organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,7-Di­aza-1-azonia­cyclo­nonane bromide

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 18 June 2009; accepted 24 June 2009; online 1 July 2009)

The title compound, C6H16N3+·Br, is the bromide of the monoprotonated aza­macrocyclic triamine 1,4,7-triaza­cyclo­nonane (tacn). The threefold axis of the triamine is broken by the protonation of one of the three amine functions. The ammonium proton is bonded in an intra­molecular symmetrically bifurcated hydrogen bond to the two endodentate amine functions. Direct cation–anion contacts are established via N—H⋯Br hydrogen bonds between the bromide anions and tacnH+ cations.

Related literature

The title compound was prepared according to a published procedure (Hay & Norman, 1979[Hay, R. W. & Norman, P. R. (1979). J. Chem. Soc. Dalton Trans. pp. 1441-1445.]; McAuley et al., 1984[McAuley, A., Norman, P. R. & Olubuyide, O. (1984). Inorg. Chem. 23, 1938-1943.]; Battle et al., 2005[Battle, A. R., Johnson, D. L. & Martin, L. L. (2005). Acta Cryst. E61, o330-o332.]) following a Richman–Atkins synthesis (Richman & Atkins, 1974[Richman, J. E. & Atkins, T. J. (1974). J. Am. Chem. Soc. 96, 2268-2270.]). For the crystal structures of related compounds, see: Warden et al. (2004[Warden, A. C., Warren, M., Battle, A. R., Hearn, M. T. W. & Spiccia, L. (2004). CrystEngComm, 6, 522-530.]). A symmetrically bifurcated intra­molecular hydrogen bond to the two endodentate amine functions was also found in Me3tacnH+, see: Wieghardt et al. (1987[Wieghardt, K., Brodka, S., Peters, K., Peters, E. M. & Simon, A. (1987). Z. Naturforsch. Teil B, 42, 279-281.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N3+·Br

  • Mr = 210.12

  • Orthorhombic, P b c a

  • a = 8.11491 (18) Å

  • b = 14.1987 (4) Å

  • c = 15.3551 (4) Å

  • V = 1769.23 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.58 mm−1

  • T = 200 K

  • 0.40 × 0.20 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.274, Tmax = 0.693

  • 12366 measured reflections

  • 1781 independent reflections

  • 1136 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.041

  • S = 0.84

  • 1781 reflections

  • 98 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H712⋯Br1i 0.92 2.49 3.2759 (15) 144
N1—H711⋯N2 0.92 2.28 2.726 (2) 109
N1—H711⋯N3 0.92 2.31 2.813 (2) 114
N2—H72⋯Br1ii 0.889 (9) 2.749 (10) 3.6123 (15) 164.1 (13)
N3—H73⋯Br1iii 0.871 (9) 2.661 (10) 3.4999 (16) 162.1 (16)
C2—H21⋯Br1iv 0.99 2.91 3.8330 (18) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4,7-Triazacyclononane is a popular ligand in coordination chemistry due to its C3 symmetry and its propensity for facial coordination to metal ions. Although about 1500 crystallographically characterized tacn-metal complexes are known from the literature, it was not before 2005 that the crystal structure of the free parent triamine was determined (Battle et al., 2005). Warden et al. (2004) described five salts of the threefold protonated triamine and different anions. The herein reported structure is an AB-type salt of the monoprotonated triamine and bromide counterions. The asymmetric unit contains one ion pair. Additionally, in Fig. 1 the symmetrically bifurcated intramolecular hydrogen bond to the two endodentate amine functions is shown. This bond type, also found by Wieghardt et al. (1987) for Me3tacnH+, accounts for the stabilization of the monoprotonation and may have contributed to the difficulty to isolate the free parent triamine.

The structure is built by bilayers that are held together by van der Waals attraction. No classical hydrogen bonds were found between the bilayers. In contrast, the bilayer itself is connected by N—H···Br hydrogen bonds which link two tacnH+ cations of the one layer and one tacnH+ cation of the adjacent layer via a bromide counterion. An additional C—H···Br hydrogen bond connects the tacnH+ cations of each monolayer with the bromide (Fig. 2).

Fig. 3 shows the packing along [0 0 1] which is more reminiscent of the structure of tacn hemihydrate (Battle et al., 2005) than of the structures of the tacnH3+ salts which are characterized by a higher hydrogen-bond density (Warden et al., 2004).

Related literature top

The title compound was prepared according to a published procedure (Hay et al., 1979); McAuley et al., 1984); Battle et al., 2005) following a Richman–Atkins synthesis (Richman et al., 1974). For the crystal structures of related compounds, see: Warden et al. (2004). A symmetrically bifurcated intramolecular hydrogen bond to the two endodentate amine functions was also found in Me3tacnH+, see: Wieghardt et al. (1987).

Experimental top

By following the Richman-Atkins synthesis (Richman et al., 1974), 1,4,7-triazacyclononane was prepared by a method which utilizes the high degree of cyclization achieved by the reaction of the disodium salt of N,N',N"-tritosyldiethylenetriamine with the ditosyl derivative of 1,2-ethanediol (Hay et al. (1979); McAuley et al. (1984); Battle et al. (2005)). Crystals of the title compound suitable for X-ray analysis were recovered from the filtration residue of the toluene fraction which was extracted and recrystallized with acetone.

Refinement top

CH2 and the NH2 hydrogen atoms were placed in calculated positions and were included in the refinement in the riding model approximation with C—H distances of 0.99 Å and N—H distances of 0.92 Å. The positions of the amine hydrogen atoms were refined with N—H distances restrained to 0.90 (1) Å. All Uiso(H) values were set to 1.2 Ueq(C/N). The presence of pseudo-symmetry indicated by superstructure reflections along b suggested a higher symmetry space group Pbcm. Attempts to refine the structure in the space group Pbcm have however resulted in a disordered model with significant higher R and wR values.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms. The intramolecular symmetrically bifurcated hydrogen bond is drawn as a broken line.
[Figure 2] Fig. 2. The crystalline packing of the title compound (50% probability displacement ellipsoids), viewed along [1 0 0]. Note the hydrogen-bonded chains along [001]. Color codes: N1—H···Br green, N2—H···Br blue, N3—H···Br yellow, C2—H···Br violet.
[Figure 3] Fig. 3. The crystalline packing of the title compound (50% probability displacement ellipsoids), viewed along [0 0 1].
4,7-Diaza-1-azoniacyclononane bromide top
Crystal data top
C6H16N3+·BrF(000) = 864
Mr = 210.12Dx = 1.578 (1) Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4689 reflections
a = 8.11491 (18) Åθ = 4.2–26.3°
b = 14.1987 (4) ŵ = 4.58 mm1
c = 15.3551 (4) ÅT = 200 K
V = 1769.23 (8) Å3Platelet, colourless
Z = 80.40 × 0.20 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1781 independent reflections
Radiation source: fine-focus sealed tube1136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
CCD; rotation images scansθmax = 26.4°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 108
Tmin = 0.274, Tmax = 0.693k = 1617
12366 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0231P)2]
where P = (Fo2 + 2Fc2)/3
1781 reflections(Δ/σ)max = 0.001
98 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C6H16N3+·BrV = 1769.23 (8) Å3
Mr = 210.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.11491 (18) ŵ = 4.58 mm1
b = 14.1987 (4) ÅT = 200 K
c = 15.3551 (4) Å0.40 × 0.20 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1781 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1136 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.693Rint = 0.030
12366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0182 restraints
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.19 e Å3
1781 reflectionsΔρmin = 0.40 e Å3
98 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0381 (2)0.09783 (13)0.13984 (13)0.0258 (5)
H110.11680.11000.09190.031*
H120.10180.08050.19240.031*
C20.0771 (2)0.01747 (13)0.11488 (13)0.0270 (5)
H210.01680.04310.11730.032*
H220.11720.02670.05460.032*
C30.3795 (2)0.00839 (14)0.13390 (13)0.0263 (5)
H310.37980.04550.09300.032*
H320.46310.00430.17930.032*
C40.4281 (2)0.09747 (13)0.08448 (12)0.0247 (5)
H410.54510.09270.06680.030*
H420.36070.10230.03090.030*
C50.3100 (2)0.25835 (13)0.09640 (13)0.0260 (5)
H510.36330.27700.04100.031*
H520.30930.31400.13530.031*
C60.1348 (2)0.22841 (13)0.07838 (12)0.0218 (4)
H610.06860.28400.06140.026*
H620.13320.18310.02940.026*
N10.06097 (18)0.18365 (10)0.15724 (9)0.0206 (4)
H7110.14460.16830.19510.025*
H7120.00520.22720.18460.025*
N20.21724 (17)0.01482 (11)0.17501 (10)0.0227 (4)
H720.2032 (19)0.0323 (10)0.2124 (10)0.027*
N30.40545 (19)0.18328 (12)0.13688 (11)0.0249 (4)
H730.4988 (15)0.2089 (12)0.1517 (11)0.030*
Br10.24857 (2)0.329547 (11)0.335223 (11)0.02593 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (10)0.0270 (12)0.0329 (12)0.0037 (9)0.0023 (9)0.0063 (9)
C20.0288 (11)0.0200 (12)0.0323 (12)0.0069 (9)0.0015 (10)0.0025 (9)
C30.0284 (11)0.0241 (12)0.0265 (12)0.0070 (9)0.0010 (9)0.0029 (10)
C40.0167 (10)0.0299 (12)0.0275 (11)0.0039 (8)0.0024 (9)0.0023 (9)
C50.0268 (10)0.0208 (11)0.0304 (12)0.0029 (8)0.0041 (9)0.0012 (10)
C60.0243 (10)0.0183 (11)0.0228 (11)0.0017 (8)0.0034 (9)0.0070 (9)
N10.0198 (8)0.0216 (9)0.0204 (9)0.0054 (7)0.0015 (7)0.0006 (8)
N20.0244 (10)0.0186 (8)0.0251 (9)0.0014 (7)0.0016 (7)0.0061 (7)
N30.0201 (9)0.0234 (10)0.0311 (11)0.0039 (7)0.0034 (8)0.0020 (8)
Br10.02050 (10)0.02561 (10)0.03168 (11)0.00302 (10)0.00269 (11)0.00452 (8)
Geometric parameters (Å, º) top
C1—N11.484 (2)C4—H420.9900
C1—C21.524 (2)C5—N31.457 (2)
C1—H110.9900C5—C61.509 (3)
C1—H120.9900C5—H510.9900
C2—N21.465 (2)C5—H520.9900
C2—H210.9900C6—N11.493 (2)
C2—H220.9900C6—H610.9900
C3—N21.463 (2)C6—H620.9900
C3—C41.527 (2)N1—H7110.9200
C3—H310.9900N1—H7120.9200
C3—H320.9900N2—H720.889 (9)
C4—N31.472 (2)N3—H730.871 (9)
C4—H410.9900
N1—C1—C2109.14 (14)N3—C5—C6111.89 (15)
N1—C1—H11109.9N3—C5—H51109.2
C2—C1—H11109.9C6—C5—H51109.2
N1—C1—H12109.9N3—C5—H52109.2
C2—C1—H12109.9C6—C5—H52109.2
H11—C1—H12108.3H51—C5—H52107.9
N2—C2—C1109.68 (15)N1—C6—C5110.44 (14)
N2—C2—H21109.7N1—C6—H61109.6
C1—C2—H21109.7C5—C6—H61109.6
N2—C2—H22109.7N1—C6—H62109.6
C1—C2—H22109.7C5—C6—H62109.6
H21—C2—H22108.2H61—C6—H62108.1
N2—C3—C4113.29 (15)C1—N1—C6114.89 (14)
N2—C3—H31108.9C1—N1—H711108.5
C4—C3—H31108.9C6—N1—H711108.5
N2—C3—H32108.9C1—N1—H712108.5
C4—C3—H32108.9C6—N1—H712108.5
H31—C3—H32107.7H711—N1—H712107.5
N3—C4—C3112.45 (16)C3—N2—C2115.35 (15)
N3—C4—H41109.1C3—N2—H72110.3 (11)
C3—C4—H41109.1C2—N2—H72109.1 (11)
N3—C4—H42109.1C5—N3—C4116.04 (15)
C3—C4—H42109.1C5—N3—H73105.5 (13)
H41—C4—H42107.8C4—N3—H73112.3 (12)
N1—C1—C2—N245.5 (2)C4—C3—N2—C268.6 (2)
N2—C3—C4—N349.5 (2)C1—C2—N2—C3131.43 (16)
N3—C5—C6—N148.7 (2)C6—C5—N3—C462.9 (2)
C2—C1—N1—C671.68 (19)C3—C4—N3—C5128.16 (17)
C5—C6—N1—C1137.57 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H712···Br1i0.922.493.2759 (15)144
N1—H711···N20.922.282.726 (2)109
N1—H711···N30.922.312.813 (2)114
N2—H72···Br1ii0.89 (1)2.75 (1)3.6123 (15)164 (1)
N3—H73···Br1iii0.87 (1)2.66 (1)3.4999 (16)162 (2)
C2—H21···Br1iv0.992.913.8330 (18)156
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H16N3+·Br
Mr210.12
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)8.11491 (18), 14.1987 (4), 15.3551 (4)
V3)1769.23 (8)
Z8
Radiation typeMo Kα
µ (mm1)4.58
Crystal size (mm)0.40 × 0.20 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.274, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
12366, 1781, 1136
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.041, 0.84
No. of reflections1781
No. of parameters98
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.40

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H712···Br1i0.922.493.2759 (15)143.6
N1—H711···N20.922.282.726 (2)109.4
N1—H711···N30.922.312.813 (2)114.2
N2—H72···Br1ii0.889 (9)2.749 (10)3.6123 (15)164.1 (13)
N3—H73···Br1iii0.871 (9)2.661 (10)3.4999 (16)162.1 (16)
C2—H21···Br1iv0.992.913.8330 (18)156.4
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Peter Mayer for technical support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBattle, A. R., Johnson, D. L. & Martin, L. L. (2005). Acta Cryst. E61, o330–o332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHay, R. W. & Norman, P. R. (1979). J. Chem. Soc. Dalton Trans. pp. 1441–1445.  CrossRef Web of Science Google Scholar
First citationMcAuley, A., Norman, P. R. & Olubuyide, O. (1984). Inorg. Chem. 23, 1938–1943.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRichman, J. E. & Atkins, T. J. (1974). J. Am. Chem. Soc. 96, 2268–2270.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarden, A. C., Warren, M., Battle, A. R., Hearn, M. T. W. & Spiccia, L. (2004). CrystEngComm, 6, 522–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationWieghardt, K., Brodka, S., Peters, K., Peters, E. M. & Simon, A. (1987). Z. Naturforsch. Teil B, 42, 279–281.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds