organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-5H,7H-13,15-di­methyl-9-nitro-5-oxophenanthrido[4,4a,5-bc][1,4]benzoxazepine-7-carboxamide

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 16 July 2009; accepted 20 July 2009; online 25 July 2009)

In the title compound, C29H27N3O5, a dibenz[b,f][1,4]oxazepine derivative, the cyclo­hexane ring adopts a chair conformation, the oxazepine seven-membered ring has a twist-boat conformation, and the piperidin-2-one ring assumes a flattened boat conformation. Inter­molecular N—H⋯O hydrogen bonding between imino and nitro groups links two mol­ecules into a centrosymmetric dimer.

Related literature

For the biological activity of dibenz[b,f][1,4]oxazepines, see: Klunder et al. (1992[Klunder, J. M., Hargrave, K. D., West, M. A., Cullen, E., Pal, K., Behnke, M. L., Kapadia, S. R., McNeil, D. W., Wu, J. C., Chow, G. C. & Adams, J. (1992). J. Med. Chem. 35, 1887-1897.]); Merluzzi et al. (1990[Merluzzi, V. J., Hargrave, K. D., Labadia, M., Grozinger, K., Skoog, M., Wu, J. C., Shih, C.-K., Eckner, K., Hattox, S., Adams, J., Rosenthal, A. S., Faanes, R., Eckner, R. J., Koup, R. A. & Sullivan, J. L. (1990). Science, 250, 1411-1413.]); Nagarajan et al. (1986[Nagarajan, K., David, J., Kulkarni, Y. S., Hendi, S. B., Shenoy, S. J. & Upadhyaya, P. (1986). Eur. J. Med. Chem. 21, 21-26.]); Hallinan et al. (1993[Hallinan, E. A., Hagen, T. J., Husa, R. K., Tsymbalvo, S., Rao, S. N., vanHoeck, J. P., Rafferty, M. F., Stapelfeld, A., Savage, M. A. & Reichman, M. (1993). J. Med. Chem. 36, 3293-3299.], 1996[Hallinan, E. A., Hagen, T. J., Tsymbalov, S., Husa, R. K., Lee, A. C., Stapelfeld, A. & Savage, M. A. (1996). J. Med. Chem. 39, 609-613.]). For our recent microwave-assisted synthesis of dibenz[b,f][1,4]oxazepines, see: Dai & Shi (2007[Dai, W. M. & Shi, J. (2007). Comb. Chem. High Throughput Screening, 10, 837-856.]); Xing et al. (2006[Xing, X., Wu, J., Luo, J. & Dai, W.-M. (2006). Synlett, pp. 2099-2103.]). For microwave-assisted palladium-catalysed intra­molecular direct aryl­ation, see: Wu et al. (2007[Wu, J., Nie, L., Luo, J. & Dai, W.-M. (2007). Synlett, pp. 2728-2732.]).

[Scheme 1]

Experimental

Crystal data
  • C29H27N3O5

  • Mr = 497.54

  • Monoclinic, P 21 /c

  • a = 10.7451 (4) Å

  • b = 27.8791 (7) Å

  • c = 8.4917 (3) Å

  • β = 105.428 (13)°

  • V = 2452.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: none

  • 23870 measured reflections

  • 5594 independent reflections

  • 3756 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.127

  • S = 1.00

  • 5594 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.86 2.29 3.046 (2) 147
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound, C29H27N3O5, is viewed as the derivative of dibenz[b,f][1,4]oxazepines, which have been reported to deliver various biological activities such as non-nucleoside inhibitor of HIV-1 reverse transcriptase (Klunder et al., 1992; Merluzzi et al., 1990), antidepressant (Nagarajan et al., 1986), and PGE2 antagonist and analgesic (Hallinan et al., 1993, 1996). The title compound has recently been obtained during microwave-assisted synthesis of a derivative of dibenz[b,f][1,4]oxazepines (Dai & Shi, 2007; Xing et al., 2006) with a microwave-assisted palladium-catalyzed intramolecular direct arylation reaction (Wu et al., 2007). We report here its crystal structure.

In the molecular structure (Fig. 1) there are one cyclohexane, one oxazepine and one piperidin-2-one rings. The cyclohexane ring adopts a chair conformation with atoms C16 and C19 deviated from the mean plane formed by the other four atoms by 0.677 (3) and -0.673 (4) Å, respectively. The 7-membered oxazepine ring has a twist-boat conformation, and the piperidin-2-one assumes a flatboat conformation. Intermolecular N—H···O hydrogen-bond bonding between imino and nitro groups (Table 1) links two molecules into the centro-symmetric dimer.

Related literature top

For the biological activity of dibenz[b,f][1,4]oxazepines, see: Klunder et al. (1992); Merluzzi et al. (1990); Nagarajan et al. (1986); Hallinan et al. (1993, 1996). For our recent microwave-assisted synthesis of dibenz[b,f][1,4]oxazepines, see: Dai & Shi (2007); Xing et al. (2006). For microwave-assisted palladium-catalysed intramolecular direct arylation, see: Wu et al. (2007).

Experimental top

A 10-ml pressurized process vial was charged with the bromide (59.5 mg, 0.10 mmol), Pd(OAc)2 (0.6 mg, 0.0026 mmol), 1,1'-bis(diphenylphosphino)ferrocene (1.6 mg, 0.0028 mmol), and K2CO3 (27.7 mg, 0.20 mmol) and it was sealed with a cap containing a silicon septum. The vial was then evacuated and backfilled with N2 (repeated for several times) through the cap using a needle. To the degassed vial was added degassed anhydrous PhMe (2 ml) through the cap using a syringe. The loaded vial was then placed into the microwave reactor cavity and was heated at 423 K for 1 h. After cooled to room temperature the resultant mixture was filtered off through a plug of Celite with washing by EtOAc. The combined filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 20% EtOAc in petroleum ether) to furnish the title compound in 95% yield (48.5 mg) as a pale yellow solid. m.p. > 555 K (EtOAc-hexane). Single crystals suitable for X-ray diffraction of the title compound were grown in the mixed solvent of ethyl acetate and hexane.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.98Å and N—H = 0.86 Å and included in the refinement in riding model, with Uiso(H) = 1.2 Ueq(C,N). The H atoms of one methyl group are equally disordered over two sites.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. A view of (1). Displacement ellipsoids are drawn at 40% probability level and H atoms are shown as small circles of arbitary radii.
N-Cyclohexyl-5H,7H-13,15-dimethyl-9-nitro-5- oxophenanthrido[4,4a,5-bc][1,4]benzoxazepine-7-carboxamide top
Crystal data top
C29H27N3O5F(000) = 1048
Mr = 497.54Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15928 reflections
a = 10.7451 (4) Åθ = 3.1–27.5°
b = 27.8791 (7) ŵ = 0.09 mm1
c = 8.4917 (3) ÅT = 296 K
β = 105.428 (13)°Chunk, yellow
V = 2452.1 (2) Å30.28 × 0.26 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3756 reflections with I > 2σ(I)
Radiation source: rolling anodeRint = 0.054
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1h = 1313
ω scansk = 3635
23870 measured reflectionsl = 1010
5594 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0432P)2 + 1P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5594 reflectionsΔρmax = 0.29 e Å3
336 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (10)
Crystal data top
C29H27N3O5V = 2452.1 (2) Å3
Mr = 497.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7451 (4) ŵ = 0.09 mm1
b = 27.8791 (7) ÅT = 296 K
c = 8.4917 (3) Å0.28 × 0.26 × 0.11 mm
β = 105.428 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3756 reflections with I > 2σ(I)
23870 measured reflectionsRint = 0.054
5594 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
5594 reflectionsΔρmin = 0.23 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.52077 (12)0.14876 (4)0.75758 (15)0.0441 (3)
N10.30895 (13)0.12575 (5)0.46737 (17)0.0363 (3)
O50.53052 (13)0.12552 (5)0.37217 (15)0.0509 (4)
C130.43278 (17)0.18313 (6)0.6721 (2)0.0371 (4)
C140.32745 (16)0.17213 (6)0.5375 (2)0.0355 (4)
N30.63285 (14)0.07287 (6)0.56536 (19)0.0429 (4)
H30.62290.04980.62810.052*
C100.27335 (18)0.25731 (7)0.5195 (2)0.0423 (4)
C90.23969 (17)0.20945 (6)0.4689 (2)0.0383 (4)
C220.40912 (16)0.07561 (6)0.7002 (2)0.0381 (4)
O10.20934 (15)0.07613 (5)0.25999 (19)0.0654 (4)
C120.46090 (18)0.22939 (7)0.7269 (2)0.0419 (4)
C10.40183 (16)0.08658 (6)0.5246 (2)0.0364 (4)
H10.36570.05810.46150.044*
C160.76257 (17)0.08427 (6)0.5510 (2)0.0406 (4)
H160.75860.08690.43470.049*
C30.10767 (18)0.15002 (7)0.2797 (2)0.0437 (4)
C110.38132 (19)0.26588 (7)0.6456 (2)0.0453 (4)
H110.40190.29740.67790.054*
C270.46631 (17)0.10965 (7)0.8143 (2)0.0411 (4)
C150.52969 (17)0.09773 (6)0.4828 (2)0.0378 (4)
C20.21089 (18)0.11460 (7)0.3296 (2)0.0440 (4)
N20.3006 (2)0.01158 (8)0.9665 (3)0.0698 (6)
C80.11937 (18)0.19597 (7)0.3490 (2)0.0430 (4)
C230.35448 (18)0.03542 (7)0.7497 (2)0.0455 (5)
H230.31500.01200.67490.055*
C240.3602 (2)0.03099 (8)0.9136 (3)0.0521 (5)
C260.4739 (2)0.10462 (8)0.9787 (2)0.0531 (5)
H260.51510.12761.05400.064*
O30.3241 (2)0.01856 (7)1.1134 (2)0.0931 (7)
C250.4187 (2)0.06458 (8)1.0275 (3)0.0581 (6)
H250.42110.06041.13690.070*
C40.0059 (2)0.13491 (9)0.1673 (3)0.0583 (6)
H40.01090.10430.12230.070*
C280.2043 (2)0.30111 (7)0.4341 (3)0.0576 (5)
H28A0.12880.30710.47120.086*
H28B0.17930.29570.31830.086*
H28C0.26090.32830.45850.086*
C290.5782 (2)0.24052 (8)0.8644 (3)0.0555 (5)
H29A0.58200.27440.88560.067*0.50
H29B0.65440.23070.83450.067*0.50
H29C0.57290.22360.96080.067*0.50
H29D0.62430.21140.90170.067*0.50
H29E0.55180.25510.95280.067*0.50
H29F0.63330.26220.82650.067*0.50
C210.8092 (2)0.13172 (8)0.6321 (3)0.0585 (6)
H21A0.81130.13020.74690.070*
H21B0.74980.15700.58190.070*
C70.0090 (2)0.22515 (8)0.3054 (3)0.0586 (6)
H70.01090.25530.35290.070*
C191.0384 (2)0.10368 (9)0.6890 (3)0.0697 (7)
H19A1.12230.11110.67280.084*
H19B1.04750.10170.80550.084*
C180.9917 (2)0.05620 (8)0.6100 (3)0.0624 (6)
H18A1.05080.03110.66210.075*
H18B0.99100.05730.49560.075*
O40.2348 (2)0.03785 (8)0.8627 (3)0.1074 (8)
C170.85656 (19)0.04450 (8)0.6240 (3)0.0560 (5)
H17A0.82750.01460.56760.067*
H17B0.85880.04030.73820.067*
C50.1100 (2)0.16528 (10)0.1235 (3)0.0711 (7)
H50.18510.15570.04700.085*
C60.1020 (2)0.21008 (10)0.1942 (3)0.0717 (7)
H60.17290.23050.16610.086*
C200.9432 (2)0.14320 (9)0.6151 (4)0.0747 (7)
H20A0.93970.14680.50040.090*
H20B0.97250.17330.66960.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0353 (7)0.0476 (7)0.0436 (7)0.0026 (6)0.0003 (6)0.0016 (6)
N10.0318 (7)0.0418 (8)0.0331 (7)0.0010 (6)0.0050 (6)0.0007 (6)
O50.0476 (8)0.0657 (9)0.0409 (7)0.0051 (7)0.0144 (6)0.0145 (7)
C130.0336 (9)0.0430 (9)0.0344 (9)0.0014 (7)0.0084 (7)0.0016 (7)
C140.0333 (9)0.0417 (9)0.0324 (8)0.0011 (7)0.0104 (7)0.0008 (7)
N30.0347 (8)0.0480 (9)0.0470 (9)0.0021 (7)0.0125 (7)0.0101 (7)
C100.0417 (10)0.0443 (10)0.0441 (10)0.0042 (8)0.0169 (9)0.0052 (8)
C90.0356 (9)0.0453 (10)0.0349 (9)0.0020 (8)0.0111 (7)0.0045 (7)
C220.0305 (9)0.0470 (10)0.0362 (9)0.0065 (8)0.0075 (7)0.0064 (8)
O10.0584 (9)0.0635 (9)0.0603 (9)0.0070 (8)0.0088 (7)0.0223 (8)
C120.0398 (10)0.0487 (10)0.0381 (9)0.0044 (8)0.0122 (8)0.0032 (8)
C10.0348 (9)0.0392 (9)0.0334 (8)0.0006 (7)0.0059 (7)0.0002 (7)
C160.0346 (9)0.0459 (10)0.0425 (10)0.0002 (8)0.0126 (8)0.0001 (8)
C30.0342 (10)0.0584 (11)0.0356 (9)0.0001 (8)0.0044 (8)0.0035 (8)
C110.0486 (11)0.0430 (10)0.0462 (10)0.0027 (9)0.0157 (9)0.0042 (8)
C270.0354 (9)0.0495 (10)0.0372 (9)0.0088 (8)0.0077 (8)0.0050 (8)
C150.0377 (10)0.0432 (10)0.0323 (9)0.0003 (8)0.0088 (7)0.0010 (7)
C20.0380 (10)0.0523 (11)0.0384 (9)0.0018 (8)0.0047 (8)0.0022 (8)
N20.0618 (13)0.0776 (14)0.0797 (15)0.0213 (11)0.0359 (12)0.0415 (12)
C80.0364 (10)0.0525 (11)0.0400 (10)0.0029 (8)0.0103 (8)0.0088 (8)
C230.0352 (10)0.0522 (11)0.0487 (11)0.0043 (8)0.0106 (8)0.0113 (9)
C240.0451 (11)0.0619 (13)0.0548 (12)0.0168 (10)0.0229 (10)0.0215 (10)
C260.0589 (13)0.0615 (13)0.0362 (10)0.0213 (11)0.0078 (9)0.0017 (9)
O30.1025 (15)0.1061 (15)0.0891 (13)0.0394 (12)0.0579 (12)0.0579 (11)
C250.0669 (14)0.0724 (14)0.0402 (11)0.0292 (12)0.0234 (10)0.0174 (10)
C40.0450 (12)0.0729 (14)0.0485 (11)0.0028 (11)0.0022 (9)0.0050 (10)
C280.0593 (13)0.0470 (11)0.0654 (13)0.0083 (10)0.0145 (11)0.0086 (10)
C290.0500 (12)0.0595 (12)0.0526 (12)0.0089 (10)0.0061 (10)0.0104 (10)
C210.0457 (12)0.0549 (12)0.0732 (14)0.0015 (10)0.0132 (11)0.0130 (11)
C70.0457 (12)0.0596 (13)0.0654 (14)0.0090 (10)0.0059 (11)0.0089 (11)
C190.0393 (12)0.0793 (16)0.0898 (17)0.0087 (11)0.0158 (12)0.0193 (14)
C180.0400 (11)0.0662 (14)0.0813 (16)0.0054 (10)0.0168 (11)0.0123 (12)
O40.1032 (17)0.1027 (16)0.1141 (18)0.0339 (14)0.0253 (14)0.0357 (14)
C170.0417 (11)0.0503 (12)0.0751 (15)0.0034 (9)0.0140 (10)0.0007 (10)
C50.0402 (12)0.0983 (19)0.0620 (14)0.0048 (12)0.0087 (11)0.0015 (14)
C60.0434 (13)0.0856 (18)0.0755 (16)0.0171 (12)0.0030 (12)0.0097 (14)
C200.0544 (14)0.0601 (14)0.108 (2)0.0151 (11)0.0187 (14)0.0168 (14)
Geometric parameters (Å, º) top
O2—C271.383 (2)C23—C241.382 (3)
O2—C131.405 (2)C23—H230.9300
N1—C21.386 (2)C24—C251.373 (3)
N1—C141.415 (2)C26—C251.379 (3)
N1—C11.472 (2)C26—H260.9300
O5—C151.219 (2)C25—H250.9300
C13—C121.377 (2)C4—C51.373 (3)
C13—C141.412 (2)C4—H40.9300
C14—C91.421 (2)C28—H28A0.9600
N3—C151.337 (2)C28—H28B0.9600
N3—C161.466 (2)C28—H28C0.9600
N3—H30.8600C29—H29A0.9600
C10—C111.374 (3)C29—H29B0.9600
C10—C91.419 (3)C29—H29C0.9600
C10—C281.510 (3)C29—H29D0.9600
C9—C81.466 (3)C29—H29E0.9600
C22—C271.378 (3)C29—H29F0.9600
C22—C231.381 (3)C21—C201.519 (3)
C22—C11.503 (2)C21—H21A0.9700
O1—C21.223 (2)C21—H21B0.9700
C12—C111.389 (3)C7—C61.375 (3)
C12—C291.505 (3)C7—H70.9300
C1—C151.540 (2)C19—C181.508 (3)
C1—H10.9800C19—C201.521 (4)
C16—C211.514 (3)C19—H19A0.9700
C16—C171.517 (3)C19—H19B0.9700
C16—H160.9800C18—C171.524 (3)
C3—C41.400 (3)C18—H18A0.9700
C3—C81.401 (3)C18—H18B0.9700
C3—C21.461 (3)C17—H17A0.9700
C11—H110.9300C17—H17B0.9700
C27—C261.384 (3)C5—C61.378 (4)
N2—O41.217 (3)C5—H50.9300
N2—O31.221 (3)C6—H60.9300
N2—C241.474 (3)C20—H20A0.9700
C8—C71.404 (3)C20—H20B0.9700
C27—O2—C13115.38 (13)C5—C4—C3119.9 (2)
C2—N1—C14123.40 (15)C5—C4—H4120.0
C2—N1—C1114.14 (14)C3—C4—H4120.0
C14—N1—C1122.12 (13)C10—C28—H28A109.5
C12—C13—O2114.03 (15)C10—C28—H28B109.5
C12—C13—C14122.24 (16)H28A—C28—H28B109.5
O2—C13—C14123.68 (15)C10—C28—H28C109.5
C13—C14—N1122.13 (15)H28A—C28—H28C109.5
C13—C14—C9118.32 (16)H28B—C28—H28C109.5
N1—C14—C9119.54 (15)C12—C29—H29A109.5
C15—N3—C16121.20 (15)C12—C29—H29B109.5
C15—N3—H3119.4H29A—C29—H29B109.5
C16—N3—H3119.4C12—C29—H29C109.5
C11—C10—C9119.59 (17)H29A—C29—H29C109.5
C11—C10—C28116.01 (18)H29B—C29—H29C109.5
C9—C10—C28124.19 (18)C12—C29—H29D109.5
C14—C9—C10118.47 (16)H29A—C29—H29D141.1
C14—C9—C8117.61 (16)H29B—C29—H29D56.3
C10—C9—C8123.91 (16)H29C—C29—H29D56.3
C27—C22—C23119.37 (17)C12—C29—H29E109.5
C27—C22—C1116.93 (16)H29A—C29—H29E56.3
C23—C22—C1123.55 (17)H29B—C29—H29E141.1
C13—C12—C11117.88 (17)H29C—C29—H29E56.3
C13—C12—C29121.21 (17)H29D—C29—H29E109.5
C11—C12—C29120.83 (17)C12—C29—H29F109.5
N1—C1—C22109.29 (14)H29A—C29—H29F56.3
N1—C1—C15110.02 (14)H29B—C29—H29F56.3
C22—C1—C15117.11 (14)H29C—C29—H29F141.1
N1—C1—H1106.6H29D—C29—H29F109.5
C22—C1—H1106.6H29E—C29—H29F109.5
C15—C1—H1106.6C16—C21—C20110.38 (18)
N3—C16—C21110.99 (15)C16—C21—H21A109.6
N3—C16—C17110.60 (15)C20—C21—H21A109.6
C21—C16—C17110.42 (17)C16—C21—H21B109.6
N3—C16—H16108.2C20—C21—H21B109.6
C21—C16—H16108.2H21A—C21—H21B108.1
C17—C16—H16108.2C6—C7—C8121.4 (2)
C4—C3—C8121.73 (18)C6—C7—H7119.3
C4—C3—C2116.84 (18)C8—C7—H7119.3
C8—C3—C2121.33 (16)C18—C19—C20110.2 (2)
C10—C11—C12122.71 (18)C18—C19—H19A109.6
C10—C11—H11118.6C20—C19—H19A109.6
C12—C11—H11118.6C18—C19—H19B109.6
C22—C27—O2116.68 (15)C20—C19—H19B109.6
C22—C27—C26122.35 (19)H19A—C19—H19B108.1
O2—C27—C26120.94 (18)C19—C18—C17111.34 (18)
O5—C15—N3123.95 (17)C19—C18—H18A109.4
O5—C15—C1119.73 (16)C17—C18—H18A109.4
N3—C15—C1116.14 (15)C19—C18—H18B109.4
O1—C2—N1120.96 (17)C17—C18—H18B109.4
O1—C2—C3122.76 (17)H18A—C18—H18B108.0
N1—C2—C3116.18 (16)C16—C17—C18110.87 (18)
O4—N2—O3124.5 (2)C16—C17—H17A109.5
O4—N2—C24118.7 (2)C18—C17—H17A109.5
O3—N2—C24116.8 (3)C16—C17—H17B109.5
C3—C8—C7116.36 (18)C18—C17—H17B109.5
C3—C8—C9119.33 (16)H17A—C17—H17B108.1
C7—C8—C9124.15 (18)C4—C5—C6119.3 (2)
C24—C23—C22118.1 (2)C4—C5—H5120.4
C24—C23—H23121.0C6—C5—H5120.4
C22—C23—H23121.0C7—C6—C5121.2 (2)
C25—C24—C23122.5 (2)C7—C6—H6119.4
C25—C24—N2119.3 (2)C5—C6—H6119.4
C23—C24—N2118.2 (2)C19—C20—C21111.0 (2)
C25—C26—C27118.1 (2)C19—C20—H20A109.4
C25—C26—H26120.9C21—C20—H20A109.4
C27—C26—H26120.9C19—C20—H20B109.4
C24—C25—C26119.56 (18)C21—C20—H20B109.4
C24—C25—H25120.2H20A—C20—H20B108.0
C26—C25—H25120.2
C27—O2—C13—C12129.21 (16)N1—C1—C15—N3161.90 (15)
C27—O2—C13—C1453.3 (2)C22—C1—C15—N336.3 (2)
C12—C13—C14—N1171.12 (16)C14—N1—C2—O1169.55 (18)
O2—C13—C14—N16.2 (3)C1—N1—C2—O13.9 (3)
C12—C13—C14—C97.3 (3)C14—N1—C2—C313.8 (2)
O2—C13—C14—C9175.38 (15)C1—N1—C2—C3172.76 (15)
C2—N1—C14—C13176.13 (16)C4—C3—C2—O111.5 (3)
C1—N1—C14—C133.2 (2)C8—C3—C2—O1172.22 (19)
C2—N1—C14—C92.3 (2)C4—C3—C2—N1165.04 (17)
C1—N1—C14—C9175.19 (15)C8—C3—C2—N111.2 (3)
C13—C14—C9—C1010.7 (2)C4—C3—C8—C73.0 (3)
N1—C14—C9—C10167.78 (15)C2—C3—C8—C7173.10 (18)
C13—C14—C9—C8169.55 (15)C4—C3—C8—C9178.60 (18)
N1—C14—C9—C812.0 (2)C2—C3—C8—C92.5 (3)
C11—C10—C9—C147.5 (3)C14—C9—C8—C314.1 (2)
C28—C10—C9—C14167.06 (17)C10—C9—C8—C3165.58 (17)
C11—C10—C9—C8172.82 (17)C14—C9—C8—C7161.12 (18)
C28—C10—C9—C812.7 (3)C10—C9—C8—C719.1 (3)
O2—C13—C12—C11177.86 (15)C27—C22—C23—C240.3 (3)
C14—C13—C12—C110.3 (3)C1—C22—C23—C24175.65 (17)
O2—C13—C12—C291.1 (2)C22—C23—C24—C250.6 (3)
C14—C13—C12—C29176.40 (17)C22—C23—C24—N2179.31 (17)
C2—N1—C1—C22124.19 (16)O4—N2—C24—C25170.6 (2)
C14—N1—C1—C2262.3 (2)O3—N2—C24—C2511.2 (3)
C2—N1—C1—C15105.92 (17)O4—N2—C24—C239.4 (3)
C14—N1—C1—C1567.58 (19)O3—N2—C24—C23168.84 (19)
C27—C22—C1—N169.71 (19)C22—C27—C26—C251.8 (3)
C23—C22—C1—N1105.78 (19)O2—C27—C26—C25179.40 (17)
C27—C22—C1—C1556.2 (2)C23—C24—C25—C260.3 (3)
C23—C22—C1—C15128.31 (18)N2—C24—C25—C26179.63 (18)
C15—N3—C16—C2170.1 (2)C27—C26—C25—C240.9 (3)
C15—N3—C16—C17167.00 (17)C8—C3—C4—C50.6 (3)
C9—C10—C11—C120.4 (3)C2—C3—C4—C5175.6 (2)
C28—C10—C11—C12174.57 (18)N3—C16—C21—C20179.58 (19)
C13—C12—C11—C103.3 (3)C17—C16—C21—C2057.4 (2)
C29—C12—C11—C10180.00 (18)C3—C8—C7—C63.3 (3)
C23—C22—C27—O2179.20 (15)C9—C8—C7—C6178.7 (2)
C1—C22—C27—O25.1 (2)C20—C19—C18—C1756.0 (3)
C23—C22—C27—C261.5 (3)N3—C16—C17—C18179.81 (18)
C1—C22—C27—C26177.21 (17)C21—C16—C17—C1856.6 (2)
C13—O2—C27—C2275.73 (19)C19—C18—C17—C1656.3 (3)
C13—O2—C27—C26106.56 (19)C3—C4—C5—C61.5 (4)
C16—N3—C15—O512.4 (3)C8—C7—C6—C51.4 (4)
C16—N3—C15—C1172.54 (15)C4—C5—C6—C71.1 (4)
N1—C1—C15—O522.8 (2)C18—C19—C20—C2157.0 (3)
C22—C1—C15—O5148.36 (17)C16—C21—C20—C1957.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.293.046 (2)147
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC29H27N3O5
Mr497.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7451 (4), 27.8791 (7), 8.4917 (3)
β (°) 105.428 (13)
V3)2452.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.26 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23870, 5594, 3756
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.127, 1.00
No. of reflections5594
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.293.046 (2)147.0
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

This work was supported by a research grant from the National Natural Science Foundation of China (grant No. 20672092). Professor Wei-Min Dai is thanked for his valuable suggestions. Mr Jianming Gu and Ms Xiurong Hu of the X-ray crystallography facility of Zhejiang University are acknowledged for their assistance with the crystal structural analysis.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDai, W. M. & Shi, J. (2007). Comb. Chem. High Throughput Screening, 10, 837–856.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHallinan, E. A., Hagen, T. J., Husa, R. K., Tsymbalvo, S., Rao, S. N., vanHoeck, J. P., Rafferty, M. F., Stapelfeld, A., Savage, M. A. & Reichman, M. (1993). J. Med. Chem. 36, 3293–3299.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHallinan, E. A., Hagen, T. J., Tsymbalov, S., Husa, R. K., Lee, A. C., Stapelfeld, A. & Savage, M. A. (1996). J. Med. Chem. 39, 609–613.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKlunder, J. M., Hargrave, K. D., West, M. A., Cullen, E., Pal, K., Behnke, M. L., Kapadia, S. R., McNeil, D. W., Wu, J. C., Chow, G. C. & Adams, J. (1992). J. Med. Chem. 35, 1887–1897.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMerluzzi, V. J., Hargrave, K. D., Labadia, M., Grozinger, K., Skoog, M., Wu, J. C., Shih, C.-K., Eckner, K., Hattox, S., Adams, J., Rosenthal, A. S., Faanes, R., Eckner, R. J., Koup, R. A. & Sullivan, J. L. (1990). Science, 250, 1411–1413.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNagarajan, K., David, J., Kulkarni, Y. S., Hendi, S. B., Shenoy, S. J. & Upadhyaya, P. (1986). Eur. J. Med. Chem. 21, 21–26.  CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Nie, L., Luo, J. & Dai, W.-M. (2007). Synlett, pp. 2728–2732.  Google Scholar
First citationXing, X., Wu, J., Luo, J. & Dai, W.-M. (2006). Synlett, pp. 2099–2103.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds