metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1015-m1016

Di­aqua­bis­(N,N-di­ethyl­nicotinamide-κN1)bis­­[4-(di­methyl­amino)benzoato-κO]nickel(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 28 July 2009; accepted 29 July 2009; online 31 July 2009)

The centrosymmetric title NiII complex, [Ni(C9H10NO2)2(C10H14N2O)2(H2O)2], contains two dimethyl­amino­benzoate (DMAB), two diethyl­nicotinamide (DENA) ligands and two water mol­ecules, all of them monodentate. The four O atoms in the equatorial plane around the NiII atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the DENA ligands in axial positions. The NiII atom is displaced by 0.681 (1) Å out of the least-squares plane of the carboxyl­ate group. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 5.61 (7)°, while the pyridine and benzene rings are oriented at a dihedral angle of 73.20 (4)°. An intra­molecular O—H⋯O hydrogen bond results in the formation of a six-membered ring with a twisted conformation. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link mol­ecules into a three-dimensional network. Two weak C—H⋯π inter­actions are also present.

Related literature

For our ongoing investigations of the transition metal complexes of nicotinamide, and/or the nicotinic acid derivative N,N-diethyl­nicotinamide, an important respiratory stimulant, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m545-m546.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326-m327.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H10NO2)2(C10H14N2O)2(H2O)2]

  • Mr = 779.57

  • Monoclinic, P 21 /c

  • a = 6.5081 (1) Å

  • b = 20.3157 (3) Å

  • c = 14.7235 (2) Å

  • β = 98.487 (2)°

  • V = 1925.37 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 100 K

  • 0.53 × 0.43 × 0.28 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.751, Tmax = 0.851

  • 18748 measured reflections

  • 4819 independent reflections

  • 4332 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.04

  • 4819 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0498 (8)
Ni1—O4 2.0842 (9)
Ni1—N1 2.0962 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.84 (2) 1.97 (2) 2.7875 (12) 163 (2)
O4—H42⋯O2 0.85 (2) 1.82 (2) 2.6552 (12) 165.9 (18)
C11—H11⋯O3ii 0.93 2.45 3.3641 (15) 167
C18—H18A⋯O3iii 0.96 2.48 3.4038 (17) 161
C19—H19BCg1iv 0.96 2.82 3.7203 (15) 157
C15—H15ACg2v 0.96 2.91 3.7575 (16) 148
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) -x+1, -y, -z+1; (v) x-1, y, z. Cg1 and Cg2 are the centroids of the C2–C7 and N1/C8–C12 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with NiII ion on a centre of symmetry, consisting of two DENA and two dimethylaminobenzoate (DMAB) ligands and two water molecules. The structures of similar comlexes of NiII ion, [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009) and [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009) have also been determined.

In the title compound, all ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the DENA ligands at 2.0962 (10) Å from the Ni atom in the axial positions (Fig. 1 and Table 1). The average Ni—O bond length is 2.0670 (9) Å and the Ni atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.681 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 5.61 (7)°, while that between rings A and B (N1/C8—C12) is 73.20 (4)°. Intramolecular O—H···O hydrogen bond results in the formation of a six-membered ring C (Ni1/O1/O2/O4/C1/H42) having twisted conformation.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. Two weak C—H···π interactions (Table 1) are also found.

Related literature top

For our ongoing investigation of the transition metal complexes of nicotinamide (NA), one form of niacin), and/or the nicotinic acid derivative N,N-diethylnicotinamide, an important respiratory stimulant, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek et al. (2009); Sertçelik et al. (2009). Cg1 and Cg2 are the centroids of the C2–C7 and N1/C8–C12 rings, respectively.

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (1.31 g, 5 mmol) in H2O (50 ml) and DENA (1.78 g, 10 mmol) in H2O (50 ml) with sodium p-dimethylaminobenzoate (1.88 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H41 and H42 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, -z. Dashed lines indicate intramolecular hydrogen bonding.
Diaquabis(N,N-diethylnicotinamide-κN1)bis[4- (dimethylamino)benzoato-κO]nickel(II) top
Crystal data top
[Ni(C9H10NO2)2(C10H14N2O)2(H2O)2]F(000) = 828
Mr = 779.57Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9995 reflections
a = 6.5081 (1) Åθ = 2.4–28.4°
b = 20.3157 (3) ŵ = 0.56 mm1
c = 14.7235 (2) ÅT = 100 K
β = 98.487 (2)°Block, blue
V = 1925.37 (5) Å30.53 × 0.43 × 0.28 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4819 independent reflections
Radiation source: fine-focus sealed tube4332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.751, Tmax = 0.851k = 2527
18748 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.8491P]
where P = (Fo2 + 2Fc2)/3
4819 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ni(C9H10NO2)2(C10H14N2O)2(H2O)2]V = 1925.37 (5) Å3
Mr = 779.57Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.5081 (1) ŵ = 0.56 mm1
b = 20.3157 (3) ÅT = 100 K
c = 14.7235 (2) Å0.53 × 0.43 × 0.28 mm
β = 98.487 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4332 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.851Rint = 0.019
18748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
4819 reflectionsΔρmin = 0.41 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01159 (6)
O10.46213 (13)0.50364 (4)0.63567 (6)0.01499 (17)
O20.12365 (13)0.52742 (4)0.62891 (5)0.01770 (17)
O30.24871 (14)0.28574 (5)0.24645 (6)0.02031 (19)
O40.21205 (14)0.54434 (4)0.46008 (6)0.01635 (17)
H410.122 (3)0.5242 (11)0.4234 (13)0.039 (5)*
H420.169 (3)0.5441 (9)0.5121 (14)0.039 (5)*
N10.37272 (15)0.40504 (5)0.48904 (6)0.01379 (19)
N20.07839 (16)0.27925 (5)0.28157 (7)0.0179 (2)
N30.31666 (19)0.39407 (6)1.02652 (7)0.0242 (2)
C10.29426 (19)0.50566 (5)0.66964 (7)0.0135 (2)
C20.30181 (18)0.47867 (6)0.76460 (7)0.0145 (2)
C30.12187 (19)0.47318 (6)0.80487 (8)0.0177 (2)
H30.00350.48820.77310.021*
C40.1257 (2)0.44578 (6)0.89121 (8)0.0197 (2)
H40.00290.44230.91610.024*
C50.3124 (2)0.42317 (6)0.94177 (8)0.0182 (2)
C60.4949 (2)0.43026 (7)0.90178 (8)0.0204 (2)
H60.62160.41700.93420.024*
C70.48766 (19)0.45671 (6)0.81467 (8)0.0177 (2)
H70.60960.45990.78900.021*
C80.28565 (18)0.38146 (6)0.40728 (7)0.0142 (2)
H80.28010.40840.35590.017*
C90.20358 (18)0.31856 (6)0.39614 (7)0.0141 (2)
C100.21297 (19)0.27802 (6)0.47281 (8)0.0174 (2)
H100.15980.23550.46730.021*
C110.30290 (19)0.30200 (6)0.55766 (8)0.0176 (2)
H110.31040.27600.61000.021*
C120.38123 (18)0.36540 (6)0.56268 (7)0.0158 (2)
H120.44250.38130.61950.019*
C130.12500 (19)0.29353 (6)0.30122 (8)0.0149 (2)
C140.2321 (2)0.29609 (7)0.34147 (9)0.0241 (3)
H14A0.34900.31800.30530.029*
H14B0.17000.32680.38800.029*
C150.3107 (2)0.23647 (9)0.38829 (12)0.0381 (4)
H15A0.39580.25080.43250.057*
H15B0.19470.21190.41880.057*
H15C0.39120.20910.34320.057*
C160.1508 (2)0.24500 (7)0.19478 (9)0.0234 (3)
H16A0.08810.26530.14590.028*
H16B0.30020.25000.18000.028*
C170.0974 (2)0.17227 (7)0.19917 (10)0.0292 (3)
H17A0.14090.15250.14020.044*
H17B0.16730.15130.24440.044*
H17C0.05000.16700.21570.044*
C180.1327 (3)0.39476 (7)1.07082 (9)0.0301 (3)
H18A0.16160.37301.12920.045*
H18B0.02190.37231.03280.045*
H18C0.09240.43951.07990.045*
C190.5140 (2)0.37889 (7)1.08181 (9)0.0273 (3)
H19A0.49020.36171.14010.041*
H19B0.59620.41821.09130.041*
H19C0.58630.34681.05070.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01140 (11)0.01277 (11)0.01029 (10)0.00191 (7)0.00061 (7)0.00090 (7)
O10.0140 (4)0.0182 (4)0.0128 (4)0.0029 (3)0.0018 (3)0.0004 (3)
O20.0151 (4)0.0226 (4)0.0150 (4)0.0013 (3)0.0009 (3)0.0008 (3)
O30.0219 (5)0.0234 (5)0.0160 (4)0.0044 (4)0.0040 (3)0.0023 (3)
O40.0145 (4)0.0197 (4)0.0143 (4)0.0009 (3)0.0006 (3)0.0025 (3)
N10.0130 (5)0.0144 (5)0.0139 (4)0.0008 (4)0.0018 (3)0.0009 (3)
N20.0162 (5)0.0170 (5)0.0192 (5)0.0022 (4)0.0016 (4)0.0012 (4)
N30.0285 (6)0.0277 (6)0.0172 (5)0.0012 (5)0.0058 (4)0.0072 (4)
C10.0165 (5)0.0112 (5)0.0125 (5)0.0029 (4)0.0012 (4)0.0020 (4)
C20.0171 (6)0.0140 (5)0.0125 (5)0.0016 (4)0.0027 (4)0.0008 (4)
C30.0159 (6)0.0204 (6)0.0168 (5)0.0008 (5)0.0024 (4)0.0011 (4)
C40.0189 (6)0.0223 (6)0.0194 (5)0.0004 (5)0.0077 (4)0.0022 (4)
C50.0245 (6)0.0159 (5)0.0147 (5)0.0004 (5)0.0042 (4)0.0010 (4)
C60.0187 (6)0.0242 (6)0.0177 (5)0.0030 (5)0.0009 (4)0.0038 (4)
C70.0157 (6)0.0208 (6)0.0174 (5)0.0005 (5)0.0044 (4)0.0021 (4)
C80.0134 (5)0.0156 (5)0.0135 (5)0.0004 (4)0.0021 (4)0.0019 (4)
C90.0129 (5)0.0153 (5)0.0142 (5)0.0001 (4)0.0018 (4)0.0004 (4)
C100.0194 (6)0.0138 (5)0.0193 (5)0.0021 (4)0.0036 (4)0.0017 (4)
C110.0202 (6)0.0174 (6)0.0154 (5)0.0007 (5)0.0030 (4)0.0041 (4)
C120.0160 (6)0.0183 (6)0.0129 (5)0.0009 (4)0.0009 (4)0.0010 (4)
C130.0179 (6)0.0103 (5)0.0158 (5)0.0018 (4)0.0003 (4)0.0014 (4)
C140.0156 (6)0.0278 (7)0.0285 (6)0.0027 (5)0.0018 (5)0.0014 (5)
C150.0214 (7)0.0479 (10)0.0471 (9)0.0047 (7)0.0118 (6)0.0191 (7)
C160.0233 (7)0.0214 (6)0.0223 (6)0.0049 (5)0.0066 (5)0.0020 (5)
C170.0324 (8)0.0206 (7)0.0331 (7)0.0061 (6)0.0004 (6)0.0057 (5)
C180.0427 (9)0.0274 (7)0.0238 (6)0.0071 (6)0.0174 (6)0.0082 (5)
C190.0373 (8)0.0272 (7)0.0166 (5)0.0057 (6)0.0016 (5)0.0050 (5)
Geometric parameters (Å, º) top
Ni1—O12.0498 (8)C8—H80.9300
Ni1—O1i2.0498 (8)C9—C81.3853 (16)
Ni1—O42.0842 (9)C9—C101.3915 (15)
Ni1—O4i2.0842 (9)C9—C131.5042 (15)
Ni1—N12.0962 (10)C10—H100.9300
Ni1—N1i2.0962 (10)C11—C101.3874 (16)
O1—C11.2675 (14)C11—C121.3831 (17)
O2—C11.2615 (15)C11—H110.9300
O3—C131.2309 (15)C12—H120.9300
O4—H410.84 (2)C14—H14A0.9700
O4—H420.85 (2)C14—H14B0.9700
N1—C81.3411 (14)C15—C141.519 (2)
N1—C121.3452 (14)C15—H15A0.9600
N2—C131.3443 (16)C15—H15B0.9600
N2—C141.4682 (16)C15—H15C0.9600
N3—C181.4457 (17)C16—N21.4700 (15)
N3—C191.4485 (18)C16—H16A0.9700
C2—C11.4958 (15)C16—H16B0.9700
C2—C71.3937 (17)C17—C161.5173 (19)
C3—C21.3930 (16)C17—H17A0.9600
C3—C41.3846 (16)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—H40.9300C18—H18A0.9600
C5—N31.3773 (15)C18—H18B0.9600
C5—C41.4050 (18)C18—H18C0.9600
C5—C61.4086 (17)C19—H19A0.9600
C6—C71.3850 (16)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—H70.9300
O1—Ni1—O1i180.000 (1)C8—C9—C10118.69 (10)
O1—Ni1—O491.54 (3)C8—C9—C13119.61 (10)
O1i—Ni1—O488.46 (3)C10—C9—C13121.45 (10)
O1—Ni1—O4i88.46 (3)C9—C10—H10120.5
O1i—Ni1—O4i91.54 (3)C11—C10—C9118.99 (11)
O1—Ni1—N190.30 (3)C11—C10—H10120.5
O1i—Ni1—N189.70 (3)C10—C11—H11120.7
O1—Ni1—N1i89.70 (3)C12—C11—C10118.58 (10)
O1i—Ni1—N1i90.30 (3)C12—C11—H11120.7
O4—Ni1—O4i180.0N1—C12—C11122.91 (11)
O4—Ni1—N192.72 (4)N1—C12—H12118.5
O4i—Ni1—N187.28 (4)C11—C12—H12118.5
O4—Ni1—N1i87.28 (4)O3—C13—N2123.34 (11)
O4i—Ni1—N1i92.72 (4)O3—C13—C9119.12 (11)
N1—Ni1—N1i180.0N2—C13—C9117.51 (10)
C1—O1—Ni1128.34 (8)N2—C14—C15113.05 (12)
Ni1—O4—H41118.7 (14)N2—C14—H14A109.0
Ni1—O4—H4298.5 (13)N2—C14—H14B109.0
H41—O4—H42106.5 (18)C15—C14—H14A109.0
C8—N1—C12118.12 (10)C15—C14—H14B109.0
C8—N1—Ni1120.51 (7)H14A—C14—H14B107.8
C12—N1—Ni1121.34 (8)C14—C15—H15A109.5
C13—N2—C14123.83 (10)C14—C15—H15B109.5
C13—N2—C16117.93 (10)C14—C15—H15C109.5
C14—N2—C16118.24 (11)H15A—C15—H15B109.5
C5—N3—C18119.82 (11)H15A—C15—H15C109.5
C5—N3—C19119.89 (11)H15B—C15—H15C109.5
C18—N3—C19118.24 (11)N2—C16—C17112.45 (11)
O1—C1—C2116.46 (10)N2—C16—H16A109.1
O2—C1—O1124.98 (10)N2—C16—H16B109.1
O2—C1—C2118.55 (10)C17—C16—H16A109.1
C3—C2—C1120.90 (11)C17—C16—H16B109.1
C3—C2—C7117.88 (10)H16A—C16—H16B107.8
C7—C2—C1121.20 (10)C16—C17—H17A109.5
C2—C3—H3119.3C16—C17—H17B109.5
C4—C3—C2121.37 (11)C16—C17—H17C109.5
C4—C3—H3119.3H17A—C17—H17B109.5
C3—C4—C5121.00 (11)H17A—C17—H17C109.5
C3—C4—H4119.5H17B—C17—H17C109.5
C5—C4—H4119.5N3—C18—H18A109.5
N3—C5—C4121.38 (11)N3—C18—H18B109.5
N3—C5—C6121.13 (12)N3—C18—H18C109.5
C4—C5—C6117.48 (10)H18A—C18—H18B109.5
C5—C6—H6119.6H18A—C18—H18C109.5
C7—C6—C5120.76 (11)H18B—C18—H18C109.5
C7—C6—H6119.6N3—C19—H19A109.5
C2—C7—H7119.3N3—C19—H19B109.5
C6—C7—C2121.48 (11)N3—C19—H19C109.5
C6—C7—H7119.3H19A—C19—H19B109.5
N1—C8—C9122.70 (10)H19A—C19—H19C109.5
N1—C8—H8118.7H19B—C19—H19C109.5
C9—C8—H8118.7
O4—Ni1—O1—C124.97 (9)C7—C2—C1—O2177.04 (11)
O4i—Ni1—O1—C1155.03 (9)C1—C2—C7—C6178.48 (11)
N1—Ni1—O1—C167.76 (9)C3—C2—C7—C60.08 (18)
N1i—Ni1—O1—C1112.24 (9)C4—C3—C2—C1177.32 (11)
O1—Ni1—N1—C8156.38 (9)C4—C3—C2—C71.09 (18)
O1i—Ni1—N1—C823.62 (9)C2—C3—C4—C50.7 (2)
O4—Ni1—N1—C864.83 (9)C4—C5—N3—C188.82 (19)
O4i—Ni1—N1—C8115.17 (9)C4—C5—N3—C19172.22 (12)
O1—Ni1—N1—C1225.63 (9)C6—C5—N3—C18172.36 (13)
O1i—Ni1—N1—C12154.37 (9)C6—C5—N3—C198.97 (19)
O4—Ni1—N1—C12117.18 (9)N3—C5—C4—C3178.04 (12)
O4i—Ni1—N1—C1262.82 (9)C6—C5—C4—C30.81 (19)
Ni1—O1—C1—O225.08 (16)N3—C5—C6—C7176.89 (12)
Ni1—O1—C1—C2153.63 (8)C4—C5—C6—C71.96 (19)
Ni1—N1—C8—C9178.55 (8)C5—C6—C7—C21.6 (2)
C12—N1—C8—C90.49 (17)C10—C9—C8—N10.41 (18)
Ni1—N1—C12—C11178.58 (9)C13—C9—C8—N1174.79 (11)
C8—N1—C12—C110.54 (17)C8—C9—C10—C110.36 (17)
C14—N2—C13—O3171.82 (11)C13—C9—C10—C11174.63 (11)
C14—N2—C13—C99.85 (17)C8—C9—C13—O364.89 (15)
C16—N2—C13—O37.90 (18)C8—C9—C13—N2116.71 (12)
C16—N2—C13—C9170.42 (10)C10—C9—C13—O3109.33 (13)
C13—N2—C14—C15108.56 (14)C10—C9—C13—N269.07 (15)
C16—N2—C14—C1571.71 (15)C12—C11—C10—C90.40 (18)
C3—C2—C1—O1174.19 (11)C10—C11—C12—N10.51 (18)
C3—C2—C1—O24.60 (17)C17—C16—N2—C1376.55 (15)
C7—C2—C1—O14.16 (16)C17—C16—N2—C14103.71 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2ii0.84 (2)1.97 (2)2.7875 (12)163 (2)
O4—H42···O20.85 (2)1.82 (2)2.6552 (12)165.9 (18)
C11—H11···O3iii0.932.453.3641 (15)167
C18—H18A···O3iv0.962.483.4038 (17)161
C19—H19B···Cg1v0.962.823.7203 (15)157
C15—H15A···Cg2vi0.962.913.7575 (16)148
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H10NO2)2(C10H14N2O)2(H2O)2]
Mr779.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.5081 (1), 20.3157 (3), 14.7235 (2)
β (°) 98.487 (2)
V3)1925.37 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.53 × 0.43 × 0.28
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.751, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
18748, 4819, 4332
Rint0.019
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.04
No. of reflections4819
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O12.0498 (8)Ni1—N12.0962 (10)
Ni1—O42.0842 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.84 (2)1.97 (2)2.7875 (12)163 (2)
O4—H42···O20.85 (2)1.82 (2)2.6552 (12)165.9 (18)
C11—H11···O3ii0.932.453.3641 (15)167
C18—H18A···O3iii0.962.483.4038 (17)161
C19—H19B···Cg1iv0.962.823.7203 (15)157
C15—H15A···Cg2v0.962.913.7575 (16)148
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1015-m1016
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds