organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2037-o2038

1,3-Difurfurylbenzimidazolium chloride monohydrate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, nönü University, 44280 Malatya, Turkey, and dDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 July 2009; accepted 24 July 2009; online 29 July 2009)

The title compound, C17H15N2O2+·Cl·H2O, was synthesized from benzimidazole and furfryl chloride in dimethyl­formamide. The cationic benzimidazolium ring is connected to two furan rings via methyl­ene bridges. The furan rings make dihedral angle of 79.09 (18)° with respect to each other, and make dihedral angles of 73.92 (12) and 72.58 (13)° with respect to the benzimidazole ring. O—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions contribute to the stabilization of the crystal structure. Furthermore, there is a ππ inter­action between adjacent five- and six-membered rings of the benzimidazole groups [centroid–centroid distance = 3.5305 (8) Å].

Related literature

For the biological activity of furan derivatives, see: Ji et al. (2009[Ji, K. G., Shu, X. Z., Chen, J., Zhao, S. C., Zheng, Z. J., Liu, X. Y. & Liang, Y. M. (2009). Org. Biomol. Chem. 7, 2501-2505.]). For the anti­microbial activity of a large number of organic and organometallic derivatives of benzimidazole against standard bacterial strains, see: Küçükbay & Durmaz (1997[Küçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667-670.]); Küçükbay et al. (2001[Küçükbay, H., Durmaz, R., Güven, M. & Günal, S. (2001). Arzneim. Forsch. Drug Res. 51, 420-424.], 2004[Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64-68.], 2009[Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181-6189.]); Çetinkaya et al. (1996[Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 821-823.]). For the catalytic activity of furans, see: Küçükbay et al. (1996[Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434-2439.]). For related structures, see: Yıldırım et al. (2007[Yıldırım, S. Ö., Akkurt, M., Şireci, N., Küçükbay, H. & Kazak, C. (2007). Acta Cryst. E63, o2433.]); Akkurt et al. (2006[Akkurt, M., Türktekin, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2006). Acta Cryst. E62, o185-o187.], 2007[Akkurt, M., Pınar, Ş., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o379-o381.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N2O2+·Cl·H2O

  • Mr = 332.78

  • Triclinic, [P \overline 1]

  • a = 9.0201 (5) Å

  • b = 9.3135 (5) Å

  • c = 11.2711 (6) Å

  • α = 66.778 (4)°

  • β = 81.869 (4)°

  • γ = 73.656 (4)°

  • V = 834.50 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.58 × 0.49 × 0.38 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.871, Tmax = 0.913

  • 15618 measured reflections

  • 3780 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.04

  • 3780 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—HW1⋯Cl1i 0.93 (3) 2.27 (3) 3.1563 (17) 159 (3)
O3—HW2⋯Cl1 0.98 (3) 2.22 (3) 3.1848 (17) 168 (3)
C7—H7⋯O3 0.93 2.22 3.133 (2) 168
C8—H8A⋯Cl1ii 0.97 2.75 3.7098 (18) 169
C8—H8B⋯Cl1 0.97 2.67 3.6371 (18) 173
C13—H13A⋯Cl1i 0.97 2.67 3.6332 (18) 171
C13—H13B⋯Cl1iii 0.97 2.66 3.6290 (19) 177
C11—H11⋯Cg2iv 0.93 2.85 3.641 (4) 144
C12—H12⋯Cg4iv 0.93 2.96 3.718 (2) 139
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) x, y+1, z; (iv) -x, -y, -z+2. Cg2 and Cg4 are the centroids of the O2/C14–C17 furan and C1–C6 benzene rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Like benzimidazoles, furan derivatives occur widely as key structural subunits in numerous natural products, which exhibit interesting biological activities and also in substances of relevance for industry (Ji et al., 2009). Previously, a large number of organic and organometallic derivatives of benzimidazole were prepared in our research laboratory for their antimicrobial activities against standard bacterial strains (Küçükbay & Durmaz, 1997; Küçükbay et al., 2001; Küçükbay et al., 2004; Çetinkaya et al., 1996; Küçükbay et al., 2009) and catalytic activities in some carbon-carbon bond formation reactions and catalytic synthesis of furans (Küçükbay et al., 1996). In connection with these studies, we planned to synthesize having furfuryl substituted new benzimidazole compound (I) and elucidate its crystal structure.

In the asymmetric unit of the title compound (Fig. 1), there are one Cl- anion, a 1,3-di(furfuryl)benzimidazolium cation and one water molecule. The bond lengths are comparable with those found in earlier work on similar compounds (Allen et al., 1987). The O1/C9–C12 and O2/C14–C17 furan rings and N1/N2/C1–C7 benzimidazole ring are almost planar, with maximum deviations of 0.011 (2) for O1 atoms and -0.013 (2) for O2 atom, and -0.008 (1) Å for N1 atom, respectively. The furan rings make dihedral angles of 79.09 (18)° with each other and 73.92 (12) and 72.58 (13)°, respectively, with the benzimidazole ring.

In the crystal structure of (I), there are O—H···Cl, C—H···O and C—H···Cl hydrogen-bonds (Fig. 2) and C—H···π interactions to stabilize the structure (Table 1). Furthermore, there are ππ interactions between the sequential five- and six membered rings {Cg2 (ring N1/N2/C1/C6/C7)···Cg4 (ring C1–C6) [-x, 1 - x, 1 - z] = 3.5305 (8) Å} of the benzimidazole groups.

Related literature top

For the biological activity of furan derivatives, see: Ji et al. (2009). For the antimicrobial activities of a large number of organic and organometallic derivatives of benzimidazole against standard bacterial strains, see: Küçükbay & Durmaz (1997); Küçükbay et al. (2001, 2004, 2009); Çetinkaya et al. (1996). For catalytic activity in some carbon–carbon bond formation reactions and the catalytic synthesis of furans, see: Küçükbay et al. (1996). For our previous studies of related structures, see: Yıldırım et al. (2007); Akkurt et al. (2006, 2007). For bond-length data, see: Allen et al. (1987). Cg2 and Cg4 are centroids of the O2/C14–C17 furan and C1–C6 benzene rings, respectively.

Experimental top

A mixture of benzimidazole (1.18 g, 10 mmol) and furfuryl chloride (2.3 g, 20 mmol) in DMF (4 ml) was heated under reflux for 4 h. The solution was allowed to cool to room temperature and Et2O (5 ml) was added. The precipitate was then crystallized from EtOH / Et2O(2:1). Yield: 1.43 g, 71%, m.p. 488–489 K. 1HNMR (DMSO-d6): δ 5.93(4H, s), 6.51(2H, d), 6.84(2H, d),8.12(2H, d), 7.71 (4H, m), 10.21(1H, s). 13CNMR (DMSO-d6): δ 43.05, 111.00, 111.39, 113.99, 126.93, 130.79, 142.37, 144.38, 146.77. Analysis calculated for C17H17N2O3Cl: C 61.35, H 5.11, N 8.42%. Found: C 60.97, H 5.06, N 8.38%.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and their positional parameters refined freely, with Uiso(H) = 1.5Ueq(O). The other H atoms were located geometrically and refined using a riding model, with C–H = 0.93 and 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the hydrogen bonding of (I) in the unit cell.
1,3-Difurfurylbenzimidazolium chloride monohydrate top
Crystal data top
C17H15N2O2+.Cl·H2OZ = 2
Mr = 332.78F(000) = 348
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0201 (5) ÅCell parameters from 20002 reflections
b = 9.3135 (5) Åθ = 2.0–28.0°
c = 11.2711 (6) ŵ = 0.25 mm1
α = 66.778 (4)°T = 296 K
β = 81.869 (4)°Prism, colourless
γ = 73.656 (4)°0.58 × 0.49 × 0.38 mm
V = 834.50 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
3780 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2972 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.024
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.871, Tmax = 0.913l = 1414
15618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.0531P]
where P = (Fo2 + 2Fc2)/3
3780 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H15N2O2+.Cl·H2Oγ = 73.656 (4)°
Mr = 332.78V = 834.50 (8) Å3
Triclinic, P1Z = 2
a = 9.0201 (5) ÅMo Kα radiation
b = 9.3135 (5) ŵ = 0.25 mm1
c = 11.2711 (6) ÅT = 296 K
α = 66.778 (4)°0.58 × 0.49 × 0.38 mm
β = 81.869 (4)°
Data collection top
Stoe IPDS II
diffractometer
3780 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2972 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.913Rint = 0.024
15618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
3780 reflectionsΔρmin = 0.21 e Å3
214 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13050 (17)0.1335 (2)0.86538 (14)0.1035 (5)
O20.4854 (2)0.20834 (19)0.87489 (17)0.1120 (7)
N10.23659 (12)0.34379 (14)0.66557 (10)0.0532 (3)
N20.09145 (13)0.19641 (13)0.65802 (11)0.0538 (3)
C10.08420 (14)0.43162 (16)0.66979 (12)0.0494 (4)
C20.02240 (17)0.58200 (18)0.67695 (15)0.0603 (4)
C30.13677 (18)0.63291 (19)0.67798 (17)0.0681 (5)
C40.22951 (17)0.5392 (2)0.67213 (16)0.0676 (5)
C50.16859 (16)0.38960 (19)0.66484 (14)0.0590 (4)
C60.00818 (15)0.33787 (16)0.66462 (12)0.0497 (4)
C70.23474 (16)0.20505 (17)0.65930 (13)0.0558 (4)
C80.04576 (19)0.05737 (18)0.65596 (15)0.0624 (5)
C90.0118 (2)0.05143 (19)0.78656 (15)0.0644 (5)
C100.1182 (3)0.0852 (3)0.8477 (2)0.0975 (8)
C110.0776 (4)0.1983 (4)0.9725 (3)0.1193 (11)
C120.0683 (4)0.2261 (3)0.9797 (2)0.1176 (10)
C130.37621 (16)0.3936 (2)0.67077 (15)0.0617 (4)
C140.41286 (17)0.3570 (2)0.80414 (16)0.0650 (5)
C150.3759 (3)0.4445 (3)0.8759 (2)0.1043 (9)
C160.4334 (4)0.3444 (4)1.0001 (2)0.1183 (13)
C170.4990 (4)0.2065 (4)0.9964 (2)0.1177 (11)
O30.50690 (18)0.09917 (19)0.68142 (14)0.0861 (5)
Cl10.33115 (5)0.17640 (6)0.49633 (5)0.0794 (2)
H20.084300.644700.680800.0720*
H30.183700.733200.682700.0820*
H40.336300.579000.673200.0810*
H50.230600.327400.660400.0710*
H70.322400.124800.656200.0670*
H8A0.045100.096000.604500.0750*
H8B0.128600.001900.615400.0750*
H100.216800.042600.814600.1170*
H110.144800.244301.037800.1430*
H120.124900.298501.051600.1410*
H13A0.463000.338500.630500.0740*
H13B0.360300.508700.622200.0740*
H150.322000.552400.849900.1250*
H160.424700.374001.071000.1420*
H170.548600.117801.064800.1410*
HW10.575 (3)0.041 (3)0.627 (3)0.1190*
HW20.461 (3)0.139 (3)0.631 (3)0.1190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0817 (9)0.1176 (11)0.0752 (8)0.0088 (8)0.0101 (7)0.0070 (8)
O20.1417 (15)0.0792 (9)0.1012 (11)0.0119 (9)0.0444 (10)0.0164 (8)
N10.0444 (5)0.0560 (6)0.0524 (6)0.0049 (4)0.0014 (4)0.0183 (5)
N20.0547 (6)0.0514 (6)0.0531 (6)0.0036 (5)0.0051 (4)0.0227 (5)
C10.0449 (6)0.0519 (7)0.0450 (6)0.0053 (5)0.0021 (5)0.0159 (5)
C20.0582 (8)0.0536 (7)0.0680 (8)0.0090 (6)0.0023 (6)0.0250 (6)
C30.0610 (8)0.0584 (8)0.0812 (10)0.0015 (7)0.0019 (7)0.0335 (7)
C40.0483 (7)0.0708 (10)0.0785 (10)0.0008 (7)0.0030 (7)0.0330 (8)
C50.0484 (7)0.0665 (8)0.0624 (8)0.0092 (6)0.0047 (6)0.0268 (7)
C60.0499 (6)0.0504 (7)0.0443 (6)0.0042 (5)0.0039 (5)0.0178 (5)
C70.0515 (7)0.0553 (7)0.0529 (7)0.0004 (5)0.0030 (5)0.0212 (6)
C80.0729 (9)0.0566 (8)0.0621 (8)0.0081 (6)0.0080 (7)0.0302 (6)
C90.0726 (9)0.0580 (8)0.0649 (8)0.0120 (7)0.0069 (7)0.0267 (7)
C100.0818 (13)0.1172 (17)0.0885 (13)0.0348 (12)0.0027 (10)0.0263 (12)
C110.124 (2)0.137 (2)0.0860 (15)0.0649 (18)0.0070 (14)0.0115 (14)
C120.130 (2)0.1138 (18)0.0697 (13)0.0187 (16)0.0097 (13)0.0007 (12)
C130.0451 (6)0.0682 (9)0.0636 (8)0.0135 (6)0.0039 (6)0.0184 (7)
C140.0531 (7)0.0719 (9)0.0681 (9)0.0224 (7)0.0034 (6)0.0190 (7)
C150.1222 (18)0.1028 (16)0.0819 (13)0.0002 (13)0.0143 (12)0.0438 (12)
C160.150 (2)0.147 (3)0.0756 (13)0.062 (2)0.0139 (14)0.0395 (15)
C170.147 (2)0.114 (2)0.0847 (15)0.0519 (18)0.0473 (15)0.0017 (14)
O30.0829 (8)0.0841 (9)0.0778 (8)0.0003 (6)0.0117 (6)0.0271 (7)
Cl10.0681 (3)0.0830 (3)0.1058 (4)0.0237 (2)0.0067 (2)0.0545 (3)
Geometric parameters (Å, º) top
O1—C91.339 (2)C11—C121.276 (5)
O1—C121.382 (3)C13—C141.469 (2)
O2—C141.322 (3)C14—C151.312 (3)
O2—C171.385 (3)C15—C161.415 (3)
O3—HW10.93 (3)C16—C171.268 (5)
O3—HW20.98 (3)C2—H20.9300
N1—C11.3929 (19)C3—H30.9300
N1—C71.326 (2)C4—H40.9300
N1—C131.475 (2)C5—H50.9300
N2—C61.393 (2)C7—H70.9300
N2—C81.475 (2)C8—H8A0.9700
N2—C71.320 (2)C8—H8B0.9700
C1—C21.384 (2)C10—H100.9300
C1—C61.387 (2)C11—H110.9300
C2—C31.379 (2)C12—H120.9300
C3—C41.392 (2)C13—H13B0.9700
C4—C51.377 (3)C13—H13A0.9700
C5—C61.390 (2)C15—H150.9300
C8—C91.469 (2)C16—H160.9300
C9—C101.326 (3)C17—H170.9300
C10—C111.408 (4)
Cl1···C83.6371 (18)C5···H8A2.9500
Cl1···C13i3.6290 (19)C8···H53.0100
Cl1···O3ii3.1563 (17)C13···H23.0100
Cl1···O33.1848 (17)C14···H11ix2.9800
Cl1···C13ii3.6332 (18)C15···H16viii3.0400
Cl1···H13Aii2.6700C15···H11ix2.9900
Cl1···H8B2.6700C16···H16viii3.0200
Cl1···H13Bi2.6600HW1···Cl1ii2.27 (3)
Cl1···H8Aiii2.7500HW1···H3v2.5100
Cl1···HW22.22 (3)HW1···H72.4300
Cl1···H5iii3.0100H2···C133.0100
Cl1···HW1ii2.27 (3)H2···H13B2.5800
O1···N22.998 (2)HW2···Cl12.22 (3)
O1···C73.391 (2)HW2···H72.5300
O2···N13.123 (2)H3···O3x2.7900
O3···C17iv3.362 (3)H3···HW1x2.5100
O3···Cl13.1848 (17)H5···H8A2.5700
O3···C73.133 (2)H5···Cl1iii3.0100
O3···Cl1ii3.1563 (17)H5···C83.0100
O3···H3v2.7900H7···O32.2200
O3···H72.2200H7···HW12.4300
O3···H17iv2.7800H7···H8B2.5400
N1···N22.1772 (17)H7···H13A2.5500
N1···O23.123 (2)H7···HW22.5300
N2···O12.998 (2)H8A···C52.9500
N2···N12.1772 (17)H8A···H52.5700
C1···C6vi3.5787 (18)H8A···Cl1iii2.7500
C1···C5vi3.5392 (19)H8B···Cl12.6700
C4···C7vi3.550 (2)H8B···H72.5400
C5···C1vi3.5392 (19)H11···C14ix2.9800
C6···C1vi3.5787 (18)H11···C15ix2.9900
C7···O33.133 (2)H12···C5ix3.0200
C7···O13.391 (2)H13A···H72.5500
C7···C4vi3.550 (2)H13A···Cl1ii2.6700
C8···Cl13.6371 (18)H13B···C22.9600
C13···Cl1ii3.6332 (18)H13B···H22.5800
C13···Cl1vii3.6290 (19)H13B···Cl1vii2.6600
C16···C16viii3.435 (5)H16···C15viii3.0400
C17···O3iv3.362 (3)H16···C16viii3.0200
C2···H13B2.9600H17···O3iv2.7800
C5···H12ix3.0200
C9—O1—C12105.62 (19)O2—C17—C16109.6 (2)
C14—O2—C17106.9 (2)C1—C2—H2122.00
HW1—O3—HW2108 (3)C3—C2—H2122.00
C1—N1—C13126.21 (13)C4—C3—H3119.00
C7—N1—C13125.65 (13)C2—C3—H3119.00
C1—N1—C7108.13 (12)C5—C4—H4119.00
C6—N2—C8126.23 (13)C3—C4—H4119.00
C7—N2—C8125.52 (13)C4—C5—H5122.00
C6—N2—C7108.19 (13)C6—C5—H5122.00
N1—C1—C2131.54 (13)N1—C7—H7125.00
C2—C1—C6122.08 (13)N2—C7—H7125.00
N1—C1—C6106.38 (13)N2—C8—H8B109.00
C1—C2—C3115.74 (15)C9—C8—H8A109.00
C2—C3—C4122.20 (17)C9—C8—H8B109.00
C3—C4—C5122.28 (16)H8A—C8—H8B108.00
C4—C5—C6115.51 (15)N2—C8—H8A109.00
N2—C6—C1106.58 (12)C9—C10—H10127.00
C1—C6—C5122.18 (14)C11—C10—H10127.00
N2—C6—C5131.24 (14)C12—C11—H11126.00
N1—C7—N2110.72 (13)C10—C11—H11126.00
N2—C8—C9111.85 (13)C11—C12—H12125.00
O1—C9—C10109.98 (16)O1—C12—H12125.00
C8—C9—C10132.75 (18)N1—C13—H13A109.00
O1—C9—C8117.25 (16)C14—C13—H13A109.00
C9—C10—C11106.4 (2)C14—C13—H13B109.00
C10—C11—C12107.5 (3)N1—C13—H13B109.00
O1—C12—C11110.4 (2)H13A—C13—H13B108.00
N1—C13—C14111.84 (13)C16—C15—H15126.00
O2—C14—C15109.18 (18)C14—C15—H15126.00
C13—C14—C15131.51 (19)C15—C16—H16127.00
O2—C14—C13119.08 (17)C17—C16—H16126.00
C14—C15—C16107.3 (2)O2—C17—H17125.00
C15—C16—C17107.0 (2)C16—C17—H17125.00
C12—O1—C9—C101.9 (3)N1—C1—C6—N20.25 (14)
C9—O1—C12—C112.1 (3)N1—C1—C6—C5178.98 (12)
C12—O1—C9—C8179.56 (18)N1—C1—C2—C3179.33 (14)
C17—O2—C14—C152.5 (3)C2—C1—C6—C50.7 (2)
C17—O2—C14—C13177.5 (2)C6—C1—C2—C30.3 (2)
C14—O2—C17—C162.3 (4)C1—C2—C3—C40.0 (2)
C13—N1—C1—C6178.92 (12)C2—C3—C4—C50.1 (3)
C7—N1—C13—C1495.10 (18)C3—C4—C5—C60.4 (2)
C13—N1—C1—C21.4 (2)C4—C5—C6—N2179.78 (14)
C13—N1—C7—N2178.99 (12)C4—C5—C6—C10.8 (2)
C1—N1—C13—C1483.09 (18)N2—C8—C9—C10110.2 (3)
C7—N1—C1—C60.47 (14)N2—C8—C9—O167.9 (2)
C1—N1—C7—N20.53 (15)C8—C9—C10—C11179.3 (2)
C7—N1—C1—C2179.86 (15)O1—C9—C10—C111.1 (3)
C7—N2—C8—C994.03 (18)C9—C10—C11—C120.2 (4)
C7—N2—C6—C10.06 (15)C10—C11—C12—O11.4 (4)
C7—N2—C6—C5179.19 (14)N1—C13—C14—O280.2 (2)
C6—N2—C7—N10.37 (15)N1—C13—C14—C1593.5 (3)
C8—N2—C6—C1177.49 (12)O2—C14—C15—C161.7 (3)
C6—N2—C8—C982.98 (18)C13—C14—C15—C16176.0 (2)
C8—N2—C7—N1177.83 (12)C14—C15—C16—C170.3 (4)
C8—N2—C6—C53.4 (2)C15—C16—C17—O21.2 (4)
C2—C1—C6—N2179.96 (13)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z+2; (v) x+1, y1, z; (vi) x, y+1, z+1; (vii) x, y+1, z; (viii) x+1, y+1, z+2; (ix) x, y, z+2; (x) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HW1···Cl1ii0.93 (3)2.27 (3)3.1563 (17)159 (3)
O3—HW2···Cl10.98 (3)2.22 (3)3.1848 (17)168 (3)
C7—H7···O30.932.223.133 (2)168
C8—H8A···Cl1iii0.972.753.7098 (18)169
C8—H8B···Cl10.972.673.6371 (18)173
C13—H13A···Cl1ii0.972.673.6332 (18)171
C13—H13B···Cl1vii0.972.663.6290 (19)177
C11—H11···Cg2ix0.932.853.641 (4)144
C12—H12···Cg4ix0.932.963.718 (2)139
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z+1; (vii) x, y+1, z; (ix) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC17H15N2O2+.Cl·H2O
Mr332.78
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0201 (5), 9.3135 (5), 11.2711 (6)
α, β, γ (°)66.778 (4), 81.869 (4), 73.656 (4)
V3)834.50 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.58 × 0.49 × 0.38
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.871, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
15618, 3780, 2972
Rint0.024
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.04
No. of reflections3780
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HW1···Cl1i0.93 (3)2.27 (3)3.1563 (17)159 (3)
O3—HW2···Cl10.98 (3)2.22 (3)3.1848 (17)168 (3)
C7—H7···O30.93002.22003.133 (2)168.00
C8—H8A···Cl1ii0.97002.75003.7098 (18)169.00
C8—H8B···Cl10.97002.67003.6371 (18)173.00
C13—H13A···Cl1i0.97002.67003.6332 (18)171.00
C13—H13B···Cl1iii0.97002.66003.6290 (19)177.00
C11—H11···Cg2iv0.932.853.641 (4)144
C12—H12···Cg4iv0.932.963.718 (2)139
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x, y, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund). NŞ, SD and HK wish to thank the İnönü University Research Fund (directed project BAPB-2008/05) for financial support of this study.

References

First citationAkkurt, M., Pınar, Ş., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o379–o381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Türktekin, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2006). Acta Cryst. E62, o185–o187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 821–823.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJi, K. G., Shu, X. Z., Chen, J., Zhao, S. C., Zheng, Z. J., Liu, X. Y. & Liang, Y. M. (2009). Org. Biomol. Chem. 7, 2501–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439.  CrossRef CAS Web of Science Google Scholar
First citationKüçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667–670.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Güven, M. & Günal, S. (2001). Arzneim. Forsch. Drug Res. 51, 420–424.  CAS Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64–68.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181–6189.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Şireci, N., Küçükbay, H. & Kazak, C. (2007). Acta Cryst. E63, o2433.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2037-o2038
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds