metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(pentane-2,4-dionato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)copper(II)

aFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 July 2009; accepted 10 July 2009; online 18 July 2009)

The CuII atom in the title compound, [Cu(C5H7O2)Cl(C12H8N2)], shows a distorted square-planar coordination; the chelating N and O atoms occupy the basal sites and the Cl atom the apical site. The square-pyramidal character along the Berry D3hC4v pseudorotation pathway is 92%.

Related literature

For the synthesis and electronic spectrum, see: Kwik & Ang (1978[Kwik, W. L. & Ang, H. G. (1978). Aust. J. Chem. 31, 459-463.]). For isostructural CuBr(C12H8N2)(C5H7O2), see: Onawumi et al. (2008[Onawumi, O. O. E., Faboya, O. O. P., Odunola, O. A., Prasad, T. K. & Rajasekharan, M. V. (2008). Polyhedron, 27, 113-117.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H7O2)Cl(C12H8N2)]

  • Mr = 378.30

  • Triclinic, [P \overline 1]

  • a = 7.5436 (1) Å

  • b = 9.0347 (2) Å

  • c = 11.9399 (2) Å

  • α = 85.638 (1)°

  • β = 72.329 (1)°

  • γ = 85.716 (1)°

  • V = 771.97 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 163 K

  • 0.35 × 0.35 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.605, Tmax = 0.796

  • 5384 measured reflections

  • 3406 independent reflections

  • 3151 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.03

  • 3406 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.4717 (6)
Cu1—O1 1.927 (2)
Cu1—O2 1.936 (2)
Cu1—N1 2.038 (2)
Cu1—N2 2.025 (2)
O1—Cu1—O2 93.82 (7)
N1—Cu1—N2 81.04 (7)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis and electronic spectrum, see: Kwik & Ang (1978). For isostructural CuBr(C12H8N2)(C5H7O2), see: Onawumi et al. (2008).

Experimental top

Copper chloride dihydrate (0.17 g, 1 mmol) and 1,10-phenanthroline monohydrate (0.20 g, 1 mmol) were reacted in a 1:1 v/v methanol-water mixture (5 ml) to give a light green precipitate. The copper dichloride.phenanthroline adduct (0.047 g, 0.15 mmol) was dissolved in a methanol-water mixture (5 ml) and this was treated with excess acetylacetone (5 ml) and 0.1 M sodium hydroxide (5 ml). The dark green solution was heated at 343 K for 30 min. Bluish-green crystals separated from the cool solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid (Barbour, 2001) plot of CuCl(C12H8N2)(C5H7O2) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
Chlorido(pentane-2,4-dionato-κ2O,O')(1,10- phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C5H7O2)Cl(C12H8N2)]Z = 2
Mr = 378.30F(000) = 386
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5436 (1) ÅCell parameters from 4297 reflections
b = 9.0347 (2) Åθ = 2.8–28.3°
c = 11.9399 (2) ŵ = 1.60 mm1
α = 85.638 (1)°T = 163 K
β = 72.329 (1)°Block, blue
γ = 85.716 (1)°0.35 × 0.35 × 0.15 mm
V = 771.97 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
3406 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.605, Tmax = 0.796k = 1111
5384 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0226P)2 + 1.0753P]
where P = (Fo2 + 2Fc2)/3
3406 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C5H7O2)Cl(C12H8N2)]γ = 85.716 (1)°
Mr = 378.30V = 771.97 (2) Å3
Triclinic, P1Z = 2
a = 7.5436 (1) ÅMo Kα radiation
b = 9.0347 (2) ŵ = 1.60 mm1
c = 11.9399 (2) ÅT = 163 K
α = 85.638 (1)°0.35 × 0.35 × 0.15 mm
β = 72.329 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3406 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3151 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.796Rint = 0.015
5384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
3406 reflectionsΔρmin = 0.43 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.74448 (4)0.62243 (3)0.25532 (2)0.01986 (8)
Cl10.42757 (8)0.74327 (6)0.30310 (4)0.02521 (12)
O10.7987 (2)0.61537 (17)0.40339 (13)0.0275 (3)
O20.8805 (2)0.79922 (17)0.19426 (14)0.0272 (3)
N10.7637 (2)0.56785 (19)0.08940 (15)0.0197 (3)
N20.6667 (2)0.41013 (19)0.29186 (15)0.0201 (3)
C10.8971 (4)0.6884 (3)0.5587 (2)0.0391 (6)
H1A0.79580.62940.60870.059*
H1B0.89540.78300.59420.059*
H1C1.01680.63350.55140.059*
C20.8716 (3)0.7181 (3)0.4385 (2)0.0261 (5)
C30.9315 (3)0.8491 (3)0.3737 (2)0.0313 (5)
H30.96910.92330.41260.038*
C40.9407 (3)0.8800 (2)0.2562 (2)0.0256 (5)
C51.0312 (4)1.0189 (3)0.1944 (2)0.0370 (6)
H5A1.03621.02250.11130.056*
H5B1.15801.01850.20050.056*
H5C0.95841.10630.23140.056*
C60.8170 (3)0.6495 (2)0.01113 (19)0.0243 (4)
H60.85740.74640.01010.029*
C70.8159 (3)0.5982 (3)0.11824 (19)0.0270 (5)
H70.85610.65970.18840.032*
C80.7568 (3)0.4593 (3)0.12245 (18)0.0247 (4)
H80.75510.42390.19500.030*
C90.6982 (3)0.3695 (2)0.01631 (18)0.0213 (4)
C100.6357 (3)0.2224 (2)0.00981 (19)0.0254 (4)
H100.62790.18140.07900.030*
C110.5872 (3)0.1408 (2)0.0943 (2)0.0263 (5)
H110.54760.04300.09660.032*
C120.5948 (3)0.1995 (2)0.20076 (18)0.0216 (4)
C130.5500 (3)0.1196 (2)0.3117 (2)0.0266 (5)
H130.51000.02100.31980.032*
C140.5653 (3)0.1866 (2)0.40724 (19)0.0267 (5)
H140.53710.13410.48200.032*
C150.6226 (3)0.3326 (2)0.39506 (18)0.0230 (4)
H150.63020.37780.46260.028*
C160.6529 (3)0.3440 (2)0.19648 (17)0.0183 (4)
C170.7057 (3)0.4300 (2)0.08651 (17)0.0183 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02849 (15)0.01578 (13)0.01782 (13)0.00745 (10)0.00941 (10)0.00008 (9)
Cl10.0299 (3)0.0241 (3)0.0245 (2)0.0016 (2)0.0116 (2)0.00471 (19)
O10.0404 (9)0.0230 (8)0.0251 (8)0.0066 (7)0.0179 (7)0.0008 (6)
O20.0357 (9)0.0206 (8)0.0261 (8)0.0129 (7)0.0080 (7)0.0005 (6)
N10.0240 (9)0.0180 (8)0.0181 (8)0.0041 (7)0.0076 (7)0.0001 (6)
N20.0254 (9)0.0168 (8)0.0189 (8)0.0031 (7)0.0075 (7)0.0007 (6)
C10.0551 (17)0.0374 (14)0.0368 (13)0.0050 (12)0.0312 (13)0.0112 (11)
C20.0282 (11)0.0258 (11)0.0291 (11)0.0042 (9)0.0149 (9)0.0102 (9)
C30.0356 (13)0.0265 (12)0.0385 (13)0.0064 (10)0.0179 (11)0.0102 (10)
C40.0211 (10)0.0200 (10)0.0355 (12)0.0043 (8)0.0060 (9)0.0071 (9)
C50.0362 (13)0.0262 (12)0.0447 (14)0.0134 (10)0.0020 (11)0.0083 (10)
C60.0290 (11)0.0211 (10)0.0238 (10)0.0082 (8)0.0092 (9)0.0032 (8)
C70.0327 (12)0.0289 (12)0.0200 (10)0.0064 (9)0.0093 (9)0.0051 (8)
C80.0282 (11)0.0293 (12)0.0183 (9)0.0032 (9)0.0088 (8)0.0022 (8)
C90.0209 (10)0.0231 (10)0.0210 (10)0.0020 (8)0.0073 (8)0.0018 (8)
C100.0308 (11)0.0237 (11)0.0246 (10)0.0040 (9)0.0105 (9)0.0073 (8)
C110.0335 (12)0.0188 (10)0.0291 (11)0.0075 (9)0.0110 (9)0.0046 (8)
C120.0237 (10)0.0187 (10)0.0221 (10)0.0032 (8)0.0059 (8)0.0016 (8)
C130.0327 (12)0.0179 (10)0.0280 (11)0.0058 (9)0.0071 (9)0.0017 (8)
C140.0350 (12)0.0213 (11)0.0230 (10)0.0057 (9)0.0078 (9)0.0049 (8)
C150.0289 (11)0.0218 (10)0.0185 (9)0.0042 (8)0.0070 (8)0.0004 (8)
C160.0190 (9)0.0163 (9)0.0196 (9)0.0013 (7)0.0058 (7)0.0011 (7)
C170.0184 (9)0.0177 (9)0.0195 (9)0.0022 (7)0.0065 (7)0.0010 (7)
Geometric parameters (Å, º) top
Cu1—Cl12.4717 (6)C5—H5C0.9800
Cu1—O11.927 (2)C6—C71.396 (3)
Cu1—O21.936 (2)C6—H60.9500
Cu1—N12.038 (2)C7—C81.372 (3)
Cu1—N22.025 (2)C7—H70.9500
O1—C21.271 (3)C8—C91.420 (3)
O2—C41.273 (3)C8—H80.9500
N1—C61.328 (3)C9—C171.399 (3)
N1—C171.357 (3)C9—C101.433 (3)
N2—C151.332 (3)C10—C111.359 (3)
N2—C161.360 (3)C10—H100.9500
C1—C21.507 (3)C11—C121.431 (3)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C161.401 (3)
C1—H1C0.9800C12—C131.418 (3)
C2—C31.390 (3)C13—C141.370 (3)
C3—C41.391 (3)C13—H130.9500
C3—H30.9500C14—C151.402 (3)
C4—C51.506 (3)C14—H140.9500
C5—H5A0.9800C15—H150.9500
C5—H5B0.9800C16—C171.435 (3)
O1—Cu1—O293.82 (7)H5B—C5—H5C109.5
O1—Cu1—N288.87 (7)N1—C6—C7122.4 (2)
O2—Cu1—N2164.40 (7)N1—C6—H6118.8
O1—Cu1—N1158.42 (7)C7—C6—H6118.8
O2—Cu1—N191.13 (7)C8—C7—C6120.18 (19)
N1—Cu1—N281.04 (7)C8—C7—H7119.9
O1—Cu1—Cl1102.88 (5)C6—C7—H7119.9
O2—Cu1—Cl197.34 (5)C7—C8—C9118.7 (2)
N2—Cu1—Cl197.03 (5)C7—C8—H8120.6
N1—Cu1—Cl197.28 (5)C9—C8—H8120.6
C2—O1—Cu1124.95 (14)C17—C9—C10119.20 (19)
C4—O2—Cu1124.08 (15)C17—C9—C8116.96 (19)
C6—N1—C17118.08 (18)C10—C9—C8123.8 (2)
C6—N1—Cu1129.04 (15)C11—C10—C9120.7 (2)
C17—N1—Cu1112.82 (13)C11—C10—H10119.7
C15—N2—C16117.97 (18)C9—C10—H10119.7
C15—N2—Cu1128.74 (15)C10—C11—C12121.3 (2)
C16—N2—Cu1113.24 (13)C10—C11—H11119.4
C2—C1—H1A109.5C12—C11—H11119.4
C2—C1—H1B109.5C16—C12—C13116.90 (19)
H1A—C1—H1B109.5C16—C12—C11118.84 (19)
C2—C1—H1C109.5C13—C12—C11124.2 (2)
H1A—C1—H1C109.5C14—C13—C12119.0 (2)
H1B—C1—H1C109.5C14—C13—H13120.5
O1—C2—C3125.0 (2)C12—C13—H13120.5
O1—C2—C1115.3 (2)C13—C14—C15120.21 (19)
C3—C2—C1119.7 (2)C13—C14—H14119.9
C2—C3—C4125.1 (2)C15—C14—H14119.9
C2—C3—H3117.4N2—C15—C14122.2 (2)
C4—C3—H3117.4N2—C15—H15118.9
O2—C4—C3125.5 (2)C14—C15—H15118.9
O2—C4—C5116.0 (2)N2—C16—C12123.74 (18)
C3—C4—C5118.4 (2)N2—C16—C17116.22 (18)
C4—C5—H5A109.5C12—C16—C17120.03 (19)
C4—C5—H5B109.5N1—C17—C9123.64 (18)
H5A—C5—H5B109.5N1—C17—C16116.42 (18)
C4—C5—H5C109.5C9—C17—C16119.93 (18)
H5A—C5—H5C109.5
O2—Cu1—O1—C210.33 (19)C6—C7—C8—C90.3 (3)
N2—Cu1—O1—C2174.95 (19)C7—C8—C9—C170.2 (3)
N1—Cu1—O1—C2113.2 (2)C7—C8—C9—C10179.3 (2)
Cl1—Cu1—O1—C288.10 (18)C17—C9—C10—C111.2 (3)
O1—Cu1—O2—C411.32 (19)C8—C9—C10—C11177.9 (2)
N2—Cu1—O2—C4110.9 (3)C9—C10—C11—C120.8 (4)
N1—Cu1—O2—C4170.31 (18)C10—C11—C12—C160.2 (3)
Cl1—Cu1—O2—C492.21 (18)C10—C11—C12—C13178.6 (2)
O1—Cu1—N1—C6115.3 (2)C16—C12—C13—C140.1 (3)
O2—Cu1—N1—C612.0 (2)C11—C12—C13—C14178.9 (2)
N2—Cu1—N1—C6178.4 (2)C12—C13—C14—C150.7 (3)
Cl1—Cu1—N1—C685.57 (19)C16—N2—C15—C140.7 (3)
O1—Cu1—N1—C1767.4 (2)Cu1—N2—C15—C14177.97 (16)
O2—Cu1—N1—C17170.77 (15)C13—C14—C15—N21.1 (4)
N2—Cu1—N1—C174.33 (14)C15—N2—C16—C120.1 (3)
Cl1—Cu1—N1—C1791.68 (14)Cu1—N2—C16—C12177.56 (16)
O1—Cu1—N2—C1517.41 (19)C15—N2—C16—C17178.63 (19)
O2—Cu1—N2—C15117.6 (3)Cu1—N2—C16—C173.7 (2)
N1—Cu1—N2—C15178.3 (2)C13—C12—C16—N20.5 (3)
Cl1—Cu1—N2—C1585.43 (19)C11—C12—C16—N2179.4 (2)
O1—Cu1—N2—C16165.19 (15)C13—C12—C16—C17178.19 (19)
O2—Cu1—N2—C1665.0 (3)C11—C12—C16—C170.7 (3)
N1—Cu1—N2—C164.33 (14)C6—N1—C17—C90.3 (3)
Cl1—Cu1—N2—C1691.97 (14)Cu1—N1—C17—C9177.29 (16)
Cu1—O1—C2—C33.0 (3)C6—N1—C17—C16178.75 (19)
Cu1—O1—C2—C1178.82 (16)Cu1—N1—C17—C163.7 (2)
O1—C2—C3—C47.9 (4)C10—C9—C17—N1179.7 (2)
C1—C2—C3—C4170.2 (2)C8—C9—C17—N10.5 (3)
Cu1—O2—C4—C35.2 (3)C10—C9—C17—C160.7 (3)
Cu1—O2—C4—C5175.75 (16)C8—C9—C17—C16178.49 (19)
C2—C3—C4—O26.6 (4)N2—C16—C17—N10.0 (3)
C2—C3—C4—C5172.4 (2)C12—C16—C17—N1178.79 (19)
C17—N1—C6—C70.3 (3)N2—C16—C17—C9179.10 (19)
Cu1—N1—C6—C7177.38 (17)C12—C16—C17—C90.3 (3)
N1—C6—C7—C80.6 (4)

Experimental details

Crystal data
Chemical formula[Cu(C5H7O2)Cl(C12H8N2)]
Mr378.30
Crystal system, space groupTriclinic, P1
Temperature (K)163
a, b, c (Å)7.5436 (1), 9.0347 (2), 11.9399 (2)
α, β, γ (°)85.638 (1), 72.329 (1), 85.716 (1)
V3)771.97 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.35 × 0.35 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.605, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
5384, 3406, 3151
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.03
No. of reflections3406
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.43

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Cu1—Cl12.4717 (6)Cu1—N12.038 (2)
Cu1—O11.927 (2)Cu1—N22.025 (2)
Cu1—O21.936 (2)
O1—Cu1—O293.82 (7)N1—Cu1—N281.04 (7)
 

Acknowledgements

The authors thank MOSTI (grant No. 02-02-11-SF0033) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKwik, W. L. & Ang, H. G. (1978). Aust. J. Chem. 31, 459–463.  CrossRef CAS Google Scholar
First citationOnawumi, O. O. E., Faboya, O. O. P., Odunola, O. A., Prasad, T. K. & Rajasekharan, M. V. (2008). Polyhedron, 27, 113–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds