metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(tri­phenyl­phosphine-κP)copper(I) tetra­fluoridoborate

aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: yfdai@ncu.edu.cn

(Received 10 July 2009; accepted 24 July 2009; online 29 July 2009)

In the title compound, [Cu(C18H15P)2(H2O)]BF4, the CuI atom is coordinated by two P atoms from triphenyl­phosphine ligands and one water mol­ecule in a distorted trigonal geometry. In the BF4 anion, three F atoms are disordered over two sites around the B—F bond, the site-occupancy ratio being 0.67 (6):0.33 (6). The Cu⋯F distance of 2.602 (5) Å between the Cu atom and the ordered F atom may suggest a weak but genuine inter­action. O—H⋯F and weak C—H⋯F hydrogen bonding is present in the crystal structure.

Related literature

For the applications of CuI complexes, see: Kirchhoff et al. (1985[Kirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem. 24, 3928-2933.]); Zhang et al. (2004[Zhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). Adv. Mater. 16, 432-436.]); Moudam et al. (2007[Moudam, O., Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Holler, M., Accorsi, G., Armaroli, N., Seguy, I., Navarro, J., Destruel, P. & Nierengarten, J. (2007). Chem. Commun. pp. 3077-3079.]). For the tetra­hedral coordination geometry of CuI complexes, see: Engelhardt et al. (1985[Engelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125-133.]); Barron et al. (1987[Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099-1106.]). For the weak Cu⋯F inter­action, see: Mao et al. (2003[Mao, Z., Chao, H.-Y., Hui, Z., Che, C.-M., Fu, W.-F., Cheung, K.-K. & Zhu, N. (2003). Chem. Eur. J. 9, 2885-2997.]); Fu et al. (2004[Fu, W.-F., Gan, X., Che, C.-M., Cao, Q.-Y., Zhou, Z.-Y. & Zhu, N.-Y. (2004). Chem. Eur. J. 10, 2228-2236.]). For Cu—P and Cu—O bond distances, see: Meng et al. (2006[Meng, X.-T., Li, Q.-S., Xu, F.-B., Song, H.-B., Anson, C. E. & Zhang, Z.-Z. (2006). Inorg. Chem. 45, 7986-7987.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H15P)2(H2O)]BF4

  • Mr = 692.91

  • Monoclinic, P 21 /n

  • a = 13.9737 (14) Å

  • b = 12.4258 (11) Å

  • c = 19.4276 (18) Å

  • β = 94.521 (1)°

  • V = 3362.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 298 K

  • 0.48 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.702, Tmax = 0.883

  • 17192 measured reflections

  • 5914 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.202

  • S = 1.04

  • 5914 reflections

  • 434 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.105 (5)
Cu1—P1 2.2318 (18)
Cu1—P2 2.2478 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯F2 0.85 1.87 2.71 (3) 171
O1—H1D⋯F3i 0.85 1.98 2.82 (3) 171
C28—H28⋯F4ii 0.93 2.51 3.25 (3) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(I) complexes with phosphine ligand have attracted much attention because of their rich photophysical properties and potential applications in organic light-emitting diodes (OLEDs) (Kirchhoff et al., 1985; Zhang et al., 2004; Moudam et al., 2007). These complexes usually adopt tetrahedron coordination geometry (Engelhardt et al., 1985; Barron et al., 1987), three-coordinated copper(I) complexes with phosphine ligands is relatively little known. We reported here the title three-coordinated copper(I) complex.

The molecular structure is depicted in Fig. 1. The copper(I) atom is three-coordinated in distorted trigonal geometry (Table 1) by two P atoms from two triphenylphosphine ligands and one water molecule. The Cu1—P and Cu1—O bond distances are comparable to those found in related complexes (Engelhardt et al., 1985; Barron et al., 1987; Meng et al., 2006). The coordination angles around the Cu1 atom are ranging from 104.80 (16)° to 133.89 (7)°. In the BF4 anion three F atoms are disordered over two sites around the B1—F1 bond. The Cu1···F1 distance of 2.602 (5) Å between the Cu1 atom and the ordered F1 atom may suggests a weak but genuine interaction, similar to the situation found in the related structures (Fu et al., 2004); Mao et al., 2003).

The O—H···F and weak C—H···F hydrogen bonding is present in the crystal structure (Table 2).

Related literature top

For the applications of CuI complexes, see: Kirchhoff et al. (1985); Zhang et al. (2004); Moudam et al. (2007). For the tetrahedral coordination geometry of CuI complexes, see: Engelhardt et al. (1985); Barron et al. (1987). For the weak Cu···F interaction, see: Mao et al. (2003); Fu et al. (2004). For Cu—P and Cu—O bond distances, see: Meng et al. (2006).

Experimental top

[Cu(CH3CN)4]BF4 (0.031 g, 0.1 mmol) was added to a solution of triphenylphosphine (0.052 g, 0.2 mmol) in 30 ml dichloromethane with small amount of water under nitrogen atmosphere. The mixture was stirred at room temperature for 2 h to obtain the yellow solution. Crystallization by slow diffusion of diethyl ether into the dichloromethane solution yielded yellow crystals suitable for X-ray diffraction (yield: 47%). Analysis calculated for [Cu(H2O)(C18H15P)2].(BF4): C 62.40, H 4.66%; Found: C 62.08, H 4.93%.

Refinement top

All H atoms were positioned geometrically and treated as riding (O—H = 0.65 Å and C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,O). The F2, F3 and F4 atoms are disordered over two sites, site occupancy factors were refined to 0.67 (6) and 0.33 (6).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms in benzene rings and the minor disorder component of the F2—F4 are omitted for clarity. The Cu···F weak interaction and O—H···F hydrogen bond are indicated by dashed lines.
Aquabis(triphenylphosphine-κP)copper(I) tetrafluoridoborate top
Crystal data top
[Cu(C18H15P)2(H2O)]BF4F(000) = 1424
Mr = 692.91Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2641 reflections
a = 13.9737 (14) Åθ = 2.2–21.6°
b = 12.4258 (11) ŵ = 0.79 mm1
c = 19.4276 (18) ÅT = 298 K
β = 94.521 (1)°Block, yellow
V = 3362.8 (5) Å30.48 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5914 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.702, Tmax = 0.883k = 1414
17192 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0646P)2 + 7.3064P]
where P = (Fo2 + 2Fc2)/3
5914 reflections(Δ/σ)max = 0.001
434 parametersΔρmax = 0.93 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
[Cu(C18H15P)2(H2O)]BF4V = 3362.8 (5) Å3
Mr = 692.91Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.9737 (14) ŵ = 0.79 mm1
b = 12.4258 (11) ÅT = 298 K
c = 19.4276 (18) Å0.48 × 0.19 × 0.16 mm
β = 94.521 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5914 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3008 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.883Rint = 0.078
17192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.202H-atom parameters constrained
S = 1.04Δρmax = 0.93 e Å3
5914 reflectionsΔρmin = 0.36 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.36105 (6)0.80395 (7)0.13634 (4)0.0517 (3)
O10.2503 (4)0.7985 (4)0.2037 (2)0.0875 (17)
H1C0.23440.86340.21070.105*
H1D0.23140.75970.23610.105*
P10.50924 (12)0.81613 (14)0.18770 (8)0.0460 (4)
P20.29834 (12)0.72605 (14)0.03854 (8)0.0464 (4)
C10.6043 (4)0.8457 (5)0.1314 (3)0.0463 (15)
C20.5854 (5)0.9201 (6)0.0780 (3)0.0606 (19)
H20.52470.95100.07150.073*
C30.6543 (6)0.9483 (6)0.0352 (4)0.069 (2)
H30.63990.99720.00030.082*
C40.7436 (6)0.9051 (6)0.0442 (4)0.067 (2)
H40.79020.92420.01490.081*
C50.7649 (5)0.8330 (6)0.0971 (4)0.068 (2)
H50.82650.80440.10380.082*
C60.6956 (5)0.8025 (6)0.1404 (3)0.0583 (18)
H60.71050.75300.17560.070*
C70.5344 (5)0.9112 (5)0.2578 (3)0.0512 (17)
C80.6274 (5)0.9386 (6)0.2829 (3)0.0610 (19)
H80.67930.90410.26520.073*
C90.6440 (6)1.0154 (6)0.3332 (4)0.070 (2)
H90.70661.03370.34870.084*
C100.5692 (7)1.0643 (7)0.3602 (4)0.077 (2)
H100.58071.11510.39500.092*
C110.4772 (6)1.0403 (7)0.3370 (4)0.083 (3)
H110.42621.07530.35540.100*
C120.4599 (5)0.9630 (6)0.2857 (3)0.067 (2)
H120.39700.94620.27020.080*
C130.5397 (5)0.6851 (5)0.2224 (3)0.0527 (17)
C140.5584 (6)0.6645 (6)0.2916 (4)0.077 (2)
H140.55890.72060.32340.092*
C150.5764 (7)0.5595 (8)0.3144 (5)0.105 (3)
H150.58800.54590.36140.126*
C160.5774 (8)0.4772 (8)0.2688 (5)0.106 (3)
H160.59100.40780.28450.127*
C170.5585 (7)0.4957 (7)0.2005 (5)0.094 (3)
H170.55860.43920.16910.113*
C180.5394 (6)0.5986 (6)0.1781 (4)0.075 (2)
H180.52570.61050.13110.090*
C190.3094 (4)0.5817 (5)0.0445 (3)0.0479 (16)
C200.2846 (5)0.5319 (6)0.1046 (4)0.067 (2)
H200.27100.57380.14220.080*
C210.2797 (6)0.4224 (7)0.1093 (4)0.077 (2)
H210.26160.39080.14960.092*
C220.3010 (6)0.3593 (7)0.0560 (4)0.077 (2)
H220.29610.28490.05930.092*
C230.3296 (6)0.4054 (7)0.0029 (4)0.081 (2)
H230.34670.36240.03920.097*
C240.3332 (5)0.5159 (6)0.0084 (4)0.066 (2)
H240.35210.54660.04880.080*
C250.1693 (5)0.7425 (6)0.0208 (3)0.0487 (16)
C260.1270 (5)0.8370 (6)0.0406 (4)0.070 (2)
H260.16380.88910.06450.084*
C270.0280 (6)0.8544 (8)0.0245 (4)0.083 (3)
H270.00070.91770.03800.099*
C280.0256 (6)0.7771 (8)0.0113 (4)0.079 (2)
H280.09040.78940.02350.095*
C290.0150 (5)0.6832 (7)0.0291 (4)0.073 (2)
H290.02230.63020.05200.088*
C300.1115 (5)0.6663 (6)0.0133 (3)0.0610 (19)
H300.13860.60160.02590.073*
C310.3468 (5)0.7605 (5)0.0425 (3)0.0512 (17)
C320.4439 (5)0.7700 (6)0.0454 (4)0.065 (2)
H320.48400.75700.00570.078*
C330.4846 (6)0.7984 (6)0.1059 (4)0.074 (2)
H330.55090.80300.10690.089*
C340.4255 (6)0.8195 (7)0.1639 (4)0.076 (2)
H340.45190.83890.20460.091*
C350.3292 (6)0.8125 (7)0.1625 (4)0.080 (2)
H350.28960.82780.20210.096*
C360.2894 (5)0.7826 (6)0.1026 (3)0.067 (2)
H360.22310.77710.10230.080*
B10.2480 (10)1.0703 (10)0.1638 (6)0.086 (3)
F10.3118 (4)1.0059 (4)0.1338 (2)0.0998 (15)
F20.206 (2)1.010 (2)0.2129 (18)0.108 (7)0.67 (6)
F30.3076 (17)1.150 (2)0.1979 (18)0.134 (9)0.67 (6)
F40.188 (2)1.115 (3)0.1190 (10)0.134 (10)0.67 (6)
F2'0.258 (5)1.174 (2)0.162 (3)0.138 (17)0.33 (6)
F3'0.155 (3)1.054 (5)0.123 (3)0.125 (15)0.33 (6)
F4'0.232 (5)1.050 (6)0.228 (2)0.110 (15)0.33 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0530 (5)0.0605 (6)0.0401 (5)0.0008 (4)0.0054 (3)0.0045 (4)
O10.121 (4)0.076 (4)0.069 (3)0.003 (3)0.034 (3)0.015 (3)
P10.0515 (10)0.0508 (11)0.0342 (9)0.0055 (9)0.0063 (7)0.0053 (8)
P20.0489 (10)0.0510 (11)0.0378 (9)0.0044 (8)0.0063 (7)0.0019 (8)
C10.053 (4)0.044 (4)0.040 (4)0.001 (3)0.005 (3)0.009 (3)
C20.068 (5)0.055 (5)0.058 (4)0.013 (4)0.003 (4)0.000 (4)
C30.085 (6)0.058 (5)0.062 (5)0.002 (5)0.004 (4)0.008 (4)
C40.082 (6)0.059 (5)0.063 (5)0.002 (4)0.016 (4)0.004 (4)
C50.062 (5)0.075 (6)0.069 (5)0.012 (4)0.009 (4)0.012 (4)
C60.066 (5)0.059 (5)0.050 (4)0.010 (4)0.000 (4)0.003 (3)
C70.063 (4)0.052 (4)0.037 (4)0.004 (4)0.005 (3)0.007 (3)
C80.067 (5)0.067 (5)0.048 (4)0.001 (4)0.008 (3)0.011 (4)
C90.080 (5)0.072 (6)0.056 (5)0.007 (5)0.010 (4)0.012 (4)
C100.110 (7)0.069 (6)0.050 (5)0.006 (5)0.002 (5)0.019 (4)
C110.089 (6)0.089 (7)0.074 (6)0.004 (5)0.022 (5)0.032 (5)
C120.070 (5)0.075 (5)0.055 (4)0.002 (4)0.002 (4)0.020 (4)
C130.059 (4)0.055 (5)0.042 (4)0.001 (4)0.006 (3)0.002 (3)
C140.108 (6)0.060 (5)0.058 (5)0.002 (5)0.016 (4)0.003 (4)
C150.161 (10)0.080 (7)0.068 (6)0.000 (7)0.028 (6)0.024 (5)
C160.153 (9)0.062 (6)0.097 (8)0.014 (6)0.023 (7)0.016 (6)
C170.136 (8)0.060 (6)0.085 (7)0.013 (6)0.007 (6)0.004 (5)
C180.105 (6)0.059 (5)0.059 (5)0.016 (5)0.004 (4)0.002 (4)
C190.050 (4)0.053 (4)0.040 (4)0.006 (3)0.001 (3)0.000 (3)
C200.088 (6)0.057 (5)0.057 (5)0.009 (4)0.014 (4)0.000 (4)
C210.099 (6)0.064 (6)0.069 (5)0.007 (5)0.016 (5)0.011 (4)
C220.096 (6)0.054 (5)0.080 (6)0.010 (5)0.002 (5)0.004 (5)
C230.107 (7)0.062 (6)0.073 (6)0.014 (5)0.013 (5)0.010 (4)
C240.084 (5)0.060 (5)0.056 (5)0.011 (4)0.009 (4)0.001 (4)
C250.052 (4)0.054 (4)0.040 (4)0.013 (3)0.002 (3)0.004 (3)
C260.070 (5)0.066 (5)0.072 (5)0.013 (4)0.001 (4)0.000 (4)
C270.077 (6)0.082 (6)0.091 (6)0.035 (5)0.014 (5)0.012 (5)
C280.060 (5)0.106 (8)0.071 (6)0.017 (5)0.004 (4)0.009 (5)
C290.052 (4)0.102 (7)0.063 (5)0.002 (5)0.007 (4)0.007 (5)
C300.054 (4)0.074 (5)0.053 (4)0.009 (4)0.006 (3)0.007 (4)
C310.057 (4)0.054 (4)0.042 (4)0.000 (3)0.002 (3)0.002 (3)
C320.063 (5)0.075 (5)0.056 (5)0.003 (4)0.002 (4)0.009 (4)
C330.067 (5)0.081 (6)0.075 (5)0.004 (4)0.019 (4)0.013 (5)
C340.091 (6)0.081 (6)0.058 (5)0.002 (5)0.018 (5)0.008 (4)
C350.088 (6)0.099 (7)0.051 (5)0.011 (5)0.005 (4)0.018 (4)
C360.063 (5)0.086 (6)0.050 (4)0.009 (4)0.001 (4)0.012 (4)
B10.123 (10)0.058 (8)0.075 (8)0.007 (8)0.003 (8)0.002 (6)
F10.111 (4)0.107 (4)0.085 (3)0.013 (3)0.026 (3)0.007 (3)
F20.131 (14)0.094 (13)0.108 (16)0.015 (9)0.058 (12)0.023 (9)
F30.134 (12)0.113 (11)0.151 (18)0.001 (10)0.009 (11)0.046 (11)
F40.139 (14)0.14 (2)0.119 (9)0.048 (15)0.014 (9)0.047 (13)
F2'0.18 (4)0.097 (19)0.14 (3)0.014 (19)0.01 (3)0.015 (17)
F3'0.14 (2)0.10 (3)0.13 (2)0.02 (2)0.016 (18)0.024 (19)
F4'0.15 (3)0.12 (4)0.060 (15)0.02 (3)0.013 (16)0.013 (18)
Geometric parameters (Å, º) top
Cu1—O12.105 (5)C17—H170.9300
Cu1—P12.2318 (18)C18—H180.9300
Cu1—P22.2478 (18)C19—C241.375 (9)
O1—H1C0.8500C19—C201.389 (9)
O1—H1D0.8500C20—C211.366 (10)
P1—C131.800 (7)C20—H200.9300
P1—C71.816 (6)C21—C221.349 (10)
P1—C11.823 (6)C21—H210.9300
P2—C191.803 (7)C22—C231.368 (10)
P2—C311.814 (6)C22—H220.9300
P2—C251.820 (6)C23—C241.377 (10)
C1—C61.383 (8)C23—H230.9300
C1—C21.400 (9)C24—H240.9300
C2—C31.366 (9)C25—C301.380 (9)
C2—H20.9300C25—C261.382 (9)
C3—C41.357 (10)C26—C271.410 (10)
C3—H30.9300C26—H260.9300
C4—C51.378 (10)C27—C281.373 (11)
C4—H40.9300C27—H270.9300
C5—C61.385 (9)C28—C291.355 (11)
C5—H50.9300C28—H280.9300
C6—H60.9300C29—C301.375 (9)
C7—C121.373 (9)C29—H290.9300
C7—C81.394 (9)C30—H300.9300
C8—C91.374 (9)C31—C321.367 (9)
C8—H80.9300C31—C361.390 (9)
C9—C101.350 (10)C32—C331.391 (9)
C9—H90.9300C32—H320.9300
C10—C111.362 (10)C33—C341.369 (10)
C10—H100.9300C33—H330.9300
C11—C121.391 (10)C34—C351.351 (10)
C11—H110.9300C34—H340.9300
C12—H120.9300C35—C361.381 (9)
C13—C141.374 (9)C35—H350.9300
C13—C181.377 (9)C36—H360.9300
C14—C151.393 (11)B1—F41.285 (19)
C14—H140.9300B1—F2'1.30 (3)
C15—C161.354 (12)B1—F4'1.31 (5)
C15—H150.9300B1—F11.363 (12)
C16—C171.352 (11)B1—F21.38 (3)
C16—H160.9300B1—F31.42 (2)
C17—C181.370 (10)B1—F3'1.48 (4)
O1—Cu1—P1115.18 (16)C17—C18—C13122.6 (7)
O1—Cu1—P2104.80 (16)C17—C18—H18118.7
P1—Cu1—P2133.89 (7)C13—C18—H18118.7
Cu1—O1—H1C106.5C24—C19—C20117.0 (7)
Cu1—O1—H1D139.8C24—C19—P2124.6 (5)
H1C—O1—H1D108.6C20—C19—P2118.1 (5)
C13—P1—C7106.4 (3)C21—C20—C19121.1 (7)
C13—P1—C1104.2 (3)C21—C20—H20119.4
C7—P1—C1102.2 (3)C19—C20—H20119.4
C13—P1—Cu1106.8 (2)C22—C21—C20120.8 (8)
C7—P1—Cu1119.8 (2)C22—C21—H21119.6
C1—P1—Cu1116.1 (2)C20—C21—H21119.6
C19—P2—C31104.8 (3)C21—C22—C23119.7 (8)
C19—P2—C25101.7 (3)C21—C22—H22120.2
C31—P2—C25103.9 (3)C23—C22—H22120.2
C19—P2—Cu1110.4 (2)C22—C23—C24119.8 (8)
C31—P2—Cu1119.0 (2)C22—C23—H23120.1
C25—P2—Cu1115.2 (2)C24—C23—H23120.1
C6—C1—C2118.0 (6)C19—C24—C23121.5 (7)
C6—C1—P1123.7 (5)C19—C24—H24119.2
C2—C1—P1118.3 (5)C23—C24—H24119.2
C3—C2—C1121.3 (7)C30—C25—C26118.0 (6)
C3—C2—H2119.4C30—C25—P2123.2 (5)
C1—C2—H2119.4C26—C25—P2118.8 (6)
C4—C3—C2120.3 (7)C25—C26—C27120.2 (8)
C4—C3—H3119.8C25—C26—H26119.9
C2—C3—H3119.8C27—C26—H26119.9
C3—C4—C5119.8 (7)C28—C27—C26119.4 (8)
C3—C4—H4120.1C28—C27—H27120.3
C5—C4—H4120.1C26—C27—H27120.3
C4—C5—C6120.7 (7)C29—C28—C27120.6 (8)
C4—C5—H5119.7C29—C28—H28119.7
C6—C5—H5119.7C27—C28—H28119.7
C1—C6—C5119.9 (6)C28—C29—C30119.8 (8)
C1—C6—H6120.0C28—C29—H29120.1
C5—C6—H6120.0C30—C29—H29120.1
C12—C7—C8117.6 (6)C29—C30—C25121.9 (7)
C12—C7—P1119.6 (5)C29—C30—H30119.0
C8—C7—P1122.8 (5)C25—C30—H30119.0
C9—C8—C7121.3 (7)C32—C31—C36117.2 (6)
C9—C8—H8119.4C32—C31—P2119.7 (5)
C7—C8—H8119.4C36—C31—P2123.0 (5)
C10—C9—C8119.8 (7)C31—C32—C33122.0 (7)
C10—C9—H9120.1C31—C32—H32119.0
C8—C9—H9120.1C33—C32—H32119.0
C9—C10—C11120.9 (7)C34—C33—C32118.9 (7)
C9—C10—H10119.6C34—C33—H33120.5
C11—C10—H10119.6C32—C33—H33120.5
C10—C11—C12119.6 (7)C35—C34—C33120.6 (7)
C10—C11—H11120.2C35—C34—H34119.7
C12—C11—H11120.2C33—C34—H34119.7
C7—C12—C11120.8 (7)C34—C35—C36120.1 (7)
C7—C12—H12119.6C34—C35—H35120.0
C11—C12—H12119.6C36—C35—H35120.0
C14—C13—C18117.2 (7)C35—C36—C31121.2 (7)
C14—C13—P1123.8 (6)C35—C36—H36119.4
C18—C13—P1118.9 (5)C31—C36—H36119.4
C13—C14—C15120.0 (8)F4—B1—F1112.3 (13)
C13—C14—H14120.0F4—B1—F2114.1 (18)
C15—C14—H14120.0F1—B1—F2107.7 (14)
C16—C15—C14120.7 (8)F4—B1—F3110.3 (14)
C16—C15—H15119.6F1—B1—F3103.1 (12)
C14—C15—H15119.6F2—B1—F3108.8 (13)
C17—C16—C15120.2 (9)F2'—B1—F4'104 (3)
C17—C16—H16119.9F2'—B1—F3'103 (2)
C15—C16—H16119.9F4'—B1—F3'106 (3)
C16—C17—C18119.2 (8)F1—B1—F3'105.6 (16)
C16—C17—H17120.4F2'—B1—F1120 (2)
C18—C17—H17120.4F4'—B1—F1117 (3)
O1—Cu1—P1—C1375.2 (3)C13—C14—C15—C161.1 (15)
P2—Cu1—P1—C1372.4 (2)C14—C15—C16—C171.5 (17)
O1—Cu1—P1—C745.7 (3)C15—C16—C17—C180.6 (17)
P2—Cu1—P1—C7166.8 (2)C16—C17—C18—C130.8 (15)
O1—Cu1—P1—C1169.2 (3)C14—C13—C18—C171.3 (12)
P2—Cu1—P1—C143.3 (3)P1—C13—C18—C17177.8 (7)
O1—Cu1—P2—C1983.8 (3)C31—P2—C19—C2410.6 (7)
P1—Cu1—P2—C1966.0 (2)C25—P2—C19—C2497.4 (6)
O1—Cu1—P2—C31155.1 (3)Cu1—P2—C19—C24139.8 (5)
P1—Cu1—P2—C3155.1 (3)C31—P2—C19—C20175.1 (5)
O1—Cu1—P2—C2530.6 (3)C25—P2—C19—C2076.9 (6)
P1—Cu1—P2—C25179.5 (2)Cu1—P2—C19—C2045.8 (6)
C13—P1—C1—C626.4 (6)C24—C19—C20—C213.0 (11)
C7—P1—C1—C684.2 (6)P2—C19—C20—C21171.7 (6)
Cu1—P1—C1—C6143.5 (5)C19—C20—C21—C221.4 (13)
C13—P1—C1—C2156.7 (5)C20—C21—C22—C231.4 (13)
C7—P1—C1—C292.7 (5)C21—C22—C23—C242.4 (13)
Cu1—P1—C1—C239.6 (6)C20—C19—C24—C232.0 (11)
C6—C1—C2—C31.0 (10)P2—C19—C24—C23172.4 (6)
P1—C1—C2—C3178.1 (6)C22—C23—C24—C190.7 (12)
C1—C2—C3—C40.8 (11)C19—P2—C25—C3028.7 (6)
C2—C3—C4—C50.3 (12)C31—P2—C25—C3080.0 (6)
C3—C4—C5—C61.1 (11)Cu1—P2—C25—C30148.0 (5)
C2—C1—C6—C50.2 (10)C19—P2—C25—C26153.1 (5)
P1—C1—C6—C5177.1 (5)C31—P2—C25—C2698.3 (6)
C4—C5—C6—C10.8 (11)Cu1—P2—C25—C2633.7 (6)
C13—P1—C7—C12111.1 (6)C30—C25—C26—C271.5 (10)
C1—P1—C7—C12139.9 (6)P2—C25—C26—C27176.8 (6)
Cu1—P1—C7—C1210.0 (7)C25—C26—C27—C280.4 (12)
C13—P1—C7—C872.0 (6)C26—C27—C28—C292.3 (13)
C1—P1—C7—C837.0 (6)C27—C28—C29—C302.2 (12)
Cu1—P1—C7—C8166.9 (5)C28—C29—C30—C250.2 (11)
C12—C7—C8—C90.7 (10)C26—C25—C30—C291.6 (10)
P1—C7—C8—C9176.2 (6)P2—C25—C30—C29176.6 (5)
C7—C8—C9—C101.3 (11)C19—P2—C31—C3281.9 (6)
C8—C9—C10—C111.5 (13)C25—P2—C31—C32171.8 (6)
C9—C10—C11—C121.1 (13)Cu1—P2—C31—C3242.0 (7)
C8—C7—C12—C110.3 (11)C19—P2—C31—C36100.8 (6)
P1—C7—C12—C11176.7 (6)C25—P2—C31—C365.5 (7)
C10—C11—C12—C70.5 (13)Cu1—P2—C31—C36135.3 (6)
C7—P1—C13—C1412.0 (7)C36—C31—C32—C331.2 (11)
C1—P1—C13—C14119.6 (6)P2—C31—C32—C33178.7 (6)
Cu1—P1—C13—C14117.1 (6)C31—C32—C33—C341.3 (12)
C7—P1—C13—C18171.7 (6)C32—C33—C34—C350.3 (13)
C1—P1—C13—C1864.2 (6)C33—C34—C35—C360.7 (13)
Cu1—P1—C13—C1859.2 (6)C34—C35—C36—C310.8 (13)
C18—C13—C14—C150.3 (12)C32—C31—C36—C350.1 (11)
P1—C13—C14—C15176.6 (7)P2—C31—C36—C35177.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···F20.851.872.71 (3)171
O1—H1D···F3i0.851.982.82 (3)171
C28—H28···F4ii0.932.513.25 (3)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C18H15P)2(H2O)]BF4
Mr692.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.9737 (14), 12.4258 (11), 19.4276 (18)
β (°) 94.521 (1)
V3)3362.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.48 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.702, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
17192, 5914, 3008
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.202, 1.04
No. of reflections5914
No. of parameters434
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O12.105 (5)Cu1—P22.2478 (18)
Cu1—P12.2318 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···F20.851.872.71 (3)171
O1—H1D···F3i0.851.982.82 (3)171
C28—H28···F4ii0.932.513.25 (3)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z.
 

References

First citationBarron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099–1106.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.  CSD CrossRef Web of Science Google Scholar
First citationFu, W.-F., Gan, X., Che, C.-M., Cao, Q.-Y., Zhou, Z.-Y. & Zhu, N.-Y. (2004). Chem. Eur. J. 10, 2228–2236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem. 24, 3928–2933.  CSD CrossRef CAS Web of Science Google Scholar
First citationMao, Z., Chao, H.-Y., Hui, Z., Che, C.-M., Fu, W.-F., Cheung, K.-K. & Zhu, N. (2003). Chem. Eur. J. 9, 2885–2997.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeng, X.-T., Li, Q.-S., Xu, F.-B., Song, H.-B., Anson, C. E. & Zhang, Z.-Z. (2006). Inorg. Chem. 45, 7986–7987.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoudam, O., Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Holler, M., Accorsi, G., Armaroli, N., Seguy, I., Navarro, J., Destruel, P. & Nierengarten, J. (2007). Chem. Commun. pp. 3077–3079.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). Adv. Mater. 16, 432–436.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds