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The framework structure of La4Mo7O27 (Fig. 1) can be described as a layered arrangement of alternating [LaO8] and [LaO9] polyhedra and of [MoO4] and [MoO5] polyhedra parallel to (001). Perpendicular to this layered arrangement the [LaO8] and [LaO9] polyhedra are connected via edge- and face-sharing to form chains along [010]. The chains are interconnected via [MoO4] tetrahedra with an interchain distance of 1/2a = 7.072 Å. A similar layered arrangement of alternating [REO7] and [REO8] (RE = Eu, Gd) and of [MoO4] and [MoO5] polyhedra is present in the crystal strucures of Eu4Mo7O27 (Naruke & Yamase, 2001) and Gd4Mo7O27 (Naruke & Yamase, 2002). However, in the latter structures the rare earth oxygen polyhedra dimerize to [RE2O12] and [RE2O13] (RE = Eu, Gd) groups instead of forming chains. All four lanthanum atoms in La4Mo7O27 are found with a square-antiprismatic [LaO8] oxygen surrounding. In case of La1 and La3, this unit is monocapped to form a [LaO9] polyhedron, in case of La2 a more irregular but also monocapped (with O33) [LaO9] polyhedron may still be recognized, while La4 has a square-antiprismatic environment with two axial oxygen atoms O11 (La—O = 3.317 (6) Å) and O53 (La— O = 3.423 (7) Å) which we have not considered to be part of the La4 coordination polyhedron. Thereby, O53 is the only terminal oxygen atom connected to Mo5 only, but calculations of the bond valence sums (Brown & Altermatt, 1985) with 1.73 v.u. for the O53—Mo5 bond indicate no discrepancies and it can be assumed that the remaining bond charge is smeared out over farther atoms. The four molybdenum atoms Mo1, Mo4, Mo3, Mo6 are tetrahedrally surrounded by oxygen atoms resulting in [MoO4] tetrahedra with Mo—O distances ranging from 1.723 (7) to 1.805 (6) Å. These polyhedra are connected to [LaO8] or [LaO9] polyhedra via corner- or edge-sharing. This is also the case for Mo5 and Mo7, which are tetrahedrally surrounded and connected to [LaO8] or [LaO9] via corner-sharing only, but connected to Mo2 as well, which is fivefold surrounded to form a distorted trigonal bipyramid. Overall, this results in a [Mo3O11] unit (Fig. 2) with a corner-shared connection of the three equatorial oxygen atoms in the trigonal bipyramid to [LaO8] or [LaO9] polyhedra. In the trigonal bipyramid, the axial oxygen atom O52 has the longest Mo—O distance of 2.100 (6) Å in the structure, but bond valence sum calculations do suggest a trigonal-bipyramidal Mo2 surrounding with a resulting bond valence sum for the bonds Mo2—O21, O22, O23, O24 of 5.44 v.u., and when including also O52 of 6.04 v.u. In both Eu4Mo7O27 and Gd4Mo7O27 structures a similar [Mo3O11] unit is present, but here the two tetrahedrally surrounded molybdenum atoms are connected via one axial and one equatorial oxygen atom of the trigonal bipyramidal coordination polyhedron of the central molybdenum atom.