organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phen­yl)-5-oxo-1,2,3,4,5,6,7,8-octa­hydro­quinazoline-2-thione

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 22 June 2009; accepted 21 July 2009; online 25 July 2009)

The title compound, C14H13BrN2OS, was synthesized from the multicomponent reaction between thio­urea, 4-bromo­benzaldehyde and cyclo­hexane-1,3-dione. The crystal packing is stabilized by inter­molecular N—H⋯O, N—H⋯S, C—H⋯O and C—H⋯S hydrogen bonds. Br⋯O inter­actions [3.183 (3) Å] are also observed in the crystal structure.

Related literature

For the pharmaceutical applications of 4-aryl-5-oxo-1,2,3,4,5,6,7,8-octa­hydro­quinazoline-2-thio­nes, see: Kappe & Stadler (2004[Kappe, C. O. & Stadler, A. (2004). Org. React. 63, 1-116.]); Sarac et al. (1997[Sarac, S., Yarim, M., Ertan, M., Erol, K. & Aktan, Y. (1997). Boll. Chim. Farm. 136, 657-664.], 1999[Sarac, S., Yarym, M. & Ertan, M. (1999). Anal. Lett. 32, 1245-1254.]); Yarima et al., (2003[Yarima, M., Sarac, S., Kilic, F. S. & Erol, K. (2003). Farmaco, 58, 17-24.]). For background information on halogen bonding, see: Damodharana et al. (2004[Damodharana, D., Pattabhia, V., Beherab, M. & Kotha, S. (2004). J. Mol. Struct. 705, 101-106.]); Sureshan et al. (2001[Sureshan, K. M., Gonnade, R. G., Puranik, V. G., Shashidhar, M. S. & Bhadbhade, M. M. (2001). Chem. Commun. pp. 881-882.]); Yang et al. (2008[Yang, F. X., Li, X. D., Xu, G. R. & Qian, C. (2008). Z. Kristallogr. New Cryst. Struct. 223, 297-299.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13BrN2OS

  • Mr = 337.23

  • Triclinic, [P \overline 1]

  • a = 7.0395 (11) Å

  • b = 8.1859 (13) Å

  • c = 13.286 (2) Å

  • α = 105.329 (2)°

  • β = 91.279 (2)°

  • γ = 103.854 (2)°

  • V = 713.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.429, Tmax = 0.547

  • 3953 measured reflections

  • 2744 independent reflections

  • 1880 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.04

  • 2744 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯S1i 0.97 2.98 3.781 (4) 140
N2—H2⋯S1ii 0.86 2.55 3.380 (3) 161
N1—H1⋯O1iii 0.86 2.00 2.832 (4) 164
C4—H4A⋯O1iii 0.97 2.59 3.361 (4) 137
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Aryl-5-oxo-1,2,3,4,5,6,7,8-octahydroquinazoline-2-thiones have received much attention recently because of their pharmaceutical applications. (Kappe & Stadler, 2004; Sarac et al., 1997; Sarac et al., 1999). For example, the calcium antagonist activity of the compounds was tested in vitro on isolated rat ileum and lamb carotid artery. (Yarima et al., 2003). As part of our on going studies on the synthesis of quinazolinethiones, the title compound was isolated under Biginelli reaction conditions (Figure 1).

The reaction between thiourea, 4-bromobenzaldehyde, and 1,3-cyclohexanedione instead of an open-chain dicarbonyl compound in the presence of palladium(II) 2,4-pentanedionate as catalyst proceeded to give the title compound in excellent yield. A representation of the title compound is given in Figure 2. There are no unusual bond lengths and angles in the compound. The molecules in the structure are linked via N1—H1···O1 and paired N2—H2···S1 intermolecular hydrogen bonds. The bromine atom Br1 exhibits a Br···O halogen bond with oxygen atom O1 (Figure 3). (Damodharana et al., 2004; Sureshan et al., 2001; Yang et al., 2008). The Br1···O1 distance of this interaction is 3.182 Å, which is less than the sum of their van der Waals radii.

Related literature top

For the pharmaceutical applications of 4-aryl-5-oxo-1,2,3,4,5,6,7,8-octahydroquinazoline-2-thiones, see: Kappe & Stadler (2004); Sarac et al. (1997, 1999); Yarima et al., (2003). For backround information on halogen bonding, see: Damodharana et al. (2004); Sureshan et al. (2001); Yang et al. (2008).

Experimental top

A mixture of thiourea (0.91 g, 12 mmol), 4-bromobenzaldehyde (1.84 g, 10 mmol), 1,3-cyclohexanedione (1.12 g, 10 mmol), and palladium(II) 2,4-pentanedionate (0.0020 mg) was refluxed in acetonitrile (12 ml) at 353 K for 4 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with water, and the filtrate was then dried under vacuum to yield the product. Single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature to yield colourless, block-shaped crystal.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, respectively, and Uiso = 1.2eq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Palladium(II) 2,4-pentanedionate catalyzed synthesis of the title compound.
[Figure 2] Fig. 2. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Perspective view of the packing of the title compound. Dashed lines stand for N1—H1···O1 and N2—H2···S1 intermolecular hydrogen bonds and Br1···O1 interactions.
4-(4-Bromophenyl)-5-oxo-1,2,3,4,5,6,7,8-octahydroquinazoline-2-thione top
Crystal data top
C14H13BrN2OSZ = 2
Mr = 337.23F(000) = 340
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0395 (11) ÅCell parameters from 1089 reflections
b = 8.1859 (13) Åθ = 2.7–23.6°
c = 13.286 (2) ŵ = 3.02 mm1
α = 105.329 (2)°T = 293 K
β = 91.279 (2)°Block, colourless
γ = 103.854 (2)°0.25 × 0.25 × 0.20 mm
V = 713.9 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube1880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
h = 88
Tmin = 0.429, Tmax = 0.547k = 1010
3953 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.8552P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2744 reflectionsΔρmax = 0.42 e Å3
174 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (17)
Crystal data top
C14H13BrN2OSγ = 103.854 (2)°
Mr = 337.23V = 713.9 (2) Å3
Triclinic, P1Z = 2
a = 7.0395 (11) ÅMo Kα radiation
b = 8.1859 (13) ŵ = 3.02 mm1
c = 13.286 (2) ÅT = 293 K
α = 105.329 (2)°0.25 × 0.25 × 0.20 mm
β = 91.279 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2744 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
1880 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.547Rint = 0.021
3953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
2744 reflectionsΔρmin = 0.60 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08077 (11)0.17375 (8)0.08352 (4)0.0927 (3)
S10.81565 (14)0.62120 (13)0.47136 (8)0.0395 (3)
N20.4706 (4)0.6637 (4)0.4168 (2)0.0322 (7)
H20.42230.60000.45680.039*
C80.6646 (5)0.7134 (5)0.4188 (3)0.0294 (8)
C70.3316 (5)0.7096 (4)0.3511 (3)0.0291 (8)
H70.21390.71760.38810.035*
C60.4253 (5)0.8861 (4)0.3369 (3)0.0282 (8)
C50.6241 (5)0.9449 (4)0.3455 (3)0.0287 (8)
C10.3007 (5)0.9915 (4)0.3130 (3)0.0303 (8)
C40.7274 (5)1.1109 (5)0.3220 (3)0.0352 (9)
H4A0.84751.09640.29060.042*
H4B0.76261.20470.38670.042*
C20.3965 (5)1.1566 (5)0.2867 (3)0.0396 (9)
H2A0.40841.25470.34840.047*
H2B0.31291.17220.23280.047*
C30.5987 (5)1.1589 (5)0.2486 (3)0.0402 (9)
H3A0.58511.07680.17960.048*
H3B0.66061.27490.24260.048*
N10.7383 (4)0.8485 (4)0.3772 (2)0.0350 (7)
H10.86220.87510.37030.042*
C90.2714 (5)0.5708 (4)0.2475 (3)0.0321 (8)
C120.1586 (8)0.3298 (5)0.0523 (3)0.0557 (12)
C140.0763 (6)0.4943 (6)0.2134 (4)0.0598 (13)
H140.01970.52400.25640.072*
C100.4095 (6)0.5213 (6)0.1814 (3)0.0482 (11)
H100.54240.57040.20270.058*
C110.3538 (7)0.4003 (6)0.0842 (3)0.0545 (12)
H110.44830.36740.04110.065*
C130.0205 (8)0.3738 (7)0.1163 (4)0.0802 (18)
H130.11200.32280.09470.096*
O10.1229 (4)0.9472 (3)0.3167 (2)0.0426 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1179 (6)0.0830 (5)0.0453 (3)0.0032 (4)0.0010 (3)0.0098 (3)
S10.0319 (6)0.0473 (6)0.0477 (6)0.0135 (4)0.0060 (4)0.0239 (5)
N20.0243 (17)0.0368 (17)0.0377 (17)0.0038 (13)0.0046 (13)0.0172 (14)
C80.027 (2)0.036 (2)0.0277 (18)0.0093 (16)0.0019 (14)0.0123 (15)
C70.0207 (18)0.0322 (19)0.0358 (19)0.0052 (15)0.0042 (15)0.0127 (15)
C60.0252 (19)0.0285 (18)0.0306 (18)0.0044 (15)0.0049 (14)0.0099 (14)
C50.0245 (19)0.0284 (18)0.0348 (19)0.0065 (15)0.0069 (15)0.0114 (15)
C10.026 (2)0.0326 (19)0.0319 (19)0.0073 (15)0.0046 (15)0.0079 (15)
C40.026 (2)0.031 (2)0.050 (2)0.0026 (16)0.0055 (17)0.0165 (17)
C20.030 (2)0.039 (2)0.053 (2)0.0100 (17)0.0058 (18)0.0179 (18)
C30.034 (2)0.041 (2)0.051 (2)0.0052 (18)0.0070 (18)0.0251 (19)
N10.0208 (16)0.0410 (18)0.0496 (19)0.0077 (13)0.0072 (14)0.0231 (15)
C90.030 (2)0.0297 (19)0.038 (2)0.0042 (16)0.0037 (16)0.0161 (16)
C120.073 (3)0.040 (2)0.041 (2)0.003 (2)0.007 (2)0.0044 (19)
C140.034 (2)0.074 (3)0.050 (3)0.002 (2)0.006 (2)0.003 (2)
C100.037 (2)0.054 (3)0.049 (3)0.010 (2)0.0076 (19)0.008 (2)
C110.067 (3)0.051 (3)0.044 (3)0.014 (2)0.015 (2)0.010 (2)
C130.045 (3)0.092 (4)0.064 (3)0.013 (3)0.000 (3)0.017 (3)
O10.0251 (15)0.0507 (17)0.0573 (18)0.0117 (12)0.0069 (12)0.0221 (14)
Geometric parameters (Å, º) top
Br1—C121.895 (4)C4—H4B0.9700
Br1—O1i3.183 (3)C2—C31.519 (5)
S1—C81.678 (4)C2—H2A0.9700
N2—C81.326 (4)C2—H2B0.9700
N2—C71.474 (4)C3—H3A0.9700
N2—H20.8600C3—H3B0.9700
C8—N11.364 (4)N1—H10.8600
C7—C61.500 (5)C9—C141.376 (5)
C7—C91.510 (5)C9—C101.386 (5)
C7—H70.9800C12—C131.356 (6)
C6—C51.358 (5)C12—C111.366 (7)
C6—C11.453 (5)C14—C131.383 (6)
C5—N11.382 (4)C14—H140.9300
C5—C41.495 (5)C10—C111.384 (6)
C1—O11.222 (4)C10—H100.9300
C1—C21.492 (5)C11—H110.9300
C4—C31.504 (5)C13—H130.9300
C4—H4A0.9700
C12—Br1—O1i154.81 (16)C1—C2—H2B108.9
C8—N2—C7124.8 (3)C3—C2—H2B108.9
C8—N2—H2117.6H2A—C2—H2B107.7
C7—N2—H2117.6C4—C3—C2111.6 (3)
N2—C8—N1116.3 (3)C4—C3—H3A109.3
N2—C8—S1123.1 (3)C2—C3—H3A109.3
N1—C8—S1120.6 (3)C4—C3—H3B109.3
N2—C7—C6108.5 (3)C2—C3—H3B109.3
N2—C7—C9111.0 (3)H3A—C3—H3B108.0
C6—C7—C9112.0 (3)C8—N1—C5123.3 (3)
N2—C7—H7108.4C8—N1—H1118.3
C6—C7—H7108.4C5—N1—H1118.3
C9—C7—H7108.4C14—C9—C10117.5 (4)
C5—C6—C1120.8 (3)C14—C9—C7121.0 (3)
C5—C6—C7120.1 (3)C10—C9—C7121.4 (3)
C1—C6—C7119.1 (3)C13—C12—C11120.5 (4)
C6—C5—N1119.4 (3)C13—C12—Br1119.9 (4)
C6—C5—C4122.9 (3)C11—C12—Br1119.6 (3)
N1—C5—C4117.7 (3)C9—C14—C13121.1 (4)
O1—C1—C6120.6 (3)C9—C14—H14119.4
O1—C1—C2121.3 (3)C13—C14—H14119.4
C6—C1—C2118.1 (3)C11—C10—C9121.4 (4)
C5—C4—C3110.8 (3)C11—C10—H10119.3
C5—C4—H4A109.5C9—C10—H10119.3
C3—C4—H4A109.5C12—C11—C10119.3 (4)
C5—C4—H4B109.5C12—C11—H11120.3
C3—C4—H4B109.5C10—C11—H11120.3
H4A—C4—H4B108.1C12—C13—C14120.2 (5)
C1—C2—C3113.4 (3)C12—C13—H13119.9
C1—C2—H2A108.9C14—C13—H13119.9
C3—C2—H2A108.9
C7—N2—C8—N116.5 (5)C1—C2—C3—C450.8 (5)
C7—N2—C8—S1164.9 (3)N2—C8—N1—C57.6 (5)
C8—N2—C7—C631.3 (4)S1—C8—N1—C5171.1 (3)
C8—N2—C7—C992.1 (4)C6—C5—N1—C812.3 (5)
N2—C7—C6—C524.8 (4)C4—C5—N1—C8167.8 (3)
C9—C7—C6—C598.0 (4)N2—C7—C9—C14126.7 (4)
N2—C7—C6—C1155.8 (3)C6—C7—C9—C14111.9 (4)
C9—C7—C6—C181.3 (4)N2—C7—C9—C1056.1 (4)
C1—C6—C5—N1174.5 (3)C6—C7—C9—C1065.3 (4)
C7—C6—C5—N16.1 (5)O1i—Br1—C12—C1363.0 (6)
C1—C6—C5—C45.6 (5)O1i—Br1—C12—C11115.5 (5)
C7—C6—C5—C4173.8 (3)C10—C9—C14—C130.7 (7)
C5—C6—C1—O1171.9 (3)C7—C9—C14—C13176.6 (5)
C7—C6—C1—O18.8 (5)C14—C9—C10—C110.5 (6)
C5—C6—C1—C26.5 (5)C7—C9—C10—C11176.8 (4)
C7—C6—C1—C2172.9 (3)C13—C12—C11—C101.9 (7)
C6—C5—C4—C323.7 (5)Br1—C12—C11—C10176.6 (3)
N1—C5—C4—C3156.2 (3)C9—C10—C11—C120.8 (7)
O1—C1—C2—C3159.6 (4)C11—C12—C13—C141.8 (9)
C6—C1—C2—C322.0 (5)Br1—C12—C13—C14176.8 (4)
C5—C4—C3—C250.7 (4)C9—C14—C13—C120.4 (9)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1ii0.972.983.781 (4)140
N2—H2···S1iii0.862.553.380 (3)161
N1—H1···O1iv0.862.002.832 (4)164
C4—H4A···O1iv0.972.593.361 (4)137
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H13BrN2OS
Mr337.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0395 (11), 8.1859 (13), 13.286 (2)
α, β, γ (°)105.329 (2), 91.279 (2), 103.854 (2)
V3)713.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.429, 0.547
No. of measured, independent and
observed [I > 2σ(I)] reflections
3953, 2744, 1880
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.04
No. of reflections2744
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1i0.972.983.781 (4)140.3
N2—H2···S1ii0.862.553.380 (3)161.0
N1—H1···O1iii0.862.002.832 (4)163.7
C4—H4A···O1iii0.972.593.361 (4)136.7
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank South China Normal University for financial support (grant Nos. SCNU033038 and SCNU524002).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamodharana, D., Pattabhia, V., Beherab, M. & Kotha, S. (2004). J. Mol. Struct. 705, 101–106.  Google Scholar
First citationKappe, C. O. & Stadler, A. (2004). Org. React. 63, 1–116.  CAS Google Scholar
First citationSarac, S., Yarim, M., Ertan, M., Erol, K. & Aktan, Y. (1997). Boll. Chim. Farm. 136, 657–664.  CAS PubMed Google Scholar
First citationSarac, S., Yarym, M. & Ertan, M. (1999). Anal. Lett. 32, 1245–1254.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSureshan, K. M., Gonnade, R. G., Puranik, V. G., Shashidhar, M. S. & Bhadbhade, M. M. (2001). Chem. Commun. pp. 881–882.  Web of Science CSD CrossRef Google Scholar
First citationYang, F. X., Li, X. D., Xu, G. R. & Qian, C. (2008). Z. Kristallogr. New Cryst. Struct. 223, 297–299.  CAS Google Scholar
First citationYarima, M., Sarac, S., Kilic, F. S. & Erol, K. (2003). Farmaco, 58, 17–24.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds