metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-bis­­[(pyridine N-oxide)copper(II)](CuCu)

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 26 May 2009; accepted 24 June 2009; online 1 July 2009)

The mol­ecule of the title binuclear copper(II) complex, [Cu2(CH3COO)4(C5H5NO)2], occupies a special position on a crystallographic inversion centre; the coordination environment of the CuII atom is slightly distorted square-pyramidal and is made up of four O atoms belonging to four acetate groups in the basal plane with the O atom of pyridine N-oxide ligand in the apical position. The Cu—Cu distance is 2.6376 (6) Å.

Related literature

For the biological activity of binuclear copper(II) compounds, see: Li et al. (2007[Li, Y. P., Wu, Y. B., Zhao, J. & Yang, P. (2007). J. Inorg. Biochem. 101, 283-290.]). For a related structure, see: Zhang (2009[Zhang, X.-Y. (2009). Acta Cryst. E65, m526.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C5H5NO)2]

  • Mr = 553.46

  • Monoclinic, P 21 /c

  • a = 9.6737 (11) Å

  • b = 13.5886 (16) Å

  • c = 8.5236 (10) Å

  • β = 99.970 (2)°

  • V = 1103.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 296 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.680

  • 5445 measured reflections

  • 1936 independent reflections

  • 1713 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.070

  • S = 1.07

  • 1936 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures of binuclear copper(II) complexes have been extensively studied because of their possible anticarcinogen properties (Li et al., 2007), and numerous papers dealing with binuclear copper complexes have been published (Zhang, 2009). Herein, we report the synthesis and crystal structure of a new binuclear copper complex.

The molecule of the title binuclear copper(II) complex, [Cu2(C2H3O2)4(C5H5ON)2], occupies a special position in the crystallographic inversion centre; coordination environment of the CuII atom represents a slightly distorted tetragonal pyramid and is made up of four oxygen atoms belonging to four acetato-group in the basal plane as well as the oxygen atom of pyridine N-oxide ligand in the apical position. The Cu—O bond distance between CuII atom and acetato O atoms vary from 1.9605 (18) Å to 1.9710 (18) Å, while the Cu—O bond distance involving CuII atom and the O atom of the pyridine N-oxide ligand is 2.1507 (18) Å. The Cu1—Cu1i distance is 2.6376 (6) Å [symmetry code (i): 1 - x, -y, -z].

Related literature top

For the biological activity of binuclear copper(II) compounds, see: Li et al. (2007). For a related structure, see: Zhang (2009).

Experimental top

A solution containing a 1:2:5 molar ratio of picolinic acid N-oxide (0.0139 g, 0.1 mmol), CuCO3 (0.0247 g, 0.2 mmol) and acetic acid (1 ml, 0.5 mmol/ml) in a mixture of ethanol(5 ml) and water (10 ml) was sealed in a 25 ml teflon reactor and kept at 453 K for 3 days, then slowly cooled to 373 k and kept at this temperature for 24 h more. After cooling to room temperature, the mixture was filtered and the filtrate was allowed to stand at room temperature. Block crystals suitable for the X-ray investigation were collected.

Refinement top

All H atoms were placed geometrically (C-H = 0.93-0.96 Å) and included into refinement in the riding motion approximation with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level; hydrogen atoms are shown as small circles of arbitrary radius. The unlabelled atoms are derived by the symmetry transformation -x + 1, -y, -z.
Tetra-µ-acetato-bis[(pyridine N-oxide)copper(II)](CuCu) top
Crystal data top
[Cu2(C2H3O2)4(C5H5NO)2]F(000) = 564
Mr = 553.46Dx = 1.666 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3911 reflections
a = 9.6737 (11) Åθ = 2.6–27.9°
b = 13.5886 (16) ŵ = 1.98 mm1
c = 8.5236 (10) ÅT = 296 K
β = 99.970 (2)°Block, blue
V = 1103.5 (2) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1936 independent reflections
Radiation source: fine-focus sealed tube1713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1011
Tmin = 0.673, Tmax = 0.680k = 169
5445 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.7718P]
where P = (Fo2 + 2Fc2)/3
1936 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu2(C2H3O2)4(C5H5NO)2]V = 1103.5 (2) Å3
Mr = 553.46Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6737 (11) ŵ = 1.98 mm1
b = 13.5886 (16) ÅT = 296 K
c = 8.5236 (10) Å0.2 × 0.2 × 0.2 mm
β = 99.970 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1713 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.680Rint = 0.015
5445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
1936 reflectionsΔρmin = 0.33 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.55087 (19)0.15687 (13)0.0542 (2)0.0457 (5)
O40.69513 (18)0.02840 (14)0.1692 (2)0.0411 (4)
Cu10.38549 (3)0.01927 (2)0.05882 (3)0.02846 (12)
O50.50246 (19)0.00354 (14)0.2694 (2)0.0424 (4)
O20.35940 (18)0.12383 (13)0.0480 (2)0.0408 (4)
N10.11758 (19)0.11134 (15)0.1808 (2)0.0330 (4)
C80.6302 (3)0.01859 (17)0.2828 (3)0.0335 (5)
O10.18110 (19)0.03795 (15)0.1215 (3)0.0520 (5)
C60.4409 (3)0.18155 (18)0.0051 (3)0.0349 (5)
C10.1856 (3)0.1945 (2)0.2326 (3)0.0409 (6)
H1A0.28010.20140.22610.049*
C50.0186 (2)0.1004 (2)0.1894 (3)0.0406 (6)
H5A0.06530.04280.15290.049*
C90.7115 (3)0.0358 (2)0.4475 (3)0.0506 (7)
H9A0.80700.05180.44080.076*
H9B0.67000.08920.49660.076*
H9C0.70960.02280.51020.076*
C20.1170 (3)0.2692 (2)0.2948 (3)0.0499 (7)
H2A0.16500.32650.33020.060*
C40.0892 (3)0.1741 (2)0.2519 (4)0.0509 (7)
H4A0.18350.16580.25810.061*
C30.0225 (3)0.2599 (2)0.3054 (4)0.0545 (8)
H3A0.07020.31020.34740.065*
C70.4047 (3)0.2887 (2)0.0104 (4)0.0530 (7)
H7A0.31900.29830.03000.080*
H7B0.47890.32490.05390.080*
H7C0.39300.31170.11840.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0419 (10)0.0288 (9)0.0715 (13)0.0013 (8)0.0238 (9)0.0027 (9)
O40.0337 (9)0.0532 (12)0.0363 (9)0.0075 (8)0.0062 (7)0.0057 (8)
Cu10.02487 (17)0.02651 (18)0.03512 (19)0.00156 (11)0.00833 (12)0.00071 (11)
O50.0362 (10)0.0558 (12)0.0356 (9)0.0061 (8)0.0071 (7)0.0015 (8)
O20.0409 (10)0.0286 (9)0.0557 (11)0.0019 (7)0.0158 (8)0.0008 (8)
N10.0279 (10)0.0374 (11)0.0350 (10)0.0006 (9)0.0088 (8)0.0034 (9)
C80.0374 (13)0.0264 (12)0.0364 (13)0.0007 (10)0.0055 (10)0.0015 (10)
O10.0339 (10)0.0484 (12)0.0788 (14)0.0019 (8)0.0237 (9)0.0203 (10)
C60.0356 (13)0.0277 (12)0.0402 (13)0.0017 (10)0.0034 (10)0.0044 (10)
C10.0319 (13)0.0444 (15)0.0470 (15)0.0119 (11)0.0089 (11)0.0035 (12)
C50.0275 (12)0.0444 (15)0.0512 (15)0.0077 (11)0.0106 (11)0.0127 (12)
C90.0508 (16)0.0627 (19)0.0368 (15)0.0086 (14)0.0031 (12)0.0055 (13)
C20.0540 (17)0.0408 (15)0.0554 (18)0.0122 (13)0.0108 (13)0.0108 (13)
C40.0308 (14)0.0589 (18)0.0654 (18)0.0008 (12)0.0146 (12)0.0178 (15)
C30.0526 (17)0.0506 (18)0.0626 (19)0.0068 (14)0.0162 (14)0.0180 (15)
C70.0568 (18)0.0282 (14)0.077 (2)0.0029 (12)0.0187 (15)0.0036 (14)
Geometric parameters (Å, º) top
O3—C61.254 (3)C1—C21.369 (4)
O4—C81.250 (3)C1—H1A0.9300
Cu1—O51.9605 (18)C5—C41.370 (4)
Cu1—O21.9610 (18)C5—H5A0.9300
Cu1—O4i1.9685 (17)C9—H9A0.9600
Cu1—O3i1.9710 (18)C9—H9B0.9600
Cu1—O12.1507 (18)C9—H9C0.9600
Cu1—Cu1i2.6376 (6)C2—C31.373 (4)
O5—C81.257 (3)C2—H2A0.9300
O2—C61.251 (3)C4—C31.372 (4)
N1—O11.317 (3)C4—H4A0.9300
N1—C51.340 (3)C3—H3A0.9300
N1—C11.344 (3)C7—H7A0.9600
C8—C91.504 (3)C7—H7B0.9600
C6—C71.496 (3)C7—H7C0.9600
C6—O3—Cu1i123.11 (16)O3—C6—C7117.3 (2)
C8—O4—Cu1i126.30 (16)N1—C1—C2120.5 (2)
O5—Cu1—O289.09 (8)N1—C1—H1A119.7
O5—Cu1—O4i167.89 (7)C2—C1—H1A119.7
O2—Cu1—O4i89.45 (8)N1—C5—C4120.1 (2)
O5—Cu1—O3i89.38 (8)N1—C5—H5A120.0
O2—Cu1—O3i167.91 (7)C4—C5—H5A120.0
O4i—Cu1—O3i89.55 (8)C8—C9—H9A109.5
O5—Cu1—O1101.25 (8)C8—C9—H9B109.5
O2—Cu1—O190.70 (7)H9A—C9—H9B109.5
O4i—Cu1—O190.79 (8)C8—C9—H9C109.5
O3i—Cu1—O1101.35 (7)H9A—C9—H9C109.5
O5—Cu1—Cu1i86.37 (6)H9B—C9—H9C109.5
O2—Cu1—Cu1i83.97 (5)C1—C2—C3120.3 (3)
O4i—Cu1—Cu1i81.52 (5)C1—C2—H2A119.8
O3i—Cu1—Cu1i83.97 (5)C3—C2—H2A119.8
O1—Cu1—Cu1i170.66 (6)C5—C4—C3120.9 (3)
C8—O5—Cu1120.79 (16)C5—C4—H4A119.6
C6—O2—Cu1123.67 (16)C3—C4—H4A119.6
O1—N1—C5117.7 (2)C4—C3—C2117.8 (3)
O1—N1—C1121.9 (2)C4—C3—H3A121.1
C5—N1—C1120.3 (2)C2—C3—H3A121.1
O4—C8—O5124.9 (2)C6—C7—H7A109.5
O4—C8—C9117.0 (2)C6—C7—H7B109.5
O5—C8—C9118.0 (2)H7A—C7—H7B109.5
N1—O1—Cu1134.01 (15)C6—C7—H7C109.5
O2—C6—O3125.2 (2)H7A—C7—H7C109.5
O2—C6—C7117.5 (2)H7B—C7—H7C109.5
O2—Cu1—O5—C882.77 (19)O5—Cu1—O1—N176.0 (2)
O4i—Cu1—O5—C80.3 (5)O2—Cu1—O1—N1165.2 (2)
O3i—Cu1—O5—C885.24 (19)O4i—Cu1—O1—N1105.3 (2)
O1—Cu1—O5—C8173.30 (19)O3i—Cu1—O1—N115.6 (3)
Cu1i—Cu1—O5—C81.25 (18)Cu1—O2—C6—O31.9 (4)
O5—Cu1—O2—C688.0 (2)Cu1—O2—C6—C7178.14 (19)
O4i—Cu1—O2—C679.9 (2)Cu1i—O3—C6—O20.8 (4)
O3i—Cu1—O2—C65.3 (5)Cu1i—O3—C6—C7179.25 (19)
O1—Cu1—O2—C6170.7 (2)O1—N1—C1—C2179.5 (2)
Cu1i—Cu1—O2—C61.59 (19)C5—N1—C1—C20.0 (4)
Cu1i—O4—C8—O53.5 (4)O1—N1—C5—C4179.2 (3)
Cu1i—O4—C8—C9175.76 (18)C1—N1—C5—C40.3 (4)
Cu1—O5—C8—O43.1 (3)N1—C1—C2—C30.1 (4)
Cu1—O5—C8—C9176.22 (18)N1—C5—C4—C30.5 (5)
C5—N1—O1—Cu1172.94 (19)C5—C4—C3—C20.3 (5)
C1—N1—O1—Cu17.5 (4)C1—C2—C3—C40.0 (5)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C5H5NO)2]
Mr553.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.6737 (11), 13.5886 (16), 8.5236 (10)
β (°) 99.970 (2)
V3)1103.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.673, 0.680
No. of measured, independent and
observed [I > 2σ(I)] reflections
5445, 1936, 1713
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.07
No. of reflections1936
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Beijing Municipal Natural Science Foundation (No. 2082004) and the Seventh Technology Fund for Postgraduates of Beijing University of Technology.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y. P., Wu, Y. B., Zhao, J. & Yang, P. (2007). J. Inorg. Biochem. 101, 283–290.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-Y. (2009). Acta Cryst. E65, m526.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds