organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Bi­phenyl-4,4′-diyldi­­oxy)di­acetic acid N,N-di­methyl­formamide solvate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: caoyj@scnu.edu.cn

(Received 29 May 2009; accepted 4 July 2009; online 15 July 2009)

In the crystal struture of the title compound, C16H14O6·C3H7NO, the two crystallographically independent benzene rings are coplanar [dihedral angle = 1.00 (2)°]. The crystal structure is stabilized by O—H⋯O hydrogen bonds between the diacid and the solvate dimethylformamide mol­ecule, resulting in the formation of a zigzag chain structure extending parallel to [001].

Related literature

For general background to biphenyl carbinols and their biological applications, see: Kamoda et al. (2006[Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062-3069.]); Mikami & Yamanaka (2003[Mikami, K. & Yamanaka, M. (2003). Chem. Rev. 103, 3369-3400.]); Sallam et al. (2006[Sallam, M. M., El-Sayed, B. A. & Abdel-Shafi, A. A. (2006). Curr. Appl. Phys. 6, 71-75.]). For the crystal structures of related compounds, see: Rabnawaz et al. (2008[Rabnawaz, M., Ali, Q., Shah, M. R. & Singh, K. (2008). Acta Cryst. E64, o1909.]); Tan et al. (2005[Tan, T.-F., Zhang, J.-X. & Meng, J.-B. (2005). Acta Cryst. E61, o1210-o1211.]). For the preparation of the title compound, see: Hayes & Branch (1943[Hayes, N. V. & Branch, G. E. K. (1943). J. Am. Chem. Soc. 65, 1555-1564.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O6·C3H7NO

  • Mr = 375.37

  • Orthorhombic, P 21 21 21

  • a = 7.7471 (15) Å

  • b = 8.1758 (16) Å

  • c = 28.625 (6) Å

  • V = 1813.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.32 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.984

  • 9412 measured reflections

  • 2079 independent reflections

  • 1778 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.05

  • 2079 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O7i 0.82 1.87 2.685 (3) 174
O2—H2⋯O7ii 0.82 1.81 2.626 (3) 176
C15—H15a⋯O1iii 0.97 2.44 3.149 (2) 129
C17—H17⋯O1iv 0.93 2.56 3.248 (3) 131
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y-{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl carbinols are valuable intermediates in the preparation of new ligands (Mikami et al., 2003; Rabnawaz et al., 2008; Tan et al., 2005) and have shown important biological activities (Kamoda et al., 2006; Sallam et al., 2006). As part of our ongoing study of such biphenyl carbinol compounds, the crystal structure of the title compound is reported in this work.

The molecular structure of the title compound is shown in Fig. 1. The two crystallographically independent benzene rings are coplanar (dihedral angle = 1.00 (2)°) and the two carboxylic acid groups are oriented in different directions. There are no unusual bonds lengths and angles. The C1—O1 and C16—O5 distances in the title compound are 1.197 (3)Å and 1.184 (4)Å, respectively, typical of double bonds.

The –OCH2COOH substituents show torsion angles of 176.0 (2)° (C2—O3—C3—C8) and 169.7 (2)° (C15—O4—C12—C11) with respect to the phenyl rings. Intermolecular O—H···O hydrogen bonds between the hydroxyl groups of the diacid and the carbonyl group of the DMF molecule (Table 1) are observed in this structure, thereby forming a one-dimensional zigzag chain structure along the c-axial direction (Fig. 2).

The crystal structure is further stabilized by weak intermolecular hydrogen bonding interactions between the diacids, thus forming a sandwich structure as represented in Fig. 3.

Related literature top

For general background and biological applications, see: Kamoda et al. (2006); Mikami et al. (2003); Sallam et al. (2006). For the crystal structures of related compounds, see: Rabnawaz et al. (2008); Tan et al. (2005). For thepreparation of the title compound, see: Hayes & Branch (1943).

Experimental top

The title compound was prepared according to the general procedure reported by Hayes & Branch (1943). 2-Chloroacetic acid (114 mg, 1.2 mmol) and sodium hydroxide (40 mg, 10 mmol) in 20 ml of N,N-dimethylformamide (DMF) were stirred for 10 min, followed by addition of 2,2'-dihydroxybiphenyl (186 mg, 1 mmol). The reaction mixture was stirred at 100 °C for 3 h. After cooling, the solution was acidified and extracted with ether. Slow evaporation of ether at room temperature yielded colorless crystals of the title compound. IR(KBr pellet, cm-1): 3428.47, 3042.21, 2905.29, 2787.94,1740.59, 1707.78, 1607.65, 1500.03, 1430.90, 1234.94, 830.29, 797.57.

Refinement top

All H atoms were placed in calculated positions and were allowed to ride on their parent atoms; C—H = 0.93 (aromatic C—H), 0.97 (methylene) and 0.96 (methyl) and O—H = 0.82 (hydroxyl) Å; Uiso(H) = 1.2 Ueq (aromatic and methylene C), Uiso(H) = 1.5 Ueq (methyl C) and Uiso (H) = 1.5 Ueq (O). In the absence of anomalous scatterers and using Mo radiation Friedel pairs were merged prior to refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level. All H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A one-dimensional zigzag chain generated by the hydrogen bonds along the c-axial direction in the title compound. All H atoms are omitted for clarity.
[Figure 3] Fig. 3. A crystallographic packing diagram of the title compound.
2,2'-(Biphenyl-4,4'-diyldioxy)diacetic acid N,N-dimethylformamide solvate top
Crystal data top
C16H14O6·C3H7NODx = 1.375 Mg m3
Mr = 375.37Melting point = 524.9–525.8 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3913 reflections
a = 7.7471 (15) Åθ = 1.4–27.8°
b = 8.1758 (16) ŵ = 0.11 mm1
c = 28.625 (6) ÅT = 298 K
V = 1813.1 (6) Å3Block, colorless
Z = 40.32 × 0.25 × 0.18 mm
F(000) = 792
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2079 independent reflections
Radiation source: fine-focus sealed tube1778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.971, Tmax = 0.984k = 109
9412 measured reflectionsl = 2935
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.2914P]
where P = (Fo2 + 2Fc2)/3
2079 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H14O6·C3H7NOV = 1813.1 (6) Å3
Mr = 375.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7471 (15) ŵ = 0.11 mm1
b = 8.1758 (16) ÅT = 298 K
c = 28.625 (6) Å0.32 × 0.25 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2079 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1778 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.028
9412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2079 reflectionsΔρmin = 0.19 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0567 (4)0.7098 (3)0.65314 (10)0.0437 (7)
C20.0253 (4)0.5895 (3)0.61484 (10)0.0480 (7)
H2A0.05080.64060.58500.058*
H2B0.09570.55880.61480.058*
C30.1124 (3)0.3291 (3)0.58665 (9)0.0385 (6)
C40.0138 (4)0.3432 (4)0.54660 (10)0.0508 (8)
H40.05070.43720.54110.061*
C50.0120 (4)0.2161 (4)0.51477 (10)0.0506 (8)
H50.05550.22680.48810.061*
C60.1058 (3)0.0739 (3)0.52075 (9)0.0355 (6)
C70.2023 (4)0.0632 (3)0.56174 (9)0.0415 (6)
H70.26640.03080.56750.050*
C80.2051 (4)0.1875 (3)0.59386 (9)0.0427 (6)
H80.27050.17620.62090.051*
C90.1043 (3)0.0598 (3)0.48540 (9)0.0353 (6)
C100.0092 (3)0.0467 (3)0.44397 (9)0.0409 (6)
H100.05280.04860.43830.049*
C110.0048 (3)0.1697 (4)0.41162 (9)0.0434 (6)
H110.06010.15670.38450.052*
C120.0958 (3)0.3135 (3)0.41877 (8)0.0367 (6)
C130.1927 (4)0.3298 (3)0.45907 (9)0.0457 (7)
H130.25580.42480.46450.055*
C140.1950 (4)0.2043 (3)0.49115 (10)0.0481 (7)
H140.26090.21730.51810.058*
C150.1904 (4)0.5669 (3)0.38615 (9)0.0452 (7)
H15A0.30900.53260.39090.054*
H15B0.15790.63980.41140.054*
C160.1717 (4)0.6512 (4)0.33992 (10)0.0480 (7)
C170.8034 (4)0.4650 (3)0.76651 (10)0.0467 (7)
H170.87150.45200.79300.056*
C180.7724 (5)0.1739 (4)0.76798 (13)0.0648 (9)
H18A0.66660.13210.78070.097*
H18B0.85700.18270.79240.097*
H18C0.81390.10090.74420.097*
C190.6242 (5)0.3421 (4)0.70858 (11)0.0618 (9)
H19A0.67220.28330.68260.093*
H19B0.60640.45430.69990.093*
H19C0.51580.29390.71720.093*
N10.7419 (3)0.3344 (3)0.74773 (7)0.0437 (6)
O10.0176 (3)0.8381 (3)0.65378 (8)0.0711 (7)
O20.1679 (3)0.6642 (3)0.68480 (7)0.0616 (6)
H20.18230.73870.70360.092*
O30.1272 (3)0.4482 (2)0.61989 (6)0.0458 (5)
O40.0795 (3)0.4294 (2)0.38492 (6)0.0468 (5)
O50.0680 (5)0.6151 (4)0.31136 (10)0.1098 (12)
O60.2858 (4)0.7658 (3)0.33427 (8)0.0768 (8)
H60.28340.79820.30720.115*
O70.7798 (3)0.6075 (2)0.75226 (6)0.0565 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0502 (16)0.0377 (15)0.0433 (15)0.0007 (13)0.0004 (13)0.0008 (13)
C20.0553 (17)0.0427 (16)0.0461 (16)0.0061 (14)0.0045 (14)0.0050 (14)
C30.0408 (13)0.0347 (13)0.0399 (13)0.0016 (12)0.0011 (11)0.0039 (12)
C40.0592 (18)0.0400 (16)0.0533 (16)0.0170 (15)0.0174 (14)0.0059 (14)
C50.0581 (18)0.0478 (16)0.0459 (16)0.0142 (15)0.0207 (14)0.0058 (14)
C60.0337 (12)0.0357 (13)0.0372 (13)0.0027 (11)0.0011 (11)0.0001 (12)
C70.0457 (15)0.0375 (14)0.0411 (14)0.0062 (12)0.0066 (12)0.0010 (12)
C80.0468 (15)0.0463 (15)0.0350 (13)0.0014 (14)0.0063 (12)0.0008 (12)
C90.0333 (12)0.0365 (13)0.0361 (13)0.0013 (11)0.0018 (11)0.0003 (12)
C100.0419 (14)0.0407 (15)0.0400 (14)0.0089 (13)0.0011 (12)0.0023 (12)
C110.0428 (14)0.0536 (17)0.0339 (13)0.0037 (14)0.0044 (11)0.0031 (13)
C120.0384 (13)0.0377 (14)0.0340 (13)0.0037 (12)0.0042 (11)0.0033 (11)
C130.0553 (16)0.0371 (14)0.0446 (15)0.0066 (14)0.0071 (13)0.0052 (13)
C140.0561 (16)0.0479 (17)0.0403 (15)0.0079 (15)0.0119 (13)0.0049 (13)
C150.0533 (16)0.0402 (15)0.0420 (14)0.0025 (14)0.0030 (13)0.0020 (13)
C160.0502 (16)0.0475 (16)0.0462 (16)0.0002 (15)0.0003 (14)0.0065 (14)
C170.0606 (18)0.0434 (16)0.0360 (14)0.0003 (15)0.0080 (14)0.0035 (13)
C180.082 (2)0.0402 (17)0.072 (2)0.0019 (17)0.003 (2)0.0110 (16)
C190.068 (2)0.058 (2)0.0588 (19)0.0028 (17)0.0166 (16)0.0103 (17)
N10.0493 (13)0.0403 (13)0.0413 (12)0.0008 (11)0.0014 (11)0.0021 (10)
O10.0894 (17)0.0499 (13)0.0740 (15)0.0250 (14)0.0256 (13)0.0132 (12)
O20.0847 (15)0.0422 (11)0.0579 (12)0.0134 (12)0.0230 (12)0.0114 (10)
O30.0523 (11)0.0415 (10)0.0436 (10)0.0074 (9)0.0085 (9)0.0107 (9)
O40.0498 (11)0.0469 (11)0.0436 (10)0.0045 (9)0.0043 (9)0.0110 (10)
O50.119 (2)0.123 (3)0.0881 (19)0.058 (2)0.0515 (19)0.060 (2)
O60.1004 (19)0.0726 (16)0.0573 (14)0.0360 (16)0.0152 (14)0.0243 (12)
O70.0860 (16)0.0393 (11)0.0444 (12)0.0036 (11)0.0131 (11)0.0042 (9)
Geometric parameters (Å, º) top
C1—O11.197 (3)C12—O41.361 (3)
C1—O21.305 (4)C12—C131.383 (4)
C1—C21.493 (4)C13—C141.377 (4)
C2—O31.407 (3)C13—H130.9300
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—O41.415 (3)
C3—O31.366 (3)C15—C161.499 (4)
C3—C81.377 (4)C15—H15A0.9700
C3—C41.383 (4)C15—H15B0.9700
C4—C51.382 (4)C16—O51.184 (4)
C4—H40.9300C16—O61.298 (4)
C5—C61.382 (4)C17—O71.248 (3)
C5—H50.9300C17—N11.287 (4)
C6—C71.394 (4)C17—H170.9300
C6—C91.489 (4)C18—N11.454 (4)
C7—C81.371 (4)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—H80.9300C18—H18C0.9600
C9—C141.385 (4)C19—N11.446 (4)
C9—C101.400 (3)C19—H19A0.9600
C10—C111.368 (4)C19—H19B0.9600
C10—H100.9300C19—H19C0.9600
C11—C121.386 (4)O2—H20.8201
C11—H110.9300O6—H60.8200
O1—C1—O2123.9 (3)C13—C12—C11118.8 (2)
O1—C1—C2120.7 (3)C14—C13—C12119.4 (3)
O2—C1—C2115.4 (2)C14—C13—H13120.3
O3—C2—C1112.0 (2)C12—C13—H13120.3
O3—C2—H2A109.2C13—C14—C9123.4 (3)
C1—C2—H2A109.2C13—C14—H14118.3
O3—C2—H2B109.2C9—C14—H14118.3
C1—C2—H2B109.2O4—C15—C16106.5 (2)
H2A—C2—H2B107.9O4—C15—H15A110.4
O3—C3—C8116.8 (2)C16—C15—H15A110.4
O3—C3—C4124.4 (2)O4—C15—H15B110.4
C8—C3—C4118.8 (2)C16—C15—H15B110.4
C5—C4—C3119.3 (3)H15A—C15—H15B108.6
C5—C4—H4120.3O5—C16—O6123.8 (3)
C3—C4—H4120.3O5—C16—C15124.1 (3)
C4—C5—C6123.1 (2)O6—C16—C15112.1 (3)
C4—C5—H5118.5O7—C17—N1125.7 (3)
C6—C5—H5118.5O7—C17—H17117.1
C5—C6—C7116.0 (2)N1—C17—H17117.1
C5—C6—C9121.9 (2)N1—C18—H18A109.5
C7—C6—C9122.0 (2)N1—C18—H18B109.5
C8—C7—C6121.8 (2)H18A—C18—H18B109.5
C8—C7—H7119.1N1—C18—H18C109.5
C6—C7—H7119.1H18A—C18—H18C109.5
C7—C8—C3120.9 (2)H18B—C18—H18C109.5
C7—C8—H8119.5N1—C19—H19A109.5
C3—C8—H8119.5N1—C19—H19B109.5
C14—C9—C10115.7 (2)H19A—C19—H19B109.5
C14—C9—C6122.8 (2)N1—C19—H19C109.5
C10—C9—C6121.6 (2)H19A—C19—H19C109.5
C11—C10—C9122.0 (2)H19B—C19—H19C109.5
C11—C10—H10119.0C17—N1—C19121.4 (2)
C9—C10—H10119.0C17—N1—C18121.4 (2)
C10—C11—C12120.7 (2)C19—N1—C18116.8 (3)
C10—C11—H11119.6C1—O2—H2109.4
C12—C11—H11119.6C3—O3—C2117.8 (2)
O4—C12—C13125.2 (2)C12—O4—C15118.6 (2)
O4—C12—C11116.0 (2)C16—O6—H6109.6
O1—C1—C2—O3178.9 (3)C9—C10—C11—C120.2 (4)
O2—C1—C2—O31.4 (4)C10—C11—C12—O4178.6 (2)
O3—C3—C4—C5178.3 (3)C10—C11—C12—C130.6 (4)
C8—C3—C4—C50.6 (4)O4—C12—C13—C14178.4 (3)
C3—C4—C5—C60.4 (5)C11—C12—C13—C140.7 (4)
C4—C5—C6—C71.1 (4)C12—C13—C14—C90.0 (5)
C4—C5—C6—C9178.8 (3)C10—C9—C14—C130.8 (4)
C5—C6—C7—C80.7 (4)C6—C9—C14—C13179.0 (3)
C9—C6—C7—C8179.1 (3)O4—C15—C16—O57.5 (5)
C6—C7—C8—C30.2 (4)O4—C15—C16—O6170.6 (2)
O3—C3—C8—C7178.1 (2)O7—C17—N1—C194.7 (5)
C4—C3—C8—C70.9 (4)O7—C17—N1—C18178.0 (3)
C5—C6—C9—C14178.9 (3)C8—C3—O3—C2176.0 (2)
C7—C6—C9—C141.3 (4)C4—C3—O3—C25.0 (4)
C5—C6—C9—C100.9 (4)C1—C2—O3—C3179.1 (2)
C7—C6—C9—C10178.9 (2)C13—C12—O4—C1511.2 (4)
C14—C9—C10—C110.8 (4)C11—C12—O4—C15169.7 (2)
C6—C9—C10—C11179.0 (2)C16—C15—O4—C12167.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O7i0.821.872.685 (3)174
O2—H2···O7ii0.821.812.626 (3)176
C15—H15a···O1iii0.972.443.149 (2)129
C17—H17···O1iv0.932.563.248 (3)131
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y3/2, z+3/2; (iii) x+1/2, y1/2, z+1; (iv) x+1, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H14O6·C3H7NO
Mr375.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.7471 (15), 8.1758 (16), 28.625 (6)
V3)1813.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.971, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9412, 2079, 1778
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.05
No. of reflections2079
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O7i0.821.872.685 (3)174.4
O2—H2···O7ii0.821.812.626 (3)176.0
C15—H15a···O1iii0.972.443.149 (2)129.0
C17—H17···O1iv0.932.563.248 (3)131.0
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y3/2, z+3/2; (iii) x+1/2, y1/2, z+1; (iv) x+1, y+3/2, z+3/2.
 

References

First citationBruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHayes, N. V. & Branch, G. E. K. (1943). J. Am. Chem. Soc. 65, 1555–1564.  CrossRef CAS Google Scholar
First citationKamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062–3069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikami, K. & Yamanaka, M. (2003). Chem. Rev. 103, 3369–3400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRabnawaz, M., Ali, Q., Shah, M. R. & Singh, K. (2008). Acta Cryst. E64, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSallam, M. M., El-Sayed, B. A. & Abdel-Shafi, A. A. (2006). Curr. Appl. Phys. 6, 71–75.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, T.-F., Zhang, J.-X. & Meng, J.-B. (2005). Acta Cryst. E61, o1210–o1211.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds