organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3α-Hydr­­oxy-ent-atis-16-en-14-one

aNorth-West Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China, bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, cChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, and dState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kuming 650204, People's Republic of China
*Correspondence e-mail: wanghuan@nwipb.ac.cn

(Received 12 June 2009; accepted 4 July 2009; online 11 July 2009)

The title compound, C20H30O2, is an ent-atisane diterpenoid which was isolated from the roots of Euphorbia kansuensis. The mol­ecule contains five six-membered rings, among which three six-membered rings of the bicyclo­[2.2.2]octane unit adopt boat conformations and two cyclo­hexane rings adopt chair conformations. In the crystal structure, mol­ecules are connected by inter­molecular O—H⋯O hydrogen bonds, forming zigzag chains propagating parallel to [001].

Related literature

For applications of the roots of Euphorbia kansuensis, see: Zhao & Zhao (1992[Zhao, Z.-L. & Zhao, R.-N. (1992). J. Chin. Pharm. 27, 269-270.]). For related structures, see: Lal et al. (1990[Lal, A. R., Cambie, R. C., Rutledge, P. S. & Woodgate, P. D. (1990). Phytochemistry, 29, 1925-1935.]); He et al. (2008[He, F., Pu, J. X., Huang, S. X., Xiao, W. L., Yang, L. B., Li, X. N., Zhao, Y., Ding, J., Xu, C. H. & Sun, H. D. (2008). Helv. Chim. Acta, 91, 2139-2147.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30O2

  • Mr = 302.44

  • Orthorhombic, P 21 21 21

  • a = 7.310 (1) Å

  • b = 12.346 (2) Å

  • c = 18.431 (3) Å

  • V = 1663.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 285 K

  • 0.54 × 0.38 × 0.30 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 2435 measured reflections

  • 1744 independent reflections

  • 1240 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 97 reflections intensity decay: 2.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.076

  • S = 0.96

  • 1744 reflections

  • 207 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.813 (10) 2.110 (11) 2.922 (3) 178 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Euphorbia kansuensis Proch. (Euphorbiaceae) is distributed mainly in the west of China. As a Tibetan medicine, the roots of this plant have been used as pyretolysis, cholagogue, apocenosis and purgative (Zhao & Zhao, 1992). Our investigation of the roots of this plant led to the isolation of the title compound. The compound has been reported previously and its structure was postulated from spectroscopic methods (He et al., 2008). In order to further confirm the spatial structure, a crystal structure analysis has been undertaken.

The molecular structure (Fig. 1) contains five six-membered rings (A, atoms C1–C5/C10; B, C5–C10; C, C8/C9/C11–C14; D, C8/C12–C16 and E, C8/C9/C11/C12/C15/C16). Rings A and B adopt a chair conformation, while rings C, D and E of the bicyclo-[2.2.2]-octane adopt boat conformations. The A/B and B/E ring junctions are trans-fused, but B/C is cis-fused. In the crystal structure, the molecules are linked by intermolecular O—H···O hydrogen bonds, forming the one-dimensional structure (Fig. 2).

Related literature top

For applications of the roots of Euphorbia kansuensis, see: Zhao & Zhao (1992). For related structures, see: Lal et al. (1990); He et al. (2008).

Experimental top

The air-dried roots of E. kansuensis (15 kg) were extracted with 85% EtOH (2 × 30 l) at 358 K for 2 h and then evaporated in vacuo. The residue suspended in water was extracted with CHCl3. The CHCl3 extract (180 g) was subjected to Si-gel CC using solvents of increasing polarity from petroleum ether through EtOAc to afford 15 fractions (F1-F15). Fraction F7 was further separated by RP-18 CC using MeOH-H2O (68:32) to give the title compound (18 mg), and further crystallized at room temperature from MeOH to afford prisms. The analytical NMR data of (I) are in accordance with the reference (He et al., 2008)

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å and O—H = 0.81 Å). H atoms bonded to C atoms were refined as riding, with Uiso(H) = 1.2Ueq(C). The absolute configuration could not be determined from the X-ray analysis because of the absence of strong anomalous scatterers. Friedel pairs were therefore merged before refinement. However, the absolute configuration may be suggested on a biogenetic basis (Lal et al., 1990; He et al., 2008).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3α-Hydroxy-ent-atis-16-en-14-one top
Crystal data top
C20H30O2F(000) = 664
Mr = 302.44Dx = 1.208 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 28 reflections
a = 7.310 (1) Åθ = 2.8–13.3°
b = 12.346 (2) ŵ = 0.08 mm1
c = 18.431 (3) ÅT = 285 K
V = 1663.4 (4) Å3Prism, colourless
Z = 40.54 × 0.38 × 0.30 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.020
Radiation source: normal-focus sealed tubeθmax = 25.3°, θmin = 2.0°
Graphite monochromatorh = 08
ω scansk = 014
2435 measured reflectionsl = 122
1744 independent reflections3 standard reflections every 97 reflections
1240 reflections with I > 2σ(I) intensity decay: 2.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.031P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1744 reflectionsΔρmax = 0.12 e Å3
207 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0228 (17)
Crystal data top
C20H30O2V = 1663.4 (4) Å3
Mr = 302.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.310 (1) ŵ = 0.08 mm1
b = 12.346 (2) ÅT = 285 K
c = 18.431 (3) Å0.54 × 0.38 × 0.30 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.020
2435 measured reflections3 standard reflections every 97 reflections
1744 independent reflections intensity decay: 2.8%
1240 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.12 e Å3
1744 reflectionsΔρmin = 0.13 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6384 (3)0.66962 (17)0.56057 (11)0.0535 (6)
O20.6926 (3)0.34246 (17)0.20401 (9)0.0586 (7)
C10.8688 (4)0.4212 (2)0.48422 (14)0.0411 (7)
H1A0.81360.36920.51700.049*
H1B0.99690.40230.47890.049*
C20.8547 (4)0.5341 (2)0.51763 (16)0.0448 (8)
H2A0.91390.53440.56480.054*
H2B0.91730.58590.48690.054*
C30.6573 (4)0.5667 (2)0.52594 (14)0.0378 (7)
H30.59820.51270.55710.045*
C40.5518 (4)0.5697 (2)0.45424 (14)0.0356 (7)
C50.5770 (4)0.45689 (19)0.41716 (13)0.0303 (6)
H50.51640.40580.45000.036*
C60.4748 (4)0.4443 (2)0.34489 (14)0.0382 (7)
H6A0.35400.47620.34900.046*
H6B0.54060.48230.30700.046*
C70.4570 (4)0.3248 (2)0.32477 (15)0.0393 (7)
H7A0.37840.28940.35990.047*
H7B0.39870.31920.27770.047*
C80.6396 (4)0.26588 (19)0.32227 (13)0.0319 (7)
C90.7584 (4)0.29023 (19)0.38987 (14)0.0319 (7)
H90.69410.25670.43080.038*
C100.7746 (3)0.4128 (2)0.40951 (13)0.0304 (7)
C110.9430 (4)0.2297 (2)0.38417 (15)0.0471 (8)
H11A1.04150.28200.37990.057*
H11B0.96300.18790.42800.057*
C120.9455 (4)0.1535 (2)0.31781 (15)0.0490 (8)
H121.05950.11190.31580.059*
C130.9223 (5)0.2234 (2)0.24987 (17)0.0558 (9)
H13A1.02440.27330.24590.067*
H13B0.92200.17760.20710.067*
C140.7470 (5)0.2859 (2)0.25353 (15)0.0409 (7)
C150.6065 (4)0.1418 (2)0.32132 (16)0.0448 (8)
H15A0.53340.12170.36310.054*
H15B0.53820.12270.27800.054*
C160.7825 (4)0.0797 (2)0.32255 (15)0.0444 (8)
C170.7944 (5)0.0274 (2)0.32922 (14)0.0656 (10)
H17A0.68870.06880.33350.079*
H17B0.90840.06080.32960.079*
C180.6115 (5)0.6678 (2)0.40765 (14)0.0515 (9)
H18A0.56730.73340.42940.062*
H18B0.56170.66080.35970.062*
H18C0.74260.67010.40490.062*
C190.3481 (4)0.5846 (2)0.47237 (17)0.0556 (9)
H19A0.33320.64680.50300.067*
H19B0.30370.52140.49710.067*
H19C0.28010.59480.42830.067*
C200.8897 (4)0.4746 (2)0.35366 (15)0.0452 (8)
H20A1.00310.43710.34600.054*
H20B0.91410.54630.37130.054*
H20C0.82390.47900.30870.054*
H1O0.683 (4)0.667 (3)0.6009 (9)0.083 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0756 (17)0.0435 (13)0.0414 (12)0.0026 (13)0.0094 (14)0.0140 (11)
O20.0858 (18)0.0589 (13)0.0310 (10)0.0106 (14)0.0045 (12)0.0076 (10)
C10.0394 (17)0.0402 (15)0.0437 (16)0.0031 (15)0.0115 (16)0.0003 (14)
C20.054 (2)0.0401 (16)0.0406 (17)0.0047 (17)0.0182 (17)0.0040 (15)
C30.0534 (18)0.0316 (15)0.0284 (14)0.0059 (15)0.0001 (15)0.0041 (13)
C40.0402 (17)0.0325 (15)0.0341 (15)0.0031 (14)0.0042 (14)0.0044 (13)
C50.0330 (16)0.0308 (14)0.0271 (14)0.0007 (13)0.0034 (13)0.0004 (12)
C60.0349 (17)0.0426 (17)0.0371 (16)0.0054 (14)0.0103 (14)0.0042 (13)
C70.0388 (17)0.0425 (16)0.0365 (15)0.0001 (15)0.0076 (16)0.0063 (14)
C80.0358 (17)0.0312 (14)0.0288 (14)0.0008 (14)0.0002 (15)0.0014 (13)
C90.0344 (16)0.0317 (14)0.0296 (13)0.0009 (14)0.0030 (14)0.0035 (12)
C100.0309 (16)0.0306 (15)0.0296 (14)0.0024 (13)0.0024 (14)0.0013 (12)
C110.048 (2)0.0395 (16)0.0537 (19)0.0073 (16)0.0091 (18)0.0038 (15)
C120.0517 (19)0.0470 (18)0.0482 (18)0.0178 (17)0.0026 (18)0.0026 (17)
C130.061 (2)0.0540 (18)0.0522 (19)0.0075 (19)0.018 (2)0.0013 (17)
C140.056 (2)0.0359 (15)0.0313 (15)0.0021 (17)0.0015 (17)0.0038 (14)
C150.059 (2)0.0381 (17)0.0373 (16)0.0056 (16)0.0015 (18)0.0065 (15)
C160.065 (2)0.0371 (16)0.0307 (14)0.0047 (17)0.0060 (17)0.0055 (14)
C170.097 (3)0.0467 (19)0.0533 (19)0.011 (2)0.014 (2)0.0070 (17)
C180.081 (2)0.0318 (16)0.0415 (17)0.0057 (19)0.0087 (19)0.0020 (14)
C190.050 (2)0.057 (2)0.060 (2)0.0091 (18)0.0085 (19)0.0210 (18)
C200.0452 (19)0.0425 (16)0.0479 (18)0.0069 (17)0.0072 (16)0.0002 (14)
Geometric parameters (Å, º) top
O1—C31.429 (3)C9—C101.560 (3)
O1—H1O0.813 (10)C9—H90.9800
O2—C141.216 (3)C10—C201.533 (3)
C1—C21.527 (3)C11—C121.544 (4)
C1—C101.543 (3)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C12—C161.502 (4)
C2—C31.507 (4)C12—C131.531 (4)
C2—H2A0.9700C12—H120.9800
C2—H2B0.9700C13—C141.497 (4)
C3—C41.531 (3)C13—H13A0.9700
C3—H30.9800C13—H13B0.9700
C4—C191.537 (4)C15—C161.498 (4)
C4—C181.548 (3)C15—H15A0.9700
C4—C51.562 (3)C15—H15B0.9700
C5—C61.535 (3)C16—C171.331 (3)
C5—C101.550 (3)C17—H17A0.9300
C5—H50.9800C17—H17B0.9300
C6—C71.526 (3)C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C7—C81.521 (4)C19—H19A0.9600
C7—H7A0.9700C19—H19B0.9600
C7—H7B0.9700C19—H19C0.9600
C8—C141.511 (4)C20—H20A0.9600
C8—C91.549 (4)C20—H20B0.9600
C8—C151.550 (3)C20—H20C0.9600
C9—C111.545 (4)
C3—O1—H1O109 (2)C20—C10—C5113.4 (2)
C2—C1—C10113.0 (2)C1—C10—C5108.1 (2)
C2—C1—H1A109.0C20—C10—C9111.6 (2)
C10—C1—H1A109.0C1—C10—C9107.8 (2)
C2—C1—H1B109.0C5—C10—C9107.0 (2)
C10—C1—H1B109.0C12—C11—C9111.0 (2)
H1A—C1—H1B107.8C12—C11—H11A109.4
C3—C2—C1110.5 (2)C9—C11—H11A109.4
C3—C2—H2A109.6C12—C11—H11B109.4
C1—C2—H2A109.6C9—C11—H11B109.4
C3—C2—H2B109.6H11A—C11—H11B108.0
C1—C2—H2B109.6C16—C12—C13107.6 (3)
H2A—C2—H2B108.1C16—C12—C11108.3 (2)
O1—C3—C2112.1 (2)C13—C12—C11107.6 (2)
O1—C3—C4108.4 (2)C16—C12—H12111.1
C2—C3—C4113.7 (2)C13—C12—H12111.1
O1—C3—H3107.5C11—C12—H12111.1
C2—C3—H3107.5C14—C13—C12110.4 (3)
C4—C3—H3107.5C14—C13—H13A109.6
C3—C4—C19107.7 (2)C12—C13—H13A109.6
C3—C4—C18110.8 (2)C14—C13—H13B109.6
C19—C4—C18107.5 (3)C12—C13—H13B109.6
C3—C4—C5107.3 (2)H13A—C13—H13B108.1
C19—C4—C5108.4 (2)O2—C14—C13122.8 (3)
C18—C4—C5115.0 (2)O2—C14—C8123.6 (3)
C6—C5—C10109.8 (2)C13—C14—C8113.5 (3)
C6—C5—C4114.4 (2)C16—C15—C8111.8 (2)
C10—C5—C4117.6 (2)C16—C15—H15A109.3
C6—C5—H5104.5C8—C15—H15A109.3
C10—C5—H5104.5C16—C15—H15B109.3
C4—C5—H5104.5C8—C15—H15B109.3
C7—C6—C5110.5 (2)H15A—C15—H15B107.9
C7—C6—H6A109.5C17—C16—C15124.5 (3)
C5—C6—H6A109.5C17—C16—C12123.8 (3)
C7—C6—H6B109.5C15—C16—C12111.7 (2)
C5—C6—H6B109.5C16—C17—H17A120.0
H6A—C6—H6B108.1C16—C17—H17B120.0
C8—C7—C6113.3 (2)H17A—C17—H17B120.0
C8—C7—H7A108.9C4—C18—H18A109.5
C6—C7—H7A108.9C4—C18—H18B109.5
C8—C7—H7B108.9H18A—C18—H18B109.5
C6—C7—H7B108.9C4—C18—H18C109.5
H7A—C7—H7B107.7H18A—C18—H18C109.5
C14—C8—C7113.8 (2)H18B—C18—H18C109.5
C14—C8—C9110.6 (2)C4—C19—H19A109.5
C7—C8—C9112.0 (2)C4—C19—H19B109.5
C14—C8—C15103.5 (2)H19A—C19—H19B109.5
C7—C8—C15109.6 (2)C4—C19—H19C109.5
C9—C8—C15106.8 (2)H19A—C19—H19C109.5
C11—C9—C8110.0 (2)H19B—C19—H19C109.5
C11—C9—C10114.7 (2)C10—C20—H20A109.5
C8—C9—C10114.7 (2)C10—C20—H20B109.5
C11—C9—H9105.5H20A—C20—H20B109.5
C8—C9—H9105.5C10—C20—H20C109.5
C10—C9—H9105.5H20A—C20—H20C109.5
C20—C10—C1108.7 (2)H20B—C20—H20C109.5
C10—C1—C2—C358.1 (3)C4—C5—C10—C150.0 (3)
C1—C2—C3—O1176.9 (2)C6—C5—C10—C961.1 (3)
C1—C2—C3—C459.7 (3)C4—C5—C10—C9165.85 (19)
O1—C3—C4—C1964.3 (3)C11—C9—C10—C2058.7 (3)
C2—C3—C4—C19170.4 (2)C8—C9—C10—C2070.0 (3)
O1—C3—C4—C1853.0 (3)C11—C9—C10—C160.6 (3)
C2—C3—C4—C1872.3 (3)C8—C9—C10—C1170.7 (2)
O1—C3—C4—C5179.3 (2)C11—C9—C10—C5176.7 (2)
C2—C3—C4—C553.9 (3)C8—C9—C10—C554.6 (3)
C3—C4—C5—C6178.3 (2)C8—C9—C11—C126.4 (3)
C19—C4—C5—C662.3 (3)C10—C9—C11—C12137.4 (2)
C18—C4—C5—C657.9 (3)C9—C11—C12—C1654.4 (3)
C3—C4—C5—C1050.6 (3)C9—C11—C12—C1361.7 (3)
C19—C4—C5—C10166.6 (2)C16—C12—C13—C1457.9 (3)
C18—C4—C5—C1073.1 (3)C11—C12—C13—C1458.6 (3)
C10—C5—C6—C762.9 (3)C12—C13—C14—O2175.6 (3)
C4—C5—C6—C7162.4 (2)C12—C13—C14—C80.7 (3)
C5—C6—C7—C855.2 (3)C7—C8—C14—O21.0 (4)
C6—C7—C8—C1479.2 (3)C9—C8—C14—O2128.1 (3)
C6—C7—C8—C947.2 (3)C15—C8—C14—O2117.9 (3)
C6—C7—C8—C15165.5 (2)C7—C8—C14—C13177.2 (2)
C14—C8—C9—C1151.2 (3)C9—C8—C14—C1355.7 (3)
C7—C8—C9—C11179.3 (2)C15—C8—C14—C1358.3 (3)
C15—C8—C9—C1160.7 (3)C14—C8—C15—C1661.1 (3)
C14—C8—C9—C1079.9 (3)C7—C8—C15—C16177.2 (2)
C7—C8—C9—C1048.2 (3)C9—C8—C15—C1655.6 (3)
C15—C8—C9—C10168.2 (2)C8—C15—C16—C17173.1 (3)
C2—C1—C10—C2071.8 (3)C8—C15—C16—C125.0 (3)
C2—C1—C10—C551.7 (3)C13—C12—C16—C17126.9 (3)
C2—C1—C10—C9167.0 (2)C11—C12—C16—C17117.1 (3)
C6—C5—C10—C2062.4 (3)C13—C12—C16—C1555.0 (3)
C4—C5—C10—C2070.7 (3)C11—C12—C16—C1561.1 (3)
C6—C5—C10—C1177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.81 (1)2.11 (1)2.922 (3)178 (3)
Symmetry code: (i) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H30O2
Mr302.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)285
a, b, c (Å)7.310 (1), 12.346 (2), 18.431 (3)
V3)1663.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.38 × 0.30
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2435, 1744, 1240
Rint0.020
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.076, 0.96
No. of reflections1744
No. of parameters207
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.813 (10)2.110 (11)2.922 (3)178 (3)
Symmetry code: (i) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors thank the State Key Laboratory of Phytochemistry and Plant Resources in West China for financial support. The project was also supported by the West Doctoral Program of the Chinese Academy of Sciences.

References

First citationHe, F., Pu, J. X., Huang, S. X., Xiao, W. L., Yang, L. B., Li, X. N., Zhao, Y., Ding, J., Xu, C. H. & Sun, H. D. (2008). Helv. Chim. Acta, 91, 2139–2147.  Web of Science CrossRef CAS Google Scholar
First citationLal, A. R., Cambie, R. C., Rutledge, P. S. & Woodgate, P. D. (1990). Phytochemistry, 29, 1925–1935.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, Z.-L. & Zhao, R.-N. (1992). J. Chin. Pharm. 27, 269–270.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds