metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m992-m993

(μ-4,4′-Bi­pyridine-κ2N:N′)bis­­[tri­aqua­(4,4′-bi­pyridine-κN)(3-nitro­phthalato-κO2)cobalt(II)]

aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China, and bDepartment of Biology and Chemical Engineering, Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 29 May 2009; accepted 20 July 2009; online 25 July 2009)

The title binuclear complex, [Co2(C8H3NO6)2(C10H8N2)3(H2O)6], has been synthesized hydro­thermally from 3-nitro­phthalic acid (H2NPA), Co(NO3)2·6H2O and 4,4′-bipyridine (4,4′-bipy). The mol­ecule of the complex occupies a special position on an inversion centre. The CoII atom has a slightly distorted octa­hedral environment formed by two N atoms from two 4,4′-bipy ligands, one carboxyl­ate O atom from NPA, and three O atoms of water mol­ecules. An extensive O—H⋯O and N—H⋯O hydrogen-bonding system links mol­ecules of the complex into a three-dimensional network.

Related literature

For background to metal-involved supra­molecular compounds, see: Noro (2004[Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Huang et al. (2004[Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100-1101.]); Zhang et al. (2004[Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206-209.]). For other 3-nitro­phthalic derivatives, see: Deng et al. (2007[Deng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007). Chin. J. Struct. Chem. 26, 642-648.]); Guo (2004[Guo, M.-L. (2004). Acta Cryst. E60, m1684-m1685.]); Song et al. (2007[Song, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem. 21, 150-155.]); Xiong & Qi (2007[Xiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10-m12.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C8H3NO6)2(C10H8N2)3(H2O)6]

  • Mr = 1112.74

  • Monoclinic, P 21 /c

  • a = 15.672 (3) Å

  • b = 9.4283 (19) Å

  • c = 16.063 (3) Å

  • β = 103.92 (3)°

  • V = 2303.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.12 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.765, Tmax = 0.872

  • 21789 measured reflections

  • 5252 independent reflections

  • 3669 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.134

  • S = 1.01

  • 5252 reflections

  • 352 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.842 (10) 1.960 (11) 2.798 (3) 173 (3)
O7—H7B⋯O4ii 0.845 (10) 1.942 (12) 2.772 (3) 167 (3)
O8—H8A⋯O2 0.854 (10) 1.855 (13) 2.677 (3) 161 (3)
O8—H8B⋯N3iii 0.847 (10) 2.021 (15) 2.830 (4) 159 (3)
O9—H9B⋯O4i 0.849 (10) 1.810 (13) 2.645 (3) 167 (3)
O9—H9C⋯O3 0.849 (10) 1.968 (13) 2.801 (3) 167 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+2, -z.

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and assembly of metal-involving supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering, because they can provide novel topology and functional materials (Noro, 2004; Yaghi et al., 2003; Rao et al., 2004). During the past decades, extensive efforts have been focused on the design and assembly of supramolecular architectures of this kind (Huang et al., 2004; Zhang et al., 2004). Although the multifunctional ligand, 3-nitrophthalic acid (H2NPA), has been utilized to build many coordination complexes, such as dinuclear centrosymmetric complexes [LaL(HL)(H2O)3]2.2H2O (L = NPA) (Deng et al., 2007), [La2(C8H3NO6)2(C8H4NO6)2(H2O)6].2H2O (Xiong & Qi, 2007), and [Na(C8H4NO6)(H2O)3].H2O (Guo, 2004), only a few mixed ligand complexes involving NPA have been reported so far (Song et al., 2007). In this work, we employed NPA and 4,4'-bipy ligands to produce a novel binuclear complex, [Co2(NPA)2(bipy)3(H2O)6](I).

Complex (I) occupies a special position in the inversion centre; the asymmetric unit consists of one cobalt(II) atom, one NPA ligand, one terminal and one-half of a bridging 4,4'-bipy groups, as well as three metal-coordinated water molecules.(Fig. 1 and Table 1). The Co1 atom has a a slightly distorted octahedral environment formed by two N atoms from two different bipy ligands, one carboyxlate O atom of the NPA ligand, and three water molecules. The µ2-4,4'-bipyridine ligand bridges two [Co(NPA)(bipy)(H2O)3] units of the binuclear complex.

The extensive system of O—H···O hydrogen bonds links molecules of the complex into a three-dimensional network (Fig. 2; Table 1).

Related literature top

For background to metal-involved supramolecular compounds, see: Noro (2004); Yaghi et al. (2003); Rao et al. (2004); Huang et al. (2004); Zhang et al., (2004). For other 3-nitrophthalic derivatives, see: Deng et al. (2007); Guo (2004); Song et al. (2007); Xiong & Qi (2007).

Experimental top

A solution of Co(NO3)2.6H2O (0.0291 g, 0.1 mmol) in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of 3-nitrophthalic acid (0.0211 g, 0.1 mmol) and 4,4'-bipyridine (0.0156 g, 0.1 mmol). The resulting mixture was then transferred into a Teflon-lined stainless steel vessel, which was sealed and kept at 393 K for 72 h. The vessel was then cooled to room temperature, the reaction mixture was filtered, and single crystals were obtained from the filtrate after a few days of slow evaporation at room temperature.

Refinement top

The aromatic H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively and Uiso(H)= 1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms bound to phenyl C atoms are omitted for clarity. H-atoms bound to O are shown as small circles of arbitrary radius. The unlabeled atoms are derived from their labeled counterparts via symmetry transformation (-x + 1,-y + 2,-z + 1).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis; H-bonds are shown as dashed lines.
(µ-4,4'-Bipyridine-κ2N:N')bis[triaqua(4,4'-bipyridine- κN)(3-nitrophthalato-κO2)cobalt(II)] top
Crystal data top
[Co2(C8H3NO6)2(C10H8N2)3(H2O)6]F(000) = 1144
Mr = 1112.74Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21789 reflections
a = 15.672 (3) Åθ = 3.0–27.5°
b = 9.4283 (19) ŵ = 0.81 mm1
c = 16.063 (3) ÅT = 293 K
β = 103.92 (3)°Prism, pink
V = 2303.8 (8) Å30.21 × 0.15 × 0.12 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
5252 independent reflections
Radiation source: fine-focus sealed tube3669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: no pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.765, Tmax = 0.872l = 2019
21789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
5252 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.38 e Å3
9 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co2(C8H3NO6)2(C10H8N2)3(H2O)6]V = 2303.8 (8) Å3
Mr = 1112.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.672 (3) ŵ = 0.81 mm1
b = 9.4283 (19) ÅT = 293 K
c = 16.063 (3) Å0.21 × 0.15 × 0.12 mm
β = 103.92 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3669 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.872Rint = 0.079
21789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0519 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.38 e Å3
5252 reflectionsΔρmin = 0.45 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.32172 (2)0.70261 (4)0.20771 (2)0.02477 (14)
N10.17512 (19)0.4939 (3)0.07320 (18)0.0434 (7)
N20.24471 (16)0.8547 (3)0.12309 (15)0.0299 (6)
N30.0484 (2)1.2759 (4)0.1856 (2)0.0507 (8)
N40.35953 (16)0.8342 (3)0.31977 (14)0.0288 (6)
O10.30328 (14)0.5593 (2)0.10689 (12)0.0303 (5)
O20.22712 (15)0.3866 (2)0.15197 (13)0.0398 (6)
O30.41953 (15)0.2894 (2)0.18540 (13)0.0378 (6)
O40.43538 (15)0.0753 (2)0.13428 (14)0.0395 (6)
O50.13514 (18)0.5266 (3)0.02137 (16)0.0565 (7)
O60.1662 (2)0.5543 (4)0.14226 (19)0.0909 (12)
O70.43623 (14)0.7886 (2)0.17266 (13)0.0308 (5)
H7A0.4781 (16)0.782 (3)0.2166 (14)0.037*
H7B0.4312 (19)0.8724 (16)0.1535 (17)0.037*
O80.21785 (14)0.6093 (3)0.25287 (13)0.0337 (5)
H8A0.2092 (19)0.534 (2)0.2224 (18)0.040*
H8B0.1712 (13)0.658 (3)0.243 (2)0.040*
O90.40189 (14)0.5401 (2)0.27330 (13)0.0331 (5)
H9B0.4550 (9)0.560 (3)0.2970 (18)0.040*
H9C0.4003 (18)0.469 (2)0.2406 (17)0.040*
C10.28309 (19)0.3469 (3)0.02915 (18)0.0272 (6)
C20.23784 (19)0.3751 (3)0.05515 (18)0.0312 (7)
C30.2485 (2)0.2972 (4)0.1248 (2)0.0386 (8)
H3A0.21700.32020.18000.046*
C40.3062 (2)0.1854 (4)0.1112 (2)0.0420 (8)
H4A0.31320.12980.15700.050*
C50.3537 (2)0.1565 (3)0.02903 (19)0.0359 (7)
H5A0.39360.08170.02030.043*
C60.34391 (19)0.2355 (3)0.04132 (18)0.0283 (7)
C70.26975 (19)0.4381 (3)0.10318 (17)0.0273 (6)
C80.4034 (2)0.1983 (3)0.12786 (19)0.0290 (6)
C90.2360 (2)0.8381 (4)0.03926 (19)0.0380 (8)
H9A0.26760.76590.02100.046*
C100.1829 (2)0.9217 (4)0.02198 (19)0.0378 (8)
H10A0.17950.90520.07980.045*
C110.1994 (2)0.9611 (4)0.1467 (2)0.0401 (8)
H11A0.20490.97610.20500.048*
C120.1452 (2)1.0492 (4)0.0896 (2)0.0400 (8)
H12A0.11551.12210.10960.048*
C130.0546 (2)1.0864 (4)0.1498 (2)0.0481 (9)
H13A0.08271.01050.16900.058*
C140.0048 (3)1.1679 (5)0.2077 (2)0.0558 (11)
H14A0.01481.14540.26560.067*
C150.0285 (2)1.2325 (4)0.0402 (2)0.0442 (9)
H15A0.03881.25990.01700.053*
C160.0308 (3)1.3064 (4)0.1027 (3)0.0531 (10)
H16A0.06031.38240.08550.064*
C170.13452 (19)1.0300 (3)0.00195 (19)0.0300 (7)
C180.07229 (19)1.1180 (4)0.06323 (19)0.0320 (7)
C190.3917 (2)0.9648 (3)0.31517 (18)0.0331 (7)
H19A0.37661.01210.26290.040*
C200.4460 (2)1.0327 (3)0.38372 (18)0.0310 (7)
H20A0.46741.12290.37690.037*
C210.46875 (18)0.9661 (3)0.46269 (17)0.0261 (6)
C220.4311 (2)0.8345 (3)0.46904 (18)0.0336 (7)
H22A0.44170.78800.52160.040*
C230.3779 (2)0.7729 (4)0.39713 (18)0.0340 (7)
H23A0.35360.68450.40270.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0295 (2)0.0217 (2)0.0215 (2)0.00056 (17)0.00289 (16)0.00077 (15)
N10.0390 (16)0.0472 (19)0.0376 (15)0.0047 (14)0.0032 (14)0.0032 (14)
N20.0317 (13)0.0290 (15)0.0277 (12)0.0015 (11)0.0045 (11)0.0015 (11)
N30.0410 (17)0.055 (2)0.0513 (18)0.0092 (15)0.0009 (15)0.0066 (15)
N40.0353 (14)0.0283 (15)0.0223 (11)0.0019 (11)0.0062 (11)0.0032 (10)
O10.0412 (12)0.0224 (12)0.0254 (10)0.0036 (9)0.0044 (9)0.0011 (8)
O20.0486 (14)0.0332 (14)0.0409 (12)0.0088 (11)0.0170 (11)0.0025 (10)
O30.0447 (13)0.0299 (13)0.0323 (11)0.0056 (10)0.0036 (10)0.0036 (9)
O40.0456 (13)0.0205 (12)0.0458 (13)0.0039 (10)0.0020 (10)0.0026 (9)
O50.0578 (16)0.0590 (19)0.0494 (15)0.0215 (14)0.0065 (13)0.0057 (13)
O60.103 (3)0.112 (3)0.0584 (18)0.053 (2)0.0208 (17)0.0473 (19)
O70.0360 (12)0.0228 (12)0.0312 (11)0.0017 (9)0.0032 (9)0.0009 (9)
O80.0325 (11)0.0340 (13)0.0335 (11)0.0033 (10)0.0060 (10)0.0027 (9)
O90.0364 (12)0.0256 (12)0.0321 (11)0.0023 (9)0.0017 (10)0.0028 (9)
C10.0291 (15)0.0228 (16)0.0275 (14)0.0066 (12)0.0026 (12)0.0011 (12)
C20.0311 (16)0.0282 (18)0.0309 (15)0.0014 (13)0.0008 (13)0.0008 (13)
C30.0413 (18)0.045 (2)0.0258 (15)0.0057 (16)0.0006 (14)0.0006 (14)
C40.051 (2)0.045 (2)0.0306 (16)0.0083 (17)0.0111 (15)0.0097 (15)
C50.0416 (18)0.0237 (17)0.0419 (18)0.0010 (14)0.0091 (15)0.0062 (14)
C60.0312 (16)0.0218 (16)0.0310 (15)0.0052 (12)0.0054 (13)0.0008 (12)
C70.0299 (15)0.0229 (16)0.0248 (14)0.0017 (12)0.0020 (12)0.0007 (11)
C80.0307 (15)0.0221 (16)0.0320 (15)0.0039 (13)0.0034 (13)0.0023 (13)
C90.052 (2)0.0327 (19)0.0304 (16)0.0115 (15)0.0128 (15)0.0041 (14)
C100.0468 (19)0.041 (2)0.0246 (15)0.0107 (16)0.0062 (14)0.0040 (14)
C110.0445 (19)0.042 (2)0.0309 (16)0.0059 (16)0.0044 (15)0.0068 (15)
C120.0460 (19)0.037 (2)0.0340 (16)0.0140 (16)0.0048 (15)0.0081 (14)
C130.044 (2)0.054 (2)0.0421 (19)0.0178 (17)0.0011 (16)0.0041 (17)
C140.049 (2)0.073 (3)0.0392 (19)0.020 (2)0.0007 (18)0.0034 (19)
C150.048 (2)0.042 (2)0.0410 (19)0.0125 (17)0.0076 (16)0.0008 (16)
C160.056 (2)0.042 (2)0.060 (2)0.0207 (18)0.012 (2)0.0046 (18)
C170.0271 (15)0.0279 (17)0.0345 (16)0.0007 (13)0.0062 (13)0.0043 (13)
C180.0262 (15)0.0337 (18)0.0348 (16)0.0024 (13)0.0050 (13)0.0026 (13)
C190.0444 (18)0.0284 (18)0.0246 (14)0.0008 (14)0.0046 (13)0.0019 (12)
C200.0388 (17)0.0259 (17)0.0275 (14)0.0041 (13)0.0061 (13)0.0022 (12)
C210.0292 (14)0.0260 (16)0.0232 (13)0.0017 (12)0.0064 (12)0.0039 (12)
C220.0441 (18)0.0344 (19)0.0216 (14)0.0050 (14)0.0065 (13)0.0015 (13)
C230.0416 (18)0.0325 (19)0.0275 (15)0.0122 (14)0.0077 (14)0.0028 (13)
Geometric parameters (Å, º) top
Co1—O12.075 (2)C4—C51.378 (4)
Co1—O92.097 (2)C4—H4A0.9300
Co1—O82.126 (2)C5—C61.393 (4)
Co1—N22.138 (2)C5—H5A0.9300
Co1—N42.149 (2)C6—C81.517 (4)
Co1—O72.164 (2)C9—C101.374 (4)
N1—O51.197 (4)C9—H9A0.9300
N1—O61.225 (4)C10—C171.380 (4)
N1—C21.472 (4)C10—H10A0.9300
N2—C91.330 (4)C11—C121.370 (4)
N2—C111.336 (4)C11—H11A0.9300
N3—C141.322 (5)C12—C171.388 (4)
N3—C161.325 (5)C12—H12A0.9300
N4—C231.337 (4)C13—C141.380 (5)
N4—C191.339 (4)C13—C181.384 (4)
O1—C71.253 (4)C13—H13A0.9300
O2—C71.244 (4)C14—H14A0.9300
O3—C81.242 (4)C15—C181.376 (5)
O4—C81.257 (4)C15—C161.382 (5)
O7—H7A0.842 (10)C15—H15A0.9300
O7—H7B0.845 (10)C16—H16A0.9300
O8—H8A0.854 (10)C17—C181.498 (4)
O8—H8B0.847 (10)C19—C201.377 (4)
O9—H9B0.849 (10)C19—H19A0.9300
O9—H9C0.849 (10)C20—C211.383 (4)
C1—C21.395 (4)C20—H20A0.9300
C1—C61.401 (4)C21—C221.388 (4)
C1—C71.522 (4)C21—C21i1.497 (5)
C2—C31.382 (4)C22—C231.380 (4)
C3—C41.372 (5)C22—H22A0.9300
C3—H3A0.9300C23—H23A0.9300
O1—Co1—O982.56 (8)C1—C6—C8123.3 (3)
O1—Co1—O891.30 (9)O2—C7—O1127.5 (3)
O9—Co1—O886.66 (9)O2—C7—C1117.9 (3)
O1—Co1—N289.37 (9)O1—C7—C1114.7 (3)
O9—Co1—N2170.96 (9)O3—C8—O4124.8 (3)
O8—Co1—N297.64 (9)O3—C8—C6119.5 (3)
O1—Co1—N4171.19 (9)O4—C8—C6115.7 (3)
O9—Co1—N489.42 (9)N2—C9—C10123.7 (3)
O8—Co1—N491.87 (9)N2—C9—H9A118.2
N2—Co1—N498.34 (10)C10—C9—H9A118.2
O1—Co1—O790.54 (8)C9—C10—C17120.3 (3)
O9—Co1—O788.29 (9)C9—C10—H10A119.9
O8—Co1—O7174.37 (8)C17—C10—H10A119.9
N2—Co1—O787.70 (9)N2—C11—C12123.4 (3)
N4—Co1—O785.57 (9)N2—C11—H11A118.3
O5—N1—O6123.1 (3)C12—C11—H11A118.3
O5—N1—C2119.7 (3)C11—C12—C17120.3 (3)
O6—N1—C2117.2 (3)C11—C12—H12A119.9
C9—N2—C11116.3 (3)C17—C12—H12A119.9
C9—N2—Co1118.0 (2)C14—C13—C18119.8 (3)
C11—N2—Co1125.5 (2)C14—C13—H13A120.1
C14—N3—C16116.1 (3)C18—C13—H13A120.1
C23—N4—C19116.7 (3)N3—C14—C13123.8 (3)
C23—N4—Co1118.9 (2)N3—C14—H14A118.1
C19—N4—Co1121.1 (2)C13—C14—H14A118.1
C7—O1—Co1127.50 (19)C18—C15—C16119.5 (3)
Co1—O7—H7A106 (2)C18—C15—H15A120.3
Co1—O7—H7B116 (2)C16—C15—H15A120.3
H7A—O7—H7B110.9 (16)N3—C16—C15124.2 (4)
Co1—O8—H8A100 (2)N3—C16—H16A117.9
Co1—O8—H8B114 (2)C15—C16—H16A117.9
H8A—O8—H8B109.6 (16)C10—C17—C12116.0 (3)
Co1—O9—H9B118 (2)C10—C17—C18121.6 (3)
Co1—O9—H9C110 (2)C12—C17—C18122.4 (3)
H9B—O9—H9C109.4 (16)C15—C18—C13116.5 (3)
C2—C1—C6116.7 (3)C15—C18—C17121.9 (3)
C2—C1—C7121.2 (3)C13—C18—C17121.5 (3)
C6—C1—C7122.1 (2)N4—C19—C20123.5 (3)
C3—C2—C1123.5 (3)N4—C19—H19A118.2
C3—C2—N1116.7 (3)C20—C19—H19A118.2
C1—C2—N1119.7 (3)C19—C20—C21119.7 (3)
C4—C3—C2118.9 (3)C19—C20—H20A120.1
C4—C3—H3A120.6C21—C20—H20A120.1
C2—C3—H3A120.6C20—C21—C22116.9 (3)
C3—C4—C5119.2 (3)C20—C21—C21i121.0 (3)
C3—C4—H4A120.4C22—C21—C21i122.0 (3)
C5—C4—H4A120.4C23—C22—C21119.8 (3)
C4—C5—C6122.1 (3)C23—C22—H22A120.1
C4—C5—H5A118.9C21—C22—H22A120.1
C6—C5—H5A118.9N4—C23—C22123.2 (3)
C5—C6—C1119.5 (3)N4—C23—H23A118.4
C5—C6—C8117.2 (3)C22—C23—H23A118.4
O1—Co1—N2—C921.2 (2)C2—C1—C7—O2106.9 (3)
O8—Co1—N2—C9112.4 (2)C6—C1—C7—O276.2 (4)
N4—Co1—N2—C9154.5 (2)C2—C1—C7—O172.5 (4)
O7—Co1—N2—C969.3 (2)C6—C1—C7—O1104.5 (3)
O1—Co1—N2—C11154.2 (3)C5—C6—C8—O3155.8 (3)
O8—Co1—N2—C1163.0 (3)C1—C6—C8—O321.8 (5)
N4—Co1—N2—C1130.1 (3)C5—C6—C8—O421.9 (4)
O7—Co1—N2—C11115.2 (3)C1—C6—C8—O4160.4 (3)
O9—Co1—N4—C2331.5 (2)C11—N2—C9—C101.1 (5)
O8—Co1—N4—C2355.1 (2)Co1—N2—C9—C10174.7 (3)
N2—Co1—N4—C23153.1 (2)N2—C9—C10—C170.1 (5)
O7—Co1—N4—C23119.9 (2)C9—N2—C11—C120.9 (5)
O9—Co1—N4—C19127.1 (2)Co1—N2—C11—C12174.5 (3)
O8—Co1—N4—C19146.3 (2)N2—C11—C12—C170.5 (6)
N2—Co1—N4—C1948.3 (3)C16—N3—C14—C131.5 (7)
O7—Co1—N4—C1938.7 (2)C18—C13—C14—N31.1 (7)
O9—Co1—O1—C762.0 (2)C14—N3—C16—C150.5 (6)
O8—Co1—O1—C724.5 (2)C18—C15—C16—N31.0 (6)
N2—Co1—O1—C7122.1 (2)C9—C10—C17—C121.5 (5)
O7—Co1—O1—C7150.2 (2)C9—C10—C17—C18176.6 (3)
C6—C1—C2—C31.9 (5)C11—C12—C17—C101.7 (5)
C7—C1—C2—C3179.0 (3)C11—C12—C17—C18176.5 (3)
C6—C1—C2—N1177.9 (3)C16—C15—C18—C131.4 (5)
C7—C1—C2—N10.8 (4)C16—C15—C18—C17177.4 (3)
O5—N1—C2—C3148.7 (3)C14—C13—C18—C150.5 (6)
O6—N1—C2—C330.8 (5)C14—C13—C18—C17178.4 (4)
O5—N1—C2—C131.5 (5)C10—C17—C18—C15175.3 (3)
O6—N1—C2—C1149.0 (3)C12—C17—C18—C156.7 (5)
C1—C2—C3—C40.2 (5)C10—C17—C18—C135.9 (5)
N1—C2—C3—C4180.0 (3)C12—C17—C18—C13172.1 (3)
C2—C3—C4—C51.8 (5)C23—N4—C19—C204.3 (5)
C3—C4—C5—C61.3 (5)Co1—N4—C19—C20154.8 (3)
C4—C5—C6—C10.9 (5)N4—C19—C20—C211.0 (5)
C4—C5—C6—C8176.8 (3)C19—C20—C21—C223.0 (5)
C2—C1—C6—C52.4 (4)C19—C20—C21—C21i176.9 (3)
C7—C1—C6—C5179.5 (3)C20—C21—C22—C233.6 (5)
C2—C1—C6—C8175.2 (3)C21i—C21—C22—C23176.3 (3)
C7—C1—C6—C81.9 (5)C19—N4—C23—C223.6 (5)
Co1—O1—C7—O213.2 (4)Co1—N4—C23—C22156.0 (3)
Co1—O1—C7—C1167.53 (18)C21—C22—C23—N40.3 (5)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3ii0.84 (1)1.96 (1)2.798 (3)173 (3)
O7—H7B···O4iii0.85 (1)1.94 (1)2.772 (3)167 (3)
O8—H8A···O20.85 (1)1.86 (1)2.677 (3)161 (3)
O8—H8B···N3iv0.85 (1)2.02 (2)2.830 (4)159 (3)
O9—H9B···O4ii0.85 (1)1.81 (1)2.645 (3)167 (3)
O9—H9C···O30.85 (1)1.97 (1)2.801 (3)167 (3)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Co2(C8H3NO6)2(C10H8N2)3(H2O)6]
Mr1112.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.672 (3), 9.4283 (19), 16.063 (3)
β (°) 103.92 (3)
V3)2303.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.21 × 0.15 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
21789, 5252, 3669
Rint0.079
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.134, 1.01
No. of reflections5252
No. of parameters352
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.45

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.842 (10)1.960 (11)2.798 (3)173 (3)
O7—H7B···O4ii0.845 (10)1.942 (12)2.772 (3)167 (3)
O8—H8A···O20.854 (10)1.855 (13)2.677 (3)161 (3)
O8—H8B···N3iii0.847 (10)2.021 (15)2.830 (4)159 (3)
O9—H9B···O4i0.849 (10)1.810 (13)2.645 (3)167 (3)
O9—H9C···O30.849 (10)1.968 (13)2.801 (3)167 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the National Natural Science Foundation of China (20705031).

References

First citationDeng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007). Chin. J. Struct. Chem. 26, 642–648.  CAS Google Scholar
First citationGuo, M.-L. (2004). Acta Cryst. E60, m1684–m1685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101.  Web of Science CSD CrossRef Google Scholar
First citationNoro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSong, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem. 21, 150–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10–m12.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206–209.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m992-m993
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds