organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1934-o1935

(E)-1-Methyl-2-styrylpyridinium iodide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 12 July 2009; accepted 15 July 2009; online 18 July 2009)

In the title compound, C14H14N+·I, the cation exists in an E configuration with respect to the ethenyl bond and is slightly twisted, the inter­planar angle between the pyridinium and phenyl rings of the cation being 4.8 (2)°. In the crystal packing, the cations are stacked in an anti­parallel fashion along the a axis by a ππ inter­action involving both pyridinium and phenyl rings; the centroid–centroid distance is 3.542 (3) Å. Each iodide ion is sandwiched between two cations. The cations and iodide anions are linked together by weak C—H⋯I inter­actions, giving rise to ladder-like ribbons along the a axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Wenseleers et al. (1998[Wenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925-930.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Chantrapromma et al. (2009a[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1144-o1145.],b[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1884-o1885.]); Fun et al. (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1554-o1555.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N+·I

  • Mr = 323.16

  • Monoclinic, P 21 /c

  • a = 7.0841 (1) Å

  • b = 10.0664 (2) Å

  • c = 19.1771 (3) Å

  • β = 109.017 (1)°

  • V = 1292.91 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.552, Tmax = 0.735

  • 15764 measured reflections

  • 3753 independent reflections

  • 3186 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.09

  • 3753 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1i 0.93 3.05 3.799 (4) 139
C14—H14A⋯I1ii 0.96 3.04 3.996 (5) 173
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search for new materials capable of nonlinear optical (NLO) applications, many studies have focused on organic molecules containing highly polarizable π-conjugated backbones (Wenseleers et al., 1998). During the course of our screening for NLO active organic compounds, we have previously reported the crystal structures of pyridinium derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2009a,b); Fun et al., 2009). In this paper we report the synthesis of the title compound whose crystal structure was undertaken in order to establish the conformation and crystal packing. The title compound crystallized in centrosymmetric space group P21/c so it does not exhibit second-order nonlinear optical properties.

In the title compound, C14H14N+. I- (Fig. 1), the cation exists in an E configuration with respect to the ethenyl C6C7 double bond [1.347 (6) Å]; the torsion angle C5–C6–C7–C8 is 178.5 (4)°. The cation is slightly twisted, the interplanar angle between the pyridinium and phenyl rings being 4.8 (2)°. The bond distances in the cation have normal values (Allen et al., 1987) and are comparable with closely related compounds (Chantrapromma et al., 2009a,b; Fun et al., 2009).

In the crystal packing (Fig. 2), the cations are stacked in an antiparallel fashion along the a axis by a ππ interaction with the Cg1···Cg2 distance = 3.542 (3) Å (symmetry code: 2-x, 1-y, 1-z); Cg1 and Cg2 are the centroids of the N1/C1–C5 and C8–C13 rings, respectively. Each iodide ion is sandwiched between two cations. The cations and iodide anions are linked together by weak C—H···I interactions, giving rise to ladder-like ribbons along the a axis (Table 1 and Fig. 2). The crystal structure is stabilized by C—H···I and ππ interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linerar optical materials research, see: Wenseleers et al. (1998). For related structures, see: Chanawanno et al. (2008); Chantrapromma et al. (2009a,b); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

The title compound was prepared by mixing 1:1:1 molar ratio solutions of 1,2-dimethylpyridinium iodide (2 g, 8.5 mmol), benzaldehyde (0.86 ml, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 5 hours under a nitrogen atmosphere. A pale yellow solid of the resulting compound was formed, this was then filtered and washed with diethyl ether. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature after several weeks, Mp. 505-506 K. Details of the stability of the temperature controller used in the data collection have been published earlier (Cosier & Glazer, 1986).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic C and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from I1 and the deepest hole is located at 0.67 Å from I1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Weak C—H···I interactions are shown as dashed lines.
(E)-1-Methyl-2-styrylpyridinium iodide top
Crystal data top
C14H14N+·IF(000) = 632
Mr = 323.16Dx = 1.660 Mg m3
Monoclinic, P21/cMelting point = 505–506 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.0841 (1) ÅCell parameters from 3753 reflections
b = 10.0664 (2) Åθ = 2.3–30.0°
c = 19.1771 (3) ŵ = 2.45 mm1
β = 109.017 (1)°T = 100 K
V = 1292.91 (4) Å3Block, pale yellow
Z = 40.28 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3753 independent reflections
Radiation source: sealed tube3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 89
Tmin = 0.552, Tmax = 0.735k = 1414
15764 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.037P)2 + 4.8574P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 1.53 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
C14H14N+·IV = 1292.91 (4) Å3
Mr = 323.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0841 (1) ŵ = 2.45 mm1
b = 10.0664 (2) ÅT = 100 K
c = 19.1771 (3) Å0.28 × 0.18 × 0.13 mm
β = 109.017 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3753 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3186 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.735Rint = 0.031
15764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.09Δρmax = 1.53 e Å3
3753 reflectionsΔρmin = 1.30 e Å3
146 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.70838 (4)0.18319 (3)0.382571 (14)0.03436 (10)
N10.6191 (5)0.7789 (4)0.45127 (18)0.0298 (7)
C10.5059 (6)0.8350 (4)0.3870 (2)0.0327 (8)
H1A0.48300.92610.38510.039*
C20.4245 (6)0.7599 (5)0.3248 (2)0.0332 (8)
H2A0.34630.79930.28110.040*
C30.4607 (6)0.6242 (4)0.3281 (2)0.0305 (8)
H3A0.40940.57180.28630.037*
C40.5727 (6)0.5682 (4)0.3936 (2)0.0316 (8)
H4A0.59580.47720.39620.038*
C50.6529 (7)0.6466 (4)0.4568 (2)0.0328 (8)
C60.7642 (7)0.5934 (4)0.5286 (2)0.0346 (9)
H6A0.79460.64930.56940.041*
C70.8250 (6)0.4660 (5)0.5384 (2)0.0350 (9)
H7A0.78850.41310.49640.042*
C80.9420 (6)0.4001 (4)0.6074 (2)0.0272 (7)
C90.9771 (6)0.2630 (4)0.6079 (2)0.0299 (8)
H9A0.93100.21510.56410.036*
C101.0797 (6)0.1984 (4)0.6727 (3)0.0335 (9)
H10A1.10080.10730.67240.040*
C111.1507 (7)0.2682 (5)0.7377 (2)0.0365 (9)
H11A1.22250.22470.78100.044*
C121.1146 (7)0.4048 (5)0.7385 (2)0.0341 (9)
H12A1.15900.45160.78260.041*
C131.0130 (6)0.4704 (4)0.6736 (2)0.0291 (8)
H13A0.99200.56150.67420.035*
C140.7074 (7)0.8689 (5)0.5147 (2)0.0364 (9)
H14A0.84690.84920.53670.055*
H14B0.64090.85640.55050.055*
H14C0.69170.95930.49800.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04036 (17)0.03000 (15)0.02839 (14)0.00091 (11)0.00527 (11)0.00118 (10)
N10.0326 (17)0.0315 (17)0.0280 (15)0.0039 (14)0.0137 (14)0.0016 (13)
C10.0287 (19)0.034 (2)0.036 (2)0.0047 (16)0.0115 (16)0.0009 (16)
C20.0278 (19)0.040 (2)0.0309 (19)0.0078 (17)0.0080 (16)0.0005 (17)
C30.0273 (18)0.037 (2)0.0278 (17)0.0012 (16)0.0093 (15)0.0019 (16)
C40.035 (2)0.028 (2)0.0306 (18)0.0052 (16)0.0094 (16)0.0010 (15)
C50.038 (2)0.0277 (19)0.0304 (19)0.0067 (16)0.0087 (17)0.0050 (15)
C60.037 (2)0.032 (2)0.035 (2)0.0006 (17)0.0126 (17)0.0000 (16)
C70.037 (2)0.033 (2)0.035 (2)0.0014 (17)0.0115 (17)0.0006 (17)
C80.0288 (18)0.0266 (18)0.0270 (16)0.0042 (15)0.0100 (14)0.0036 (14)
C90.0308 (19)0.0301 (19)0.0333 (19)0.0038 (16)0.0166 (16)0.0037 (15)
C100.031 (2)0.0222 (18)0.047 (2)0.0010 (15)0.0130 (18)0.0064 (16)
C110.033 (2)0.036 (2)0.036 (2)0.0011 (18)0.0055 (17)0.0119 (18)
C120.037 (2)0.038 (2)0.0268 (18)0.0043 (18)0.0097 (16)0.0017 (16)
C130.0315 (19)0.0222 (17)0.0345 (19)0.0014 (15)0.0118 (16)0.0002 (14)
C140.047 (2)0.030 (2)0.032 (2)0.0036 (19)0.0130 (18)0.0053 (16)
Geometric parameters (Å, º) top
N1—C51.352 (5)C7—H7A0.9300
N1—C11.355 (5)C8—C131.397 (5)
N1—C141.481 (5)C8—C91.402 (6)
C1—C21.370 (6)C9—C101.381 (6)
C1—H1A0.9300C9—H9A0.9300
C2—C31.387 (6)C10—C111.376 (6)
C2—H2A0.9300C10—H10A0.9300
C3—C41.369 (6)C11—C121.399 (7)
C3—H3A0.9300C11—H11A0.9300
C4—C51.402 (6)C12—C131.384 (6)
C4—H4A0.9300C12—H12A0.9300
C5—C61.448 (6)C13—H13A0.9300
C6—C71.347 (6)C14—H14A0.9600
C6—H6A0.9300C14—H14B0.9600
C7—C81.470 (6)C14—H14C0.9600
C5—N1—C1121.3 (4)C13—C8—C9118.8 (4)
C5—N1—C14121.4 (4)C13—C8—C7121.3 (4)
C1—N1—C14117.3 (4)C9—C8—C7119.8 (4)
N1—C1—C2121.2 (4)C10—C9—C8120.6 (4)
N1—C1—H1A119.4C10—C9—H9A119.7
C2—C1—H1A119.4C8—C9—H9A119.7
C1—C2—C3119.0 (4)C11—C10—C9120.4 (4)
C1—C2—H2A120.5C11—C10—H10A119.8
C3—C2—H2A120.5C9—C10—H10A119.8
C4—C3—C2119.4 (4)C10—C11—C12119.8 (4)
C4—C3—H3A120.3C10—C11—H11A120.1
C2—C3—H3A120.3C12—C11—H11A120.1
C3—C4—C5120.8 (4)C13—C12—C11120.2 (4)
C3—C4—H4A119.6C13—C12—H12A119.9
C5—C4—H4A119.6C11—C12—H12A119.9
N1—C5—C4118.4 (4)C12—C13—C8120.2 (4)
N1—C5—C6117.8 (4)C12—C13—H13A119.9
C4—C5—C6123.8 (4)C8—C13—H13A119.9
C7—C6—C5122.3 (4)N1—C14—H14A109.5
C7—C6—H6A118.8N1—C14—H14B109.5
C5—C6—H6A118.8H14A—C14—H14B109.5
C6—C7—C8128.1 (4)N1—C14—H14C109.5
C6—C7—H7A116.0H14A—C14—H14C109.5
C8—C7—H7A116.0H14B—C14—H14C109.5
C5—N1—C1—C21.3 (6)C4—C5—C6—C710.0 (7)
C14—N1—C1—C2177.6 (4)C5—C6—C7—C8178.5 (4)
N1—C1—C2—C30.4 (6)C6—C7—C8—C132.8 (7)
C1—C2—C3—C41.4 (6)C6—C7—C8—C9174.6 (4)
C2—C3—C4—C50.8 (6)C13—C8—C9—C100.2 (6)
C1—N1—C5—C41.9 (6)C7—C8—C9—C10177.3 (4)
C14—N1—C5—C4176.9 (4)C8—C9—C10—C110.7 (6)
C1—N1—C5—C6175.9 (4)C9—C10—C11—C121.5 (7)
C14—N1—C5—C65.3 (6)C10—C11—C12—C131.9 (7)
C3—C4—C5—N10.8 (6)C11—C12—C13—C81.5 (6)
C3—C4—C5—C6176.8 (4)C9—C8—C13—C120.6 (6)
N1—C5—C6—C7172.4 (4)C7—C8—C13—C12176.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.933.053.799 (4)139
C14—H14A···I1ii0.963.043.996 (5)173
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N+·I
Mr323.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0841 (1), 10.0664 (2), 19.1771 (3)
β (°) 109.017 (1)
V3)1292.91 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.28 × 0.18 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.552, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
15764, 3753, 3186
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.09
No. of reflections3753
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 1.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.933.053.799 (4)139
C14—H14A···I1ii0.963.043.996 (5)173
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. SC thanks the Prince of Songkla University for financial support through the Crystal Materials Research Unit.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1884-o1885.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1554–o1555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925–930.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1934-o1935
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds