metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-3,5-diiso­propyl-4H-1,2,4-triazole-κ2N1:N2)bis­­[(nitrato-κO)silver(I)]

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 July 2009; accepted 17 July 2009; online 22 July 2009)

The neutral N-heterocycle in the title centrosymmetric dinuclear compound, [Ag2(NO3)2(C8H15N3)2], bridges two metal atoms through its imino N atoms. The N—Ag—N skeleton is bent [N—Ag—N = 127.2 (3)°]; as one of two O atoms of the nitrate anion is nearly coplanar with this N—Ag—N skeleton [Ag—O = 2.63 (1) Å], the coordination geometry around the AgI atom is regarded as trigonal-planar. One of the two isopropyl groups is disordered over two positions in respect of the methyl groups in a 1:1 ratio. In the crystal structure, inter­molecular N—H⋯O hydrogen bonding is observed between the nitrate groups and triazole ligands.

Related literature

For the background to such silver–triazole compounds, see: Yang et al. (2007[Yang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714-719.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(NO3)2(C8H15N3)2]

  • Mr = 646.22

  • Monoclinic, P 21 /n

  • a = 5.791 (1) Å

  • b = 14.541 (1) Å

  • c = 14.578 (1) Å

  • β = 99.523 (2)°

  • V = 1210.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 293 K

  • 0.41 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.670, Tmax = 1.000 (expected range = 0.540–0.805)

  • 5562 measured reflections

  • 2124 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.240

  • S = 1.08

  • 2124 reflections

  • 151 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.89 2.06 2.93 (1) 167
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 1999[Bruker (1999). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the background to such silver–triazole compounds, see: Yang et al. (2007).

Experimental top

An acetonitrile solution (2 ml) of 3,5-diisopropyl-1H-1,2,4-triazole (0.1 mmol, 15 mg) was mixed with a acetoninitrile solution (1 ml) of silver nitrate (0.1 mmol, 17 mg). Ether was allowed to diffuse into the resulting solution. Colorless crystals were formed after a week in 50% yield. Calc. for C16H30N8Ag2O6: C 29.7; H 4.6, N, 17.3%. Found: C 29.7, H 4.7, N, 17.6%.

Refinement top

The H atoms were placed in calculated positions [C—H 0.96–0.98 Å; U(H) = 1.2–1.5Ueq(C)]. The amino H-atom was similarly treated [N–H 0.89 Å].

One of the two isopropyl groups is disordered over two positions in the methyl groups only; the disorder was assumed to be 1:1. The C–C distances were restrained to 1.54±0.01 Å, and the 1,3-related C···C distances to 2.51±0.01 Å. The temperature factors of the primed atoms were restrained to those of the unprimed ones; the anisotropic temperature factors were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of [Ag(C8H15N3)(NO3)]2; ellipsoids are drawn at the 50% probability level. The disorder is not shown.
Bis(µ2-3,5-diisopropyl-4H-1,2,4-triazole- κ2N1:N2)bis[(nitrato-κO)silver(I)] top
Crystal data top
[Ag2(NO3)2(C8H15N3)2]F(000) = 648
Mr = 646.22Dx = 1.773 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1859 reflections
a = 5.791 (1) Åθ = 2.8–21.8°
b = 14.541 (1) ŵ = 1.66 mm1
c = 14.578 (1) ÅT = 293 K
β = 99.523 (2)°Prism, colorless
V = 1210.6 (2) Å30.41 × 0.17 × 0.13 mm
Z = 2
Data collection top
Bruker SMART
diffractometer
2124 independent reflections
Radiation source: fine-focus sealed tube1389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.670, Tmax = 1.000k = 917
5562 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1131P)2 + 8.3674P]
where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.91 e Å3
18 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Ag2(NO3)2(C8H15N3)2]V = 1210.6 (2) Å3
Mr = 646.22Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.791 (1) ŵ = 1.66 mm1
b = 14.541 (1) ÅT = 293 K
c = 14.578 (1) Å0.41 × 0.17 × 0.13 mm
β = 99.523 (2)°
Data collection top
Bruker SMART
diffractometer
2124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1389 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 1.000Rint = 0.063
5562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07818 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.08Δρmax = 0.91 e Å3
2124 reflectionsΔρmin = 0.96 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.6205 (2)0.57863 (7)0.43648 (7)0.0682 (5)
O10.8666 (17)0.6779 (7)0.3367 (8)0.080 (3)
O21.0702 (19)0.5875 (8)0.4336 (8)0.094 (4)
O31.2426 (18)0.6792 (9)0.3497 (8)0.096 (4)
N10.5362 (17)0.4427 (6)0.3705 (6)0.047 (2)
N20.4403 (17)0.3760 (7)0.4232 (7)0.054 (3)
N30.5156 (19)0.3113 (7)0.2993 (8)0.061 (3)
H30.52700.26810.25700.074*
N41.061 (2)0.6493 (8)0.3760 (8)0.067 (3)
C10.547 (3)0.4325 (13)0.1257 (10)0.087 (5)
H1A0.38910.45230.12630.130*
H1B0.54730.36860.10930.130*
H1C0.61330.46800.08090.130*
C20.692 (2)0.4463 (9)0.2217 (9)0.058 (3)
H20.69330.51260.23390.070*
C30.946 (3)0.4169 (15)0.2284 (14)0.104 (6)
H3A1.02730.42740.29040.155*
H3B1.01890.45200.18520.155*
H3C0.95290.35270.21370.155*
C40.5824 (19)0.4017 (7)0.2966 (8)0.044 (3)
C50.429 (2)0.3010 (8)0.3788 (9)0.055 (3)
C60.342 (2)0.2139 (8)0.4109 (12)0.085 (5)
H60.32620.22330.47610.102*0.50
H6'0.34600.18100.35250.102*0.50
C70.097 (3)0.192 (2)0.359 (2)0.087 (8)0.50
H7A0.04480.13470.38050.131*0.50
H7B0.10060.18820.29340.131*0.50
H7C0.00920.24010.37000.131*0.50
C80.503 (4)0.1308 (18)0.409 (3)0.089 (7)0.50
H8A0.43060.07740.43080.134*0.50
H8B0.64960.14230.44900.134*0.50
H8C0.53000.12050.34680.134*0.50
C7'0.083 (2)0.203 (2)0.408 (2)0.087 (8)0.50
H7'10.05100.14250.42970.131*0.50
H7'20.00380.20970.34460.131*0.50
H7'30.02730.24840.44610.131*0.50
C8'0.490 (4)0.144 (2)0.471 (2)0.089 (7)0.50
H8'10.39380.09280.48200.134*0.50
H8'20.55480.17200.52920.134*0.50
H8'30.61380.12360.43990.134*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0868 (9)0.0610 (7)0.0623 (7)0.0294 (6)0.0285 (5)0.0052 (5)
O10.051 (6)0.080 (7)0.107 (8)0.001 (5)0.007 (5)0.031 (6)
O20.078 (7)0.108 (9)0.091 (7)0.021 (6)0.003 (6)0.066 (7)
O30.064 (6)0.119 (9)0.104 (8)0.015 (6)0.016 (6)0.057 (7)
N10.063 (6)0.039 (5)0.039 (5)0.016 (4)0.009 (4)0.003 (4)
N20.054 (6)0.052 (6)0.055 (6)0.018 (5)0.009 (5)0.007 (5)
N30.066 (7)0.050 (6)0.067 (7)0.004 (5)0.008 (6)0.009 (5)
N40.056 (7)0.075 (8)0.070 (7)0.001 (6)0.016 (6)0.018 (6)
C10.083 (10)0.123 (14)0.055 (8)0.004 (10)0.013 (7)0.012 (9)
C20.059 (8)0.059 (8)0.055 (7)0.004 (6)0.008 (6)0.001 (6)
C30.056 (9)0.146 (18)0.112 (14)0.007 (10)0.027 (9)0.040 (13)
C40.038 (6)0.044 (6)0.048 (6)0.002 (4)0.004 (5)0.001 (5)
C50.050 (7)0.043 (7)0.071 (8)0.010 (5)0.005 (6)0.001 (6)
C60.077 (10)0.044 (7)0.131 (14)0.003 (7)0.011 (9)0.021 (9)
C70.080 (9)0.093 (10)0.090 (12)0.017 (8)0.020 (8)0.011 (9)
C80.083 (10)0.087 (10)0.098 (12)0.002 (8)0.016 (9)0.014 (9)
C7'0.080 (9)0.093 (10)0.090 (12)0.017 (8)0.020 (8)0.011 (9)
C8'0.083 (10)0.087 (10)0.098 (12)0.002 (8)0.016 (9)0.014 (9)
Geometric parameters (Å, º) top
Ag1—N12.218 (9)C3—H3B0.9600
Ag1—N2i2.232 (10)C3—H3C0.9600
Ag1—O22.615 (11)C5—C61.469 (16)
Ag1—O12.630 (10)C6—C7'1.505 (10)
O1—N41.245 (14)C6—C8'1.508 (10)
O2—N41.224 (14)C6—C71.529 (10)
O3—N41.258 (14)C6—C81.529 (10)
N1—C41.297 (14)C6—H60.9800
N1—N21.407 (12)C6—H6'0.9800
N2—C51.264 (15)C7—H7A0.9600
N2—Ag1i2.232 (10)C7—H7B0.9600
N3—C51.342 (17)C7—H7C0.9600
N3—C41.373 (15)C8—H8A0.9600
N3—H30.8900C8—H8B0.9600
C1—C21.520 (19)C8—H8C0.9600
C1—H1A0.9600C7'—H7'10.9600
C1—H1B0.9600C7'—H7'20.9600
C1—H1C0.9600C7'—H7'30.9600
C2—C41.498 (18)C8'—H8'10.9600
C2—C31.52 (2)C8'—H8'20.9600
C2—H20.9800C8'—H8'30.9600
C3—H3A0.9600
N1—Ag1—N2i127.2 (3)N1—C4—C2125.2 (10)
N1—Ag1—O2100.7 (4)N3—C4—C2126.2 (11)
N2i—Ag1—O2108.0 (4)N2—C5—N3110.6 (11)
N1—Ag1—O1110.5 (4)N2—C5—C6124.8 (13)
N2i—Ag1—O1121.8 (4)N3—C5—C6124.6 (13)
O2—Ag1—O148.0 (3)C5—C6—C7'118.6 (15)
N4—O1—Ag195.3 (7)C5—C6—C8'124.9 (15)
N4—O2—Ag196.6 (8)C7'—C6—C8'114.3 (10)
C4—N1—N2106.9 (9)C5—C6—C7111.1 (17)
C4—N1—Ag1135.2 (7)C5—C6—C8115.7 (17)
N2—N1—Ag1117.1 (7)C7'—C6—C8121 (2)
C5—N2—N1107.8 (10)C7—C6—C8110.4 (10)
C5—N2—Ag1i136.3 (9)C5—C6—H6106.3
N1—N2—Ag1i115.6 (7)C7—C6—H6106.3
C5—N3—C4106.1 (10)C8—C6—H6106.3
C5—N3—H3126.9C6—C7—H7A109.5
C4—N3—H3126.9C6—C7—H7B109.5
O2—N4—O1119.8 (11)H7A—C7—H7B109.5
O2—N4—O3121.1 (12)C6—C7—H7C109.5
O1—N4—O3118.8 (11)H7A—C7—H7C109.5
C2—C1—H1A109.5H7B—C7—H7C109.5
C2—C1—H1B109.5C6—C8—H8A109.5
H1A—C1—H1B109.5C6—C8—H8B109.5
C2—C1—H1C109.5H8A—C8—H8B109.5
H1A—C1—H1C109.5C6—C8—H8C109.5
H1B—C1—H1C109.5H8A—C8—H8C109.5
C4—C2—C1112.3 (11)H8B—C8—H8C109.5
C4—C2—C3110.7 (11)C6—C7'—H7'1109.5
C1—C2—C3113.7 (13)C6—C7'—H7'2109.5
C4—C2—H2106.6H7'1—C7'—H7'2109.5
C1—C2—H2106.6C6—C7'—H7'3109.5
C3—C2—H2106.6H7'1—C7'—H7'3109.5
C2—C3—H3A109.5H7'2—C7'—H7'3109.5
C2—C3—H3B109.5C6—C8'—H8'1109.5
H3A—C3—H3B109.5C6—C8'—H8'2109.5
C2—C3—H3C109.5H8'1—C8'—H8'2109.5
H3A—C3—H3C109.5C6—C8'—H8'3109.5
H3B—C3—H3C109.5H8'1—C8'—H8'3109.5
N1—C4—N3108.5 (10)H8'2—C8'—H8'3109.5
N1—Ag1—O1—N489.2 (9)N2—N1—C4—C2178.6 (10)
N2i—Ag1—O1—N482.9 (9)Ag1—N1—C4—C29.6 (18)
O2—Ag1—O1—N43.1 (8)C5—N3—C4—N10.4 (13)
N1—Ag1—O2—N4111.2 (9)C5—N3—C4—C2179.2 (11)
N2i—Ag1—O2—N4113.7 (9)C1—C2—C4—N1126.3 (14)
O1—Ag1—O2—N43.2 (8)C3—C2—C4—N1105.4 (15)
N2i—Ag1—N1—C4170.4 (10)C1—C2—C4—N354.0 (16)
O2—Ag1—N1—C447.8 (11)C3—C2—C4—N374.2 (17)
O1—Ag1—N1—C41.2 (12)N1—N2—C5—N31.1 (14)
N2i—Ag1—N1—N22.1 (11)Ag1i—N2—C5—N3171.8 (9)
O2—Ag1—N1—N2120.4 (8)N1—N2—C5—C6179.2 (11)
O1—Ag1—N1—N2169.4 (7)Ag1i—N2—C5—C66 (2)
C4—N1—N2—C51.3 (13)C4—N3—C5—N20.4 (14)
Ag1—N1—N2—C5172.7 (8)C4—N3—C5—C6178.5 (11)
C4—N1—N2—Ag1i173.2 (7)N2—C5—C6—C7'74 (3)
Ag1—N1—N2—Ag1i1.9 (10)N3—C5—C6—C7'108 (2)
Ag1—O2—N4—O15.8 (14)N2—C5—C6—C8'88 (3)
Ag1—O2—N4—O3179.6 (12)N3—C5—C6—C8'90 (3)
Ag1—O1—N4—O25.8 (14)N2—C5—C6—C7104 (2)
Ag1—O1—N4—O3179.7 (12)N3—C5—C6—C778 (2)
N2—N1—C4—N31.0 (12)N2—C5—C6—C8128.8 (19)
Ag1—N1—C4—N3170.1 (8)N3—C5—C6—C849 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.892.062.93 (1)167
Symmetry code: (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2(NO3)2(C8H15N3)2]
Mr646.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.791 (1), 14.541 (1), 14.578 (1)
β (°) 99.523 (2)
V3)1210.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.41 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5562, 2124, 1389
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.240, 1.08
No. of reflections2124
No. of parameters151
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.96

Computer programs: APEX2 (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.892.062.93 (1)167
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Education Department of Zhengzhou University, China and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1999). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714–719.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds