organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1946-o1947

3-Methyl-3,4-di­hydro-9H-carbazol-1(2H)-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 11 July 2009; accepted 16 July 2009; online 22 July 2009)

In the title mol­ecule, C13H13NO, the dihedral angle between the benzene ring and the fused pyrrole ring is 2.03 (5)°. The methyl group at the 3-position has an equatorial orientation. The cyclo­hexene ring adopts an envelope conformation. Three C atoms of the cyclo­hexene ring, with their attached H atoms, and all atoms of the methyl group are disordered over two positions, the site-occupancy factors being 0.883 (2) and 0.117 (2). In the crystal structure, mol­ecules are stabilized by inter­molecular N—H⋯O hydrogen bonds. A C—H⋯π inter­action, involving the benzene ring, is also found.

Related literature

For the biological activity of substituted 2,3,4,9-tetra­hydro­carbazoles, see: Mooradian et al. (1977[Mooradian, A., Dupont, P. E., Hlavac, A. G., Aceto, M. D. & Pearl, J. (1977). J. Med. Chem. 20, 487-492.]); Jean et al. (2004[Jean, C. F., Rangisetty, J. B., Dukat, M., Setola, V., Raffay, T., Roth, B. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett. 14, 1961-1964.]); Biere et al. (1973[Biere, H., Rufer, C., Ahrens, H., Schröder, E., Losert, W., Loge, O. & Schillinger, E. (1973). Patent DE 2226702 (A1). ]); Lacoume (1973[Lacoume, B. (1973). Patent AU 3217771 (A).]). For carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A, with a methyl substituent at the C-3 position, see: Knolker & Reddy (2002[Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Sowmithran & Rajendra Prasad (1986[Sowmithran, D. & Rajendra Prasad, K. J. (1986). Heterocycles, 24, 711-717.]); Rajendra Prasad & Vijayalakshmi (1994[Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, 33, 481-482.]); Gunaseelan et al. (2007a[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413-o2414.],b[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729-o2730.]); Sridharan et al. (2008[Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763-o764.]); Thiruvalluvar et al. (2007[Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO

  • Mr = 199.24

  • Triclinic, [P \overline 1]

  • a = 5.8301 (3) Å

  • b = 8.4348 (5) Å

  • c = 10.8000 (7) Å

  • α = 78.094 (5)°

  • β = 75.942 (5)°

  • γ = 87.166 (5)°

  • V = 504.11 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 110 K

  • 0.54 × 0.14 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.753, Tmax = 1.000 (expected range = 0.747–0.992)

  • 5927 measured reflections

  • 3292 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.00

  • 3292 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.960 (17) 1.939 (16) 2.848 (1) 157.2 (13)
C4A—H4BCg1ii 0.99 2.83 3.779 (1) 162
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) -x, -y, -z+1. Cg1 is the centroid of the C4D,C5–C8,C8A ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted 2,3,4,9-tetrahydrocarbazoles have been reported to possess many biological properties, such as central nervous system activity (Mooradian et al., 1977), antihistamine (Jean et al., 2004), antidiabetic (Biere et al., 1973) and anti-inflammatory properties (Lacoume, 1973). We have attached importance to the title compound since some of the carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A have the methyl group as substituent at the C-3 position (Knolker & Reddy, 2002). The preparation of 1-oxo compounds via their corresponding hydrazones have been reported (Sowmithran & Rajendra Prasad, 1986; Rajendra Prasad & Vijayalakshmi, 1994). Guanaseelan et al. (2007a,b), Thiruvalluvar et al. (2007) and Sridharan et al. (2008) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.

In the title molecule, C13H13NO, the dihedral angle between the benzene ring and the fused pyrrole ring is 2.03 (5)°. The methyl group at position 3 has an equatorial oreintation. The cyclohexene ring adopts an envelope conformation. In the crystal structure, the molecules are stabilized by intermolecular N9—H9···O1(-1 - x, 1 - y, 1 - z) hydrogen bonds. Furthermore, a C4A—H4B···π(-x, -y, 1 - z) interaction, involving the benzene ring(C4D—C8A), is also found in the crystal stucture.

Related literature top

For the biological activity of substituted 2,3,4,9-tetrahydrocarbazoles, see: Mooradian et al. (1977); Jean et al. (2004); Biere et al. (1973); Lacoume (1973). For carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A, with a methyl substituent at the C-3 position, see: Knolker & Reddy (2002). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Sowmithran & Rajendra Prasad (1986); Rajendra Prasad & Vijayalakshmi (1994); Gunaseelan et al. (2007a,b); Sridharan et al. (2008); Thiruvalluvar et al. (2007). Cg1 is the centroid of the C4D,C5–C8,C8A ring.

Experimental top

A solution of 2-(2-phenylhydrazono)-5-methylcyclohexanone (0.216 g. 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398 K for 2 h. The contents were then cooled and poured into cold water with stirring. The brown solid which was separated by passing through a column of silica gel and eluted with a (98:2, v/v) petroleum ether-ethyl acetate mixture to yield the title compound (0.148 g, 74%). This was recrystallized from ethanol.

Refinement top

Atoms C2A, C3A, C4A of the cyclohexene ring, with attached hydrogen atoms, and all atoms of the methyl group are disordered over two positions; the site occupancy factors refined to 0.883 (2) and 0.117 (2). The H atom bonded to N9 was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = xUeq(parent atom), where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only the major disorder component is shown.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. Only the major disorder component is shown.
3-Methyl-3,4-dihydro-9H-carbazol-1(2H)-one top
Crystal data top
C13H13NOZ = 2
Mr = 199.24F(000) = 212
Triclinic, P1Dx = 1.313 Mg m3
Hall symbol: -P 1Melting point: 462 K
a = 5.8301 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4348 (5) ÅCell parameters from 2953 reflections
c = 10.8000 (7) Åθ = 4.9–32.7°
α = 78.094 (5)°µ = 0.08 mm1
β = 75.942 (5)°T = 110 K
γ = 87.166 (5)°Needle, pale-yellow
V = 504.11 (5) Å30.54 × 0.14 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3292 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.9°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1012
Tmin = 0.753, Tmax = 1.000l = 1315
5927 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1015P)2]
where P = (Fo2 + 2Fc2)/3
3292 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H13NOγ = 87.166 (5)°
Mr = 199.24V = 504.11 (5) Å3
Triclinic, P1Z = 2
a = 5.8301 (3) ÅMo Kα radiation
b = 8.4348 (5) ŵ = 0.08 mm1
c = 10.8000 (7) ÅT = 110 K
α = 78.094 (5)°0.54 × 0.14 × 0.10 mm
β = 75.942 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3292 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2400 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 1.000Rint = 0.028
5927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.50 e Å3
3292 reflectionsΔρmin = 0.27 e Å3
144 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.36537 (13)0.49067 (9)0.31075 (7)0.0255 (2)
N90.24180 (15)0.34526 (10)0.55707 (8)0.0202 (2)
C10.18847 (17)0.40400 (12)0.31405 (9)0.0202 (2)
C2A0.03045 (19)0.36084 (14)0.19199 (10)0.0265 (3)0.883 (2)
C3A0.22713 (19)0.32688 (14)0.19735 (10)0.0199 (3)0.883 (2)
C4A0.24963 (17)0.20104 (12)0.31810 (9)0.0202 (2)0.883 (2)
C4C0.08447 (16)0.24013 (11)0.43740 (9)0.0179 (2)
C4D0.09067 (17)0.19671 (11)0.57178 (9)0.0189 (2)
C50.25223 (18)0.11247 (12)0.63950 (10)0.0237 (3)
C60.2021 (2)0.09443 (13)0.77313 (10)0.0279 (3)
C70.0090 (2)0.15661 (13)0.84233 (10)0.0275 (3)
C80.17079 (19)0.24034 (12)0.77927 (10)0.0237 (3)
C8A0.11770 (17)0.26304 (11)0.64282 (9)0.0190 (2)
C9A0.11878 (16)0.33125 (11)0.43268 (9)0.0184 (2)
C13A0.3667 (2)0.27429 (16)0.07206 (11)0.0331 (3)0.883 (2)
C4B0.24963 (17)0.20104 (12)0.31810 (9)0.0202 (2)0.117 (2)
C13B0.3667 (2)0.27429 (16)0.07206 (11)0.0331 (3)0.117 (2)
C2B0.03045 (19)0.36084 (14)0.19199 (10)0.0265 (3)0.117 (2)
C3B0.1473 (15)0.2369 (11)0.1984 (8)0.0199 (3)0.117 (2)
H3A0.298060.430370.202080.0239*0.883 (2)
H50.393310.068820.593920.0285*
H4A0.414240.199600.327910.0243*0.883 (2)
H4B0.212480.092110.307410.0243*0.883 (2)
H80.312860.281150.826350.0285*
H90.379 (3)0.4111 (17)0.5785 (14)0.041 (4)*
H13A0.352210.357510.003720.0496*0.883 (2)
H13B0.533650.260310.074180.0496*0.883 (2)
H13C0.303070.171550.065910.0496*0.883 (2)
H60.311340.039270.819530.0335*
H70.040110.140270.934580.0329*
H2A0.096340.263830.174800.0318*0.883 (2)
H2B0.034560.451040.117610.0318*0.883 (2)
H2C0.051340.461620.139690.0318*0.117 (2)
H2D0.135500.329860.141350.0318*0.117 (2)
H3B0.073010.134100.194840.0239*0.117 (2)
H4C0.396910.264400.299330.0243*0.117 (2)
H4D0.291600.084750.335720.0243*0.117 (2)
H13D0.306710.298140.007070.0496*0.117 (2)
H13E0.455470.367810.076480.0496*0.117 (2)
H13F0.470890.179580.070160.0496*0.117 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (3)0.0308 (4)0.0286 (4)0.0122 (3)0.0071 (3)0.0076 (3)
N90.0155 (3)0.0238 (4)0.0195 (4)0.0088 (3)0.0018 (3)0.0049 (3)
C10.0136 (4)0.0234 (4)0.0237 (4)0.0058 (3)0.0045 (3)0.0065 (3)
C2A0.0206 (5)0.0381 (6)0.0213 (4)0.0140 (4)0.0068 (3)0.0085 (4)
C3A0.0151 (5)0.0232 (5)0.0196 (5)0.0072 (4)0.0028 (4)0.0034 (4)
C4A0.0146 (4)0.0234 (4)0.0213 (4)0.0075 (3)0.0025 (3)0.0052 (3)
C4C0.0137 (4)0.0182 (4)0.0200 (4)0.0056 (3)0.0018 (3)0.0039 (3)
C4D0.0160 (4)0.0182 (4)0.0207 (4)0.0056 (3)0.0021 (3)0.0037 (3)
C50.0204 (5)0.0239 (5)0.0247 (5)0.0107 (4)0.0045 (4)0.0036 (4)
C60.0289 (5)0.0291 (5)0.0240 (5)0.0128 (4)0.0087 (4)0.0018 (4)
C70.0318 (5)0.0266 (5)0.0205 (5)0.0095 (4)0.0042 (4)0.0016 (4)
C80.0236 (5)0.0231 (4)0.0209 (4)0.0064 (4)0.0000 (3)0.0041 (4)
C8A0.0165 (4)0.0176 (4)0.0209 (4)0.0051 (3)0.0021 (3)0.0033 (3)
C9A0.0135 (4)0.0211 (4)0.0195 (4)0.0063 (3)0.0028 (3)0.0042 (3)
C13A0.0254 (5)0.0475 (7)0.0212 (5)0.0185 (5)0.0010 (4)0.0047 (4)
C4B0.0146 (4)0.0234 (4)0.0213 (4)0.0075 (3)0.0025 (3)0.0052 (3)
C13B0.0254 (5)0.0475 (7)0.0212 (5)0.0185 (5)0.0010 (4)0.0047 (4)
C2B0.0206 (5)0.0381 (6)0.0213 (4)0.0140 (4)0.0068 (3)0.0085 (4)
C3B0.0151 (5)0.0232 (5)0.0196 (5)0.0072 (4)0.0028 (4)0.0034 (4)
Geometric parameters (Å, º) top
O1—C11.2377 (13)C8—C8A1.4043 (14)
N9—C8A1.3686 (13)C2A—H2A0.9900
N9—C9A1.3864 (12)C2A—H2B0.9900
N9—H90.960 (17)C2B—H2C0.9900
C1—C2A1.5146 (14)C2B—H2D0.9900
C1—C2B1.5146 (14)C3A—H3A1.0000
C1—C9A1.4446 (13)C3B—H3B1.0000
C2A—C3A1.5276 (16)C4A—H4A0.9900
C2B—C3B1.439 (9)C4A—H4B0.9900
C3A—C4A1.5306 (15)C4B—H4C0.9900
C3A—C13A1.5385 (16)C4B—H4D0.9900
C3B—C13B1.616 (9)C5—H50.9500
C3B—C4B1.521 (9)C6—H60.9500
C4A—C4C1.4957 (13)C7—H70.9500
C4B—C4C1.4957 (13)C8—H80.9500
C4C—C4D1.4306 (13)C13A—H13B0.9800
C4C—C9A1.3859 (14)C13A—H13C0.9800
C4D—C51.4075 (15)C13A—H13A0.9800
C4D—C8A1.4264 (14)C13B—H13D0.9800
C5—C61.3785 (15)C13B—H13E0.9800
C6—C71.4140 (16)C13B—H13F0.9800
C7—C81.3784 (16)
O1···N92.9322 (11)H3A···O1iv2.6400
O1···C3Ai3.3896 (14)H3A···C9A3.0300
O1···C4Ai3.3747 (13)H3A···C8iii2.8700
O1···C4Bi3.3747 (13)H3A···H8iii2.3900
O1···N9ii2.8481 (12)H3B···C7v2.6200
O1···H4Ai2.7800H3B···C13A2.1300
O1···H3Ai2.6400H3B···C2A1.9700
O1···H4Ci2.4500H3B···C4A2.0500
O1···H92.813 (15)H3B···C5v2.8900
O1···H9ii1.939 (16)H3B···C6v2.4800
N9···O12.9322 (11)H4A···C1iv2.9100
N9···O1ii2.8481 (12)H4A···O1iv2.7800
C1···C8Aiii3.5679 (14)H4A···H5viii2.5500
C1···C8iii3.5708 (15)H4B···C4Dv2.9600
C2B···C13A2.5175 (17)H4B···H13C2.4900
C2B···C4A2.5384 (15)H4B···C8Av2.9900
C3A···O1iv3.3896 (14)H4C···O1iv2.4500
C3B···C6v3.458 (9)H4C···C1iv2.7900
C3B···C7v3.592 (9)H4C···C2A3.0000
C4A···O1iv3.3747 (13)H4C···C13A2.4900
C4B···C2A2.5384 (15)H4C···H13E2.3300
C4B···O1iv3.3747 (13)H4D···H5viii2.3800
C4B···C13A2.5282 (15)H4D···C8Av3.1000
C6···C3Bv3.458 (9)H4D···C13A2.9100
C7···C3Bv3.592 (9)H5···H4Dviii2.3800
C8···C1iii3.5708 (15)H5···H4Aviii2.5500
C8A···C1iii3.5679 (14)H5···H5viii2.5700
C13B···C2A2.5175 (17)H6···H13Fviii2.4600
C13B···C4A2.5282 (15)H7···H7ix2.5800
C1···H4Ci2.7900H8···H13Dx2.5100
C1···H9ii3.012 (16)H8···C13Ax2.8400
C1···H4Ai2.9100H8···H13Ax2.4900
C4D···H4Bv2.9600H8···H13Bx2.5800
C5···H3Bv2.8900H8···C13Bx2.8400
C6···H2Av3.0200H8···H3Aiii2.3900
C6···H3Bv2.4800H9···O1ii1.939 (16)
C7···H3Bv2.6200H9···O12.813 (15)
C8···H2Ciii2.9900H9···C1ii3.012 (16)
C8···H3Aiii2.8700H13A···H8vi2.4900
C8A···H4Bv2.9900H13A···H2B2.5000
C8A···H4Dv3.1000H13B···H8vi2.5800
C9A···H3A3.0300H13C···H4B2.4900
C13A···H8vi2.8400H13C···H2A2.5100
C13B···H8vi2.8400H13D···H8vi2.5100
H2A···H13C2.5100H13D···C2A2.6600
H2A···C6v3.0200H13D···H2C2.4900
H2B···H2Bvii2.4400H13E···C2A2.8000
H2B···H13A2.5000H13E···C4A2.7100
H2C···C13A2.4400H13E···H2C2.4300
H2C···H13D2.4900H13E···H4C2.3300
H2C···C8iii2.9900H13E···H13Exi2.4800
H2C···H13E2.4300H13F···C4A2.7100
H2C···C4A2.9900H13F···H6viii2.4600
H2D···C13A2.8800
C8A—N9—C9A107.71 (8)C1—C2B—H2C107.00
C9A—N9—H9126.1 (9)C1—C2B—H2D107.00
C8A—N9—H9125.8 (9)C3B—C2B—H2C107.00
O1—C1—C9A123.78 (9)C3B—C2B—H2D107.00
O1—C1—C2A121.93 (9)H2C—C2B—H2D107.00
C2B—C1—C9A114.27 (9)C4A—C3A—H3A108.00
C2A—C1—C9A114.27 (9)C13A—C3A—H3A108.00
O1—C1—C2B121.93 (9)C2A—C3A—H3A108.00
C1—C2A—C3A114.98 (9)C2B—C3B—H3B107.00
C1—C2B—C3B121.6 (3)C4B—C3B—H3B107.00
C2A—C3A—C13A110.39 (9)C13B—C3B—H3B107.00
C2A—C3A—C4A112.21 (9)C3A—C4A—H4A110.00
C4A—C3A—C13A110.93 (9)C4C—C4A—H4A110.00
C4B—C3B—C13B107.3 (5)C4C—C4A—H4B110.00
C2B—C3B—C4B118.1 (6)C3A—C4A—H4B110.00
C2B—C3B—C13B110.9 (5)H4A—C4A—H4B108.00
C3A—C4A—C4C110.43 (8)C4C—C4B—H4D109.00
C3B—C4B—C4C113.5 (3)C3B—C4B—H4C109.00
C4A—C4C—C4D131.07 (9)C3B—C4B—H4D109.00
C4A—C4C—C9A122.53 (8)H4C—C4B—H4D108.00
C4D—C4C—C9A106.40 (8)C4C—C4B—H4C109.00
C4B—C4C—C4D131.07 (9)C4D—C5—H5121.00
C4B—C4C—C9A122.53 (8)C6—C5—H5121.00
C4C—C4D—C5134.36 (9)C7—C6—H6119.00
C4C—C4D—C8A106.39 (8)C5—C6—H6119.00
C5—C4D—C8A119.23 (9)C8—C7—H7119.00
C4D—C5—C6118.82 (10)C6—C7—H7119.00
C5—C6—C7121.15 (10)C8A—C8—H8121.00
C6—C7—C8121.64 (10)C7—C8—H8121.00
C7—C8—C8A117.49 (10)H13B—C13A—H13C109.00
N9—C8A—C4D109.02 (8)H13A—C13A—H13C109.00
N9—C8A—C8129.38 (9)C3A—C13A—H13A109.00
C4D—C8A—C8121.61 (9)C3A—C13A—H13B109.00
N9—C9A—C1125.11 (9)C3A—C13A—H13C109.00
N9—C9A—C4C110.47 (8)H13A—C13A—H13B109.00
C1—C9A—C4C124.40 (9)C3B—C13B—H13D109.00
C1—C2A—H2A109.00C3B—C13B—H13E109.00
C1—C2A—H2B109.00C3B—C13B—H13F109.00
C3A—C2A—H2A109.00H13D—C13B—H13E109.00
C3A—C2A—H2B109.00H13D—C13B—H13F109.00
H2A—C2A—H2B108.00H13E—C13B—H13F109.00
C9A—N9—C8A—C4D0.74 (11)C9A—C4C—C4D—C5176.89 (11)
C9A—N9—C8A—C8179.21 (10)C9A—C4C—C4D—C8A1.25 (11)
C8A—N9—C9A—C1178.64 (9)C4A—C4C—C9A—N9178.40 (9)
C8A—N9—C9A—C4C0.06 (12)C4A—C4C—C9A—C12.88 (15)
O1—C1—C2A—C3A152.13 (10)C4D—C4C—C9A—N90.84 (11)
C9A—C1—C2A—C3A29.84 (13)C4D—C4C—C9A—C1177.89 (9)
O1—C1—C9A—N91.63 (16)C4C—C4D—C5—C6178.95 (11)
O1—C1—C9A—C4C176.91 (10)C8A—C4D—C5—C61.00 (15)
C2A—C1—C9A—N9176.36 (9)C4C—C4D—C8A—N91.24 (11)
C2A—C1—C9A—C4C5.10 (14)C4C—C4D—C8A—C8178.71 (9)
C1—C2A—C3A—C4A52.21 (13)C5—C4D—C8A—N9177.23 (9)
C1—C2A—C3A—C13A176.50 (10)C5—C4D—C8A—C82.82 (15)
C2A—C3A—C4A—C4C47.27 (12)C4D—C5—C6—C71.00 (16)
C13A—C3A—C4A—C4C171.26 (9)C5—C6—C7—C81.31 (17)
C3A—C4A—C4C—C4D156.71 (10)C6—C7—C8—C8A0.46 (16)
C3A—C4A—C4C—C9A24.26 (13)C7—C8—C8A—N9177.55 (10)
C4A—C4C—C4D—C53.97 (19)C7—C8—C8A—C4D2.50 (15)
C4A—C4C—C4D—C8A177.90 (10)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y, z1; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) x, y, z+2; (x) x1, y, z+1; (xi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1ii0.960 (17)1.939 (16)2.848 (1)157.2 (13)
C4A—H4B···Cg1v0.992.833.779 (1)162
Symmetry codes: (ii) x1, y+1, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO
Mr199.24
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)5.8301 (3), 8.4348 (5), 10.8000 (7)
α, β, γ (°)78.094 (5), 75.942 (5), 87.166 (5)
V3)504.11 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.14 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.753, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5927, 3292, 2400
Rint0.028
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.00
No. of reflections3292
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.960 (17)1.939 (16)2.848 (1)157.2 (13)
C4A—H4B···Cg1ii0.992.833.779 (1)162
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBiere, H., Rufer, C., Ahrens, H., Schröder, E., Losert, W., Loge, O. & Schillinger, E. (1973). Patent DE 2226702 (A1).  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413–o2414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJean, C. F., Rangisetty, J. B., Dukat, M., Setola, V., Raffay, T., Roth, B. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett. 14, 1961–1964.  Web of Science PubMed Google Scholar
First citationKnolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science CrossRef PubMed Google Scholar
First citationLacoume, B. (1973). Patent AU 3217771 (A).  Google Scholar
First citationMooradian, A., Dupont, P. E., Hlavac, A. G., Aceto, M. D. & Pearl, J. (1977). J. Med. Chem. 20, 487–492.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, 33, 481–482.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSowmithran, D. & Rajendra Prasad, K. J. (1986). Heterocycles, 24, 711–717.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763–o764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1946-o1947
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds