metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ2-acetato-bis­­{μ2-5-meth­­oxy-2-[(2-morpholinoeth­yl)iminio­meth­yl]phenolato}tricadmium(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 July 2009; accepted 22 July 2009; online 31 July 2009)

The central CdII atom in the trinuclear title compound, [Cd3(C14H19N2O3)2(CH3COO)4], lies on a center of inversion and is bonded to the O atoms of four acetate groups as well as to the phenolate O atoms of the mono-deprotonated Schiff base ligands in a distorted all-trans octa­hedral geometry. Two of the acetate groups function in a μ2-bridging mode, while the other two each chelate to the terminal CdII atom and simultaneously bind to the central metal atom in a κ3-bonding mode. The Schiff base anions N,O-chelate to the terminal metal atoms. The morpholine ring assumes a chair conformation.

Related literature

The Schiff base exists in the zwitterionic form; see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o1067.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd3(C14H19N2O3)2(C2H3O2)4]

  • Mr = 1100.00

  • Triclinic, [P \overline 1]

  • a = 8.7199 (1) Å

  • b = 10.5536 (1) Å

  • c = 11.5202 (2) Å

  • α = 84.899 (1)°

  • β = 86.317 (1)°

  • γ = 85.121 (1)°

  • V = 1050.42 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 193 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.662, Tmax = 0.730

  • 7364 measured reflections

  • 4655 independent reflections

  • 4265 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.071

  • S = 1.12

  • 4655 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The Schiff base exists in the zwitterionic form; see: Mohd Lair et al. (2009).

Experimental top

The Schiff base was synthesized as described (Mohd Lair et al., 2009). The Schiff base (0.52 g, 2 mmol) and cadmium(II) acetate dihydrate (0.27 g, 1 mmol) were heated in ethanol (50 ml) for 5 hours. Large crystals appeared after a day.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cd3(C2H3O2)4(C13H19N2O3)2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Tetra-µ2-acetato-bis{µ2-5-methoxy-2-[(2- morpholinoethyl)iminiomethyl]phenolato}tricadmium(II) top
Crystal data top
[Cd3(C14H19N2O3)2(C2H3O2)4]Z = 1
Mr = 1100.00F(000) = 550
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7199 (1) ÅCell parameters from 5715 reflections
b = 10.5536 (1) Åθ = 2.5–28.3°
c = 11.5202 (2) ŵ = 1.57 mm1
α = 84.899 (1)°T = 193 K
β = 86.317 (1)°Prism, colorless
γ = 85.121 (1)°0.30 × 0.25 × 0.20 mm
V = 1050.42 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
4655 independent reflections
Radiation source: fine-focus sealed tube4265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.662, Tmax = 0.730k = 1313
7364 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.8302P]
where P = (Fo2 + 2Fc2)/3
4655 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cd3(C14H19N2O3)2(C2H3O2)4]γ = 85.121 (1)°
Mr = 1100.00V = 1050.42 (2) Å3
Triclinic, P1Z = 1
a = 8.7199 (1) ÅMo Kα radiation
b = 10.5536 (1) ŵ = 1.57 mm1
c = 11.5202 (2) ÅT = 193 K
α = 84.899 (1)°0.30 × 0.25 × 0.20 mm
β = 86.317 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4655 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4265 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.730Rint = 0.013
7364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.12Δρmax = 0.77 e Å3
4655 reflectionsΔρmin = 0.45 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02237 (7)
Cd20.43304 (2)0.760182 (16)0.651747 (15)0.02350 (7)
O10.3867 (2)0.70119 (17)0.47197 (16)0.0296 (4)
O20.1319 (2)0.6600 (2)0.12402 (17)0.0355 (4)
O30.6154 (3)0.7935 (2)0.99064 (18)0.0443 (5)
O40.7254 (2)0.58205 (18)0.51372 (17)0.0333 (4)
O50.6883 (2)0.74953 (18)0.62123 (17)0.0317 (4)
O60.4399 (2)0.54112 (17)0.69398 (15)0.0280 (4)
O70.2248 (2)0.6405 (2)0.7604 (2)0.0415 (5)
N10.3167 (3)0.9434 (2)0.57277 (19)0.0272 (4)
N20.4101 (2)0.8934 (2)0.81198 (18)0.0260 (4)
C10.2914 (3)0.7490 (2)0.3934 (2)0.0237 (5)
C20.2618 (3)0.6773 (2)0.3010 (2)0.0264 (5)
H20.31120.59390.29740.032*
C30.1638 (3)0.7243 (3)0.2161 (2)0.0286 (5)
C40.0898 (3)0.8479 (3)0.2184 (2)0.0323 (6)
H40.02290.88140.15920.039*
C50.1164 (3)0.9187 (3)0.3075 (2)0.0308 (5)
H50.06551.00180.30950.037*
C60.2162 (3)0.8742 (2)0.3969 (2)0.0230 (5)
C70.1865 (4)0.5285 (3)0.1245 (3)0.0480 (8)
H7A0.15640.49400.05380.072*
H7B0.14150.48090.19350.072*
H7C0.29910.52030.12650.072*
C80.2340 (3)0.9619 (2)0.4834 (2)0.0256 (5)
H80.17791.04300.47320.031*
C90.3179 (3)1.0469 (2)0.6485 (2)0.0316 (6)
H9A0.23571.11430.62810.038*
H9B0.41831.08490.63780.038*
C100.2915 (3)0.9945 (3)0.7749 (2)0.0327 (6)
H10A0.29061.06520.82600.039*
H10B0.18910.95980.78510.039*
C110.3554 (3)0.8297 (3)0.9251 (2)0.0344 (6)
H11A0.26240.78550.91400.041*
H11B0.32660.89470.98120.041*
C120.4778 (4)0.7347 (3)0.9742 (3)0.0425 (7)
H12A0.43850.69451.05000.051*
H12B0.50170.66670.92040.051*
C130.6732 (3)0.8499 (3)0.8810 (3)0.0397 (7)
H13A0.69900.78250.82680.048*
H13B0.76890.89040.89220.048*
C140.5570 (3)0.9488 (3)0.8280 (2)0.0341 (6)
H14A0.53721.01950.87930.041*
H14B0.59970.98440.75140.041*
C150.7716 (3)0.6686 (2)0.5665 (2)0.0255 (5)
C160.9437 (3)0.6773 (3)0.5634 (3)0.0379 (6)
H16A0.96910.72470.62800.057*
H16B0.97800.72170.48910.057*
H16C0.99570.59120.57090.057*
C170.3027 (3)0.5403 (3)0.7425 (2)0.0278 (5)
C180.2436 (4)0.4112 (3)0.7764 (3)0.0462 (8)
H18A0.15150.42070.82920.069*
H18B0.32340.35540.81580.069*
H18C0.21740.37360.70620.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02474 (13)0.01789 (12)0.02484 (13)0.00088 (9)0.00239 (9)0.00558 (9)
Cd20.02618 (10)0.02014 (10)0.02439 (10)0.00142 (7)0.00232 (7)0.00558 (7)
O10.0379 (10)0.0225 (9)0.0286 (9)0.0071 (7)0.0111 (8)0.0055 (7)
O20.0380 (11)0.0412 (11)0.0282 (10)0.0010 (9)0.0065 (8)0.0092 (8)
O30.0429 (12)0.0609 (14)0.0291 (10)0.0035 (10)0.0071 (9)0.0012 (10)
O40.0296 (9)0.0329 (10)0.0391 (11)0.0055 (8)0.0006 (8)0.0118 (8)
O50.0266 (9)0.0311 (10)0.0383 (10)0.0019 (7)0.0023 (8)0.0104 (8)
O60.0286 (9)0.0309 (10)0.0251 (9)0.0055 (7)0.0008 (7)0.0034 (7)
O70.0332 (10)0.0406 (12)0.0514 (13)0.0022 (9)0.0009 (9)0.0149 (10)
N10.0315 (11)0.0205 (10)0.0295 (11)0.0001 (8)0.0015 (9)0.0046 (8)
N20.0262 (10)0.0268 (11)0.0257 (10)0.0025 (8)0.0008 (8)0.0070 (8)
C10.0225 (11)0.0262 (12)0.0222 (11)0.0035 (9)0.0000 (9)0.0002 (9)
C20.0271 (12)0.0245 (12)0.0273 (12)0.0026 (9)0.0013 (10)0.0041 (10)
C30.0261 (12)0.0373 (14)0.0231 (12)0.0061 (10)0.0008 (9)0.0034 (10)
C40.0277 (13)0.0382 (15)0.0292 (13)0.0071 (11)0.0064 (10)0.0013 (11)
C50.0263 (12)0.0305 (14)0.0337 (14)0.0030 (10)0.0021 (10)0.0021 (11)
C60.0222 (11)0.0219 (11)0.0242 (11)0.0008 (9)0.0012 (9)0.0004 (9)
C70.059 (2)0.0459 (19)0.0424 (18)0.0046 (15)0.0072 (15)0.0164 (15)
C80.0251 (11)0.0188 (11)0.0314 (13)0.0018 (9)0.0018 (10)0.0007 (9)
C90.0381 (14)0.0213 (12)0.0359 (14)0.0021 (10)0.0030 (11)0.0087 (11)
C100.0342 (14)0.0279 (13)0.0361 (14)0.0061 (11)0.0005 (11)0.0120 (11)
C110.0366 (14)0.0442 (16)0.0238 (12)0.0106 (12)0.0060 (10)0.0080 (11)
C120.0487 (18)0.0447 (17)0.0333 (15)0.0058 (14)0.0017 (13)0.0009 (13)
C130.0323 (14)0.0550 (19)0.0324 (14)0.0041 (13)0.0029 (11)0.0055 (13)
C140.0349 (14)0.0388 (15)0.0305 (13)0.0115 (12)0.0021 (11)0.0063 (11)
C150.0241 (11)0.0246 (12)0.0273 (12)0.0030 (9)0.0001 (9)0.0011 (10)
C160.0244 (13)0.0329 (15)0.0569 (19)0.0022 (11)0.0007 (12)0.0078 (13)
C170.0291 (12)0.0326 (14)0.0226 (12)0.0047 (10)0.0038 (9)0.0038 (10)
C180.0522 (19)0.0444 (18)0.0429 (17)0.0204 (15)0.0008 (14)0.0043 (14)
Geometric parameters (Å, º) top
Cd1—O42.2341 (18)C4—C51.364 (4)
Cd1—O4i2.2341 (18)C4—H40.9500
Cd1—O12.2697 (18)C5—C61.414 (3)
Cd1—O1i2.2697 (18)C5—H50.9500
Cd1—O6i2.3324 (18)C6—C81.443 (3)
Cd1—O62.3324 (18)C7—H7A0.9800
Cd2—O52.2258 (18)C7—H7B0.9800
Cd2—N12.251 (2)C7—H7C0.9800
Cd2—O12.2848 (18)C8—H80.9500
Cd2—O62.3163 (18)C9—C101.521 (4)
Cd2—N22.406 (2)C9—H9A0.9900
Cd2—O72.505 (2)C9—H9B0.9900
Cd2—C172.763 (3)C10—H10A0.9900
O1—C11.307 (3)C10—H10B0.9900
O2—C31.364 (3)C11—C121.503 (4)
O2—C71.428 (4)C11—H11A0.9900
O3—C131.428 (4)C11—H11B0.9900
O3—C121.427 (4)C12—H12A0.9900
O4—C151.249 (3)C12—H12B0.9900
O5—C151.259 (3)C13—C141.508 (4)
O6—C171.288 (3)C13—H13A0.9900
O7—C171.232 (3)C13—H13B0.9900
N1—C81.286 (3)C14—H14A0.9900
N1—C91.458 (3)C14—H14B0.9900
N2—C101.476 (3)C15—C161.508 (3)
N2—C141.481 (3)C16—H16A0.9800
N2—C111.483 (3)C16—H16B0.9800
C1—C21.409 (3)C16—H16C0.9800
C1—C61.427 (4)C17—C181.508 (4)
C2—C31.372 (4)C18—H18A0.9800
C2—H20.9500C18—H18B0.9800
C3—C41.407 (4)C18—H18C0.9800
O4—Cd1—O4i180.00 (9)C6—C5—H5118.4
O4—Cd1—O189.08 (7)C5—C6—C1118.0 (2)
O4i—Cd1—O190.92 (7)C5—C6—C8116.2 (2)
O4—Cd1—O1i90.92 (7)C1—C6—C8125.9 (2)
O4i—Cd1—O1i89.08 (7)O2—C7—H7A109.5
O1—Cd1—O1i180.0O2—C7—H7B109.5
O4—Cd1—O6i92.07 (7)H7A—C7—H7B109.5
O4i—Cd1—O6i87.93 (7)O2—C7—H7C109.5
O1—Cd1—O6i99.40 (7)H7A—C7—H7C109.5
O1i—Cd1—O6i80.60 (7)H7B—C7—H7C109.5
O4—Cd1—O687.93 (7)N1—C8—C6127.7 (2)
O4i—Cd1—O692.07 (7)N1—C8—H8116.2
O1—Cd1—O680.60 (7)C6—C8—H8116.2
O1i—Cd1—O699.40 (7)N1—C9—C10109.2 (2)
O6i—Cd1—O6180.000 (1)N1—C9—H9A109.8
O5—Cd2—N1112.77 (8)C10—C9—H9A109.8
O5—Cd2—O195.22 (7)N1—C9—H9B109.8
N1—Cd2—O179.57 (7)C10—C9—H9B109.8
O5—Cd2—O690.89 (7)H9A—C9—H9B108.3
N1—Cd2—O6150.28 (7)N2—C10—C9113.0 (2)
O1—Cd2—O680.63 (6)N2—C10—H10A109.0
O5—Cd2—N298.35 (7)C9—C10—H10A109.0
N1—Cd2—N277.40 (8)N2—C10—H10B109.0
O1—Cd2—N2156.39 (7)C9—C10—H10B109.0
O6—Cd2—N2118.22 (7)H10A—C10—H10B107.8
O5—Cd2—O7140.68 (7)N2—C11—C12111.1 (2)
N1—Cd2—O7106.34 (8)N2—C11—H11A109.4
O1—Cd2—O795.62 (7)C12—C11—H11A109.4
O6—Cd2—O754.04 (7)N2—C11—H11B109.4
N2—Cd2—O786.00 (7)C12—C11—H11B109.4
O5—Cd2—C17117.38 (8)H11A—C11—H11B108.0
N1—Cd2—C17128.89 (8)O3—C12—C11111.6 (3)
O1—Cd2—C1786.63 (7)O3—C12—H12A109.3
O6—Cd2—C1727.64 (7)C11—C12—H12A109.3
N2—Cd2—C17103.91 (7)O3—C12—H12B109.3
O7—Cd2—C1726.48 (7)C11—C12—H12B109.3
C1—O1—Cd1129.37 (16)H12A—C12—H12B108.0
C1—O1—Cd2132.41 (16)O3—C13—C14111.5 (2)
Cd1—O1—Cd295.61 (7)O3—C13—H13A109.3
C3—O2—C7117.8 (2)C14—C13—H13A109.3
C13—O3—C12109.2 (2)O3—C13—H13B109.3
C15—O4—Cd1135.87 (17)C14—C13—H13B109.3
C15—O5—Cd2127.15 (16)H13A—C13—H13B108.0
C17—O6—Cd295.85 (16)N2—C14—C13111.4 (2)
C17—O6—Cd1123.51 (15)N2—C14—H14A109.4
Cd2—O6—Cd193.08 (6)C13—C14—H14A109.4
C17—O7—Cd288.50 (16)N2—C14—H14B109.4
C8—N1—C9118.1 (2)C13—C14—H14B109.4
C8—N1—Cd2129.16 (18)H14A—C14—H14B108.0
C9—N1—Cd2111.79 (16)O4—C15—O5126.2 (2)
C10—N2—C14110.6 (2)O4—C15—C16116.7 (2)
C10—N2—C11108.4 (2)O5—C15—C16117.1 (2)
C14—N2—C11108.7 (2)C15—C16—H16A109.5
C10—N2—Cd2102.71 (15)C15—C16—H16B109.5
C14—N2—Cd2111.70 (16)H16A—C16—H16B109.5
C11—N2—Cd2114.69 (16)C15—C16—H16C109.5
O1—C1—C2120.1 (2)H16A—C16—H16C109.5
O1—C1—C6121.9 (2)H16B—C16—H16C109.5
C2—C1—C6118.0 (2)O7—C17—O6121.3 (2)
C3—C2—C1122.0 (2)O7—C17—C18122.2 (3)
C3—C2—H2119.0O6—C17—C18116.6 (3)
C1—C2—H2119.0O7—C17—Cd265.02 (15)
O2—C3—C2124.6 (3)O6—C17—Cd256.51 (13)
O2—C3—C4114.9 (2)C18—C17—Cd2171.3 (2)
C2—C3—C4120.4 (2)C17—C18—H18A109.5
C5—C4—C3118.5 (2)C17—C18—H18B109.5
C5—C4—H4120.8H18A—C18—H18B109.5
C3—C4—H4120.8C17—C18—H18C109.5
C4—C5—C6123.1 (3)H18A—C18—H18C109.5
C4—C5—H5118.4H18B—C18—H18C109.5
O4—Cd1—O1—C1132.7 (2)O5—Cd2—N2—C1411.13 (18)
O4i—Cd1—O1—C147.3 (2)N1—Cd2—N2—C14100.46 (18)
O6i—Cd1—O1—C140.8 (2)O1—Cd2—N2—C14113.3 (2)
O6—Cd1—O1—C1139.2 (2)O6—Cd2—N2—C14106.68 (17)
O4—Cd1—O1—Cd264.07 (7)O7—Cd2—N2—C14151.81 (18)
O4i—Cd1—O1—Cd2115.93 (7)C17—Cd2—N2—C14132.15 (17)
O6i—Cd1—O1—Cd2156.02 (7)O5—Cd2—N2—C11113.06 (18)
O6—Cd1—O1—Cd223.98 (7)N1—Cd2—N2—C11135.35 (19)
O5—Cd2—O1—C1131.7 (2)O1—Cd2—N2—C11122.5 (2)
N1—Cd2—O1—C119.5 (2)O6—Cd2—N2—C1117.5 (2)
O6—Cd2—O1—C1138.2 (2)O7—Cd2—N2—C1127.61 (18)
N2—Cd2—O1—C16.7 (3)C17—Cd2—N2—C117.95 (19)
O7—Cd2—O1—C186.1 (2)Cd1—O1—C1—C28.6 (3)
C17—Cd2—O1—C1111.1 (2)Cd2—O1—C1—C2165.66 (17)
O5—Cd2—O1—Cd165.89 (8)Cd1—O1—C1—C6172.28 (16)
N1—Cd2—O1—Cd1178.12 (8)Cd2—O1—C1—C615.2 (3)
O6—Cd2—O1—Cd124.16 (7)O1—C1—C2—C3179.3 (2)
N2—Cd2—O1—Cd1169.14 (14)C6—C1—C2—C30.2 (4)
O7—Cd2—O1—Cd176.26 (8)C7—O2—C3—C29.3 (4)
C17—Cd2—O1—Cd151.32 (8)C7—O2—C3—C4171.9 (3)
O1—Cd1—O4—C1546.8 (3)C1—C2—C3—O2179.3 (2)
O1i—Cd1—O4—C15133.2 (3)C1—C2—C3—C40.5 (4)
O6i—Cd1—O4—C15146.2 (3)O2—C3—C4—C5179.7 (2)
O6—Cd1—O4—C1533.8 (3)C2—C3—C4—C50.8 (4)
N1—Cd2—O5—C15118.7 (2)C3—C4—C5—C60.7 (4)
O1—Cd2—O5—C1537.8 (2)C4—C5—C6—C10.4 (4)
O6—Cd2—O5—C1542.9 (2)C4—C5—C6—C8178.8 (2)
N2—Cd2—O5—C15161.6 (2)O1—C1—C6—C5179.2 (2)
O7—Cd2—O5—C1567.7 (2)C2—C1—C6—C50.1 (3)
C17—Cd2—O5—C1551.1 (2)O1—C1—C6—C80.1 (4)
O5—Cd2—O6—C17164.09 (15)C2—C1—C6—C8179.0 (2)
N1—Cd2—O6—C1752.0 (2)C9—N1—C8—C6179.6 (2)
O1—Cd2—O6—C17100.76 (14)Cd2—N1—C8—C612.3 (4)
N2—Cd2—O6—C1764.12 (16)C5—C6—C8—N1179.5 (2)
O7—Cd2—O6—C173.27 (14)C1—C6—C8—N11.4 (4)
O5—Cd2—O6—Cd171.76 (7)C8—N1—C9—C10131.7 (2)
N1—Cd2—O6—Cd172.13 (15)Cd2—N1—C9—C1038.4 (3)
O1—Cd2—O6—Cd123.38 (7)C14—N2—C10—C973.7 (3)
N2—Cd2—O6—Cd1171.73 (6)C11—N2—C10—C9167.4 (2)
O7—Cd2—O6—Cd1127.41 (9)Cd2—N2—C10—C945.6 (2)
C17—Cd2—O6—Cd1124.14 (16)N1—C9—C10—N259.6 (3)
O4—Cd1—O6—C17165.0 (2)C10—N2—C11—C12174.1 (2)
O4i—Cd1—O6—C1715.0 (2)C14—N2—C11—C1253.9 (3)
O1—Cd1—O6—C1775.5 (2)Cd2—N2—C11—C1271.9 (3)
O1i—Cd1—O6—C17104.5 (2)C13—O3—C12—C1159.8 (3)
O4—Cd1—O6—Cd265.86 (7)N2—C11—C12—O358.4 (3)
O4i—Cd1—O6—Cd2114.14 (7)C12—O3—C13—C1459.3 (3)
O1—Cd1—O6—Cd223.55 (7)C10—N2—C14—C13172.4 (2)
O1i—Cd1—O6—Cd2156.45 (7)C11—N2—C14—C1353.7 (3)
O5—Cd2—O7—C1734.6 (2)Cd2—N2—C14—C1373.9 (2)
N1—Cd2—O7—C17151.47 (16)O3—C13—C14—N257.7 (3)
O1—Cd2—O7—C1770.73 (16)Cd1—O4—C15—O59.5 (4)
O6—Cd2—O7—C173.40 (14)Cd1—O4—C15—C16170.9 (2)
N2—Cd2—O7—C17132.91 (17)Cd2—O5—C15—O43.8 (4)
O5—Cd2—N1—C8108.5 (2)Cd2—O5—C15—C16176.71 (18)
O1—Cd2—N1—C817.2 (2)Cd2—O7—C17—O65.8 (2)
O6—Cd2—N1—C831.8 (3)Cd2—O7—C17—C18174.5 (2)
N2—Cd2—N1—C8157.7 (2)Cd2—O6—C17—O76.3 (3)
O7—Cd2—N1—C875.7 (2)Cd1—O6—C17—O7103.9 (3)
C17—Cd2—N1—C859.8 (3)Cd2—O6—C17—C18174.0 (2)
O5—Cd2—N1—C982.79 (18)Cd1—O6—C17—C1876.3 (3)
O1—Cd2—N1—C9174.11 (18)Cd1—O6—C17—Cd297.62 (15)
O6—Cd2—N1—C9136.93 (17)O5—Cd2—C17—O7156.09 (15)
N2—Cd2—N1—C911.08 (17)N1—Cd2—C17—O736.1 (2)
O7—Cd2—N1—C993.04 (18)O1—Cd2—C17—O7109.77 (16)
C17—Cd2—N1—C9108.92 (18)O6—Cd2—C17—O7174.1 (2)
O5—Cd2—N2—C10129.62 (16)N2—Cd2—C17—O748.83 (17)
N1—Cd2—N2—C1018.03 (15)O5—Cd2—C17—O617.97 (16)
O1—Cd2—N2—C105.2 (3)N1—Cd2—C17—O6149.87 (13)
O6—Cd2—N2—C10134.83 (15)O1—Cd2—C17—O676.16 (14)
O7—Cd2—N2—C1089.70 (16)N2—Cd2—C17—O6125.24 (14)
C17—Cd2—N2—C10109.37 (16)O7—Cd2—C17—O6174.1 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd3(C14H19N2O3)2(C2H3O2)4]
Mr1100.00
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.7199 (1), 10.5536 (1), 11.5202 (2)
α, β, γ (°)84.899 (1), 86.317 (1), 85.121 (1)
V3)1050.42 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.662, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
7364, 4655, 4265
Rint0.013
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.071, 1.12
No. of reflections4655
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.45

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds