metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m871-m872

Bis[μ-5-(2-pyrid­yl)tetra­zolato]-κ3N1,N5:N2;κ3N2:N1,N5-bis­­[tri­aqua­zinc(II)] bis­­(tri­fluoro­acetate) monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 26 June 2009; accepted 29 June 2009; online 4 July 2009)

The title compound, [Zn2(C6H4N5)2(H2O)6](CF3CO2)2·H2O, was synthesized by hydro­thermal reaction of ZnBr2, CF3COOH and 2-(2H-tetra­zol-5-yl)pyridine. The ZnII cation is coordinated by one N atom from the 5-(2-pyrid­yl)tetra­zolate anion, two N atoms from another 5-(2-pyrid­yl)tetra­zolate anion and three O atoms from three water mol­ecules in a distorted octa­hedral geometry. The tetra­zole ligands bridge the metal ions of the dimeric structure, and the dimers are located on crystallographic inversion centers. An inter­stitial solvent water mol­ecule is located on a crystallographic mirror plane, and the CF3COO counter-anions are also not coordinated to the metal complex. The F atoms of the anions are disordered with the F atoms statistically distributed over two positions in a 0.56 (3)/0.44 (3) ratio. All the water H atoms are involved in O—H⋯N and O—H⋯O hydrogen bonds with uncoordinated water O atoms, carboxyl­ate O atoms and tetra­zole N atoms. The inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For general background to metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Georgiev & MacGillivray (2007[Georgiev, I. G. & MacGillivray, L. R. (2007). Chem. Soc. Rev. 36, 1239-1248.]). For the crystal structures of related compounds, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C6H4N5)2(H2O)6](C2F3O2)2·H2O

  • Mr = 775.18

  • Orthorhombic, P b c n

  • a = 9.1750 (18) Å

  • b = 14.722 (3) Å

  • c = 20.657 (4) Å

  • V = 2790.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.708, Tmax = 0.833

  • 27226 measured reflections

  • 3197 independent reflections

  • 2470 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 1.12

  • 3197 reflections

  • 253 parameters

  • 251 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3WB⋯O1W 0.809 (18) 2.03 (2) 2.788 (3) 156 (4)
O1—H1WA⋯O4 0.842 (18) 1.965 (19) 2.800 (3) 171 (4)
O3—H3WA⋯O5i 0.818 (18) 1.956 (19) 2.771 (3) 174 (4)
O2—H2WB⋯N3ii 0.825 (18) 2.08 (2) 2.856 (3) 156 (4)
O2—H2WA⋯O5iii 0.815 (18) 1.956 (19) 2.769 (3) 175 (4)
O1—H1WB⋯N2ii 0.818 (18) 2.02 (2) 2.821 (3) 165 (4)
O1W—H1W⋯O4iv 0.809 (18) 2.02 (2) 2.791 (3) 158 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to their potential functions, such as permittivity, fluorescence and optical properties (Fu et al., 2007; Georgiev et al., 2007). Tetrazole compounds are a class of ligands excellently suited for the construction of such metal-organic coordination compounds because of the various coordination modes they exhibit towards metal ions (Zhao, et al. 2008; Fu et al., 2008). We report here the crystal structure of one such metal-organic coordination compound, bis[(µ2-pyridinio-2-(2H-tetrazolato)- κ3N1,N2:N5)-hexa-aqua-di-zinc(II)]di-trifluoroacetate monohydrate.

In the title compound, each ZnII cation is coordinated by one N atom from a 5-(2-pyridyl)tetrazolate anion, two N,N-chelating N atoms from another 5-(2-pyridyl)tetrazolate anion and three O atoms from three water molecules in a distorted octahedral geometry. The tetrazole groups act as µ2-bridges to link the ZnII ions into dimers, which are located on crystallographic inversion centers. An interstitial solvate water molecule is located on a crystallographic mirror plane, and the CF3COO- counter anions are also not coordinated to the metal complex. The F atoms of the anions are rotationally disordered with the F atoms statistically distributed over two positions with a 0.56 (3)/0.44 (3) ratio. The pyridine and tetrazole rings are nearly coplanar with each other and are twisted against each other by only 6.31 (1)°. The geometric parameters of the tetrazolate ring are comparable to those in related molecules (Zhao, et al. 2008; Fu et al., 2008).

In the crystal structure, all the aqua H atoms are involved in O—H···N and O—H···O hydrogen bonds with the solvate aqua O (O1W), carboxyl O (O4, O5) and the tetrazole N (N2, N3) atoms. The interactions link the molecules into a three-dimensional network (Table 1 and Fig.2).

Related literature top

For general background to metal-organic coordination compounds, see: Fu et al. (2007); Georgiev et al. (2007). For the crystal structures of related compounds, see: Zhao et al. (2008); Fu et al. (2008).

Experimental top

A mixture of 2-(2H-tetrazol-5-yl)pyridine (0.2 mmol), ZnBr2 (0.4 mmol), distilled water (1 ml) and CF3COOH (0.4 ml) was sealed in a glass tube and maintained at 323 K. Pure colorless block-shaped crystals suitable for X-ray analysis were obtained after 3 d, yield 55% based on ligand. Anal. Calcd. for C16 H22 F6 N10 O11 Zn2: C, 24.77%; H, 2.84%; N, 18.06%. Found: C, 24.69%; H, 2.79%; N, 17.98%. IR (KBr pellet, cm-1): 3421 (s), 3075 (w), 1726 (s), 1635 (s), 1610 (s), 1561 (w), 1475 (w), 1432 (w), 1367 (s), 1283 (s), 1257 (s), 1181 (w), 765 (w), 721 (w), 687 (w).

Refinement top

H atoms attached to C atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps and O—H distances were restrained to be 0.82 (2) Å with Uiso(H) = 1.5Ueq(O).

The F atoms of CF3COO- anion are rotationally disordered over two positions. All C-F bonds were restrained to be the same within a standard deviation of 0.02 Å, and F···F distances within the disordered CF3 group were also restrained to be identical with the same standard deviation (PART and SADI command available in SHELXL-97 (Sheldrick, 2008)). The occupancy ratio for the two moieties refined to 0.56 (3) to 0.44 (3).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the three dimensionnal hydrogen-bonding network (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
Bis[µ-5-(2-pyridyl)tetrazolato]-κ3N1,N5:N2;κ3N2:N1,N5- bis[triaquazinc(II)] bis(trifluoroacetate) monohydrate top
Crystal data top
[Zn2(C6H4N5)2(H2O)6](C2F3O2)2·H2OF(000) = 1560
Mr = 775.18Dx = 1.845 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2470 reflections
a = 9.1750 (18) Åθ = 3.3–27.5°
b = 14.722 (3) ŵ = 1.83 mm1
c = 20.657 (4) ÅT = 298 K
V = 2790.3 (10) Å3Block, colorless
Z = 40.13 × 0.10 × 0.10 mm
Data collection top
Rigaku Mercury2
diffractometer
3197 independent reflections
Radiation source: fine-focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1819
Tmin = 0.708, Tmax = 0.833l = 2626
27226 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0331P)2 + 2.0898P]
where P = (Fo2 + 2Fc2)/3
3197 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.35 e Å3
251 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn2(C6H4N5)2(H2O)6](C2F3O2)2·H2OV = 2790.3 (10) Å3
Mr = 775.18Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 9.1750 (18) ŵ = 1.83 mm1
b = 14.722 (3) ÅT = 298 K
c = 20.657 (4) Å0.13 × 0.10 × 0.10 mm
Data collection top
Rigaku Mercury2
diffractometer
3197 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2470 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.833Rint = 0.074
27226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041251 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.35 e Å3
3197 reflectionsΔρmin = 0.49 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.56081 (3)0.12025 (2)0.447600 (15)0.02154 (11)
N10.7732 (3)0.12660 (15)0.40077 (12)0.0269 (5)
N50.6601 (2)0.00968 (15)0.47213 (11)0.0227 (5)
C10.8615 (3)0.05501 (18)0.41119 (13)0.0242 (6)
C31.0585 (4)0.1271 (2)0.35717 (17)0.0431 (8)
H31.15470.12780.34300.052*
C21.0043 (3)0.0530 (2)0.39017 (15)0.0328 (7)
H21.06280.00260.39810.039*
C40.9684 (4)0.1997 (2)0.34563 (17)0.0439 (9)
H41.00230.25000.32280.053*
C50.8276 (4)0.1973 (2)0.36817 (16)0.0359 (7)
H50.76750.24700.36040.043*
N20.8487 (3)0.10045 (16)0.46066 (12)0.0308 (6)
C60.7937 (3)0.01880 (18)0.44738 (13)0.0232 (6)
N30.7445 (3)0.14277 (16)0.49503 (13)0.0306 (6)
N40.6325 (2)0.08873 (15)0.50152 (11)0.0234 (5)
O1W0.50000.1758 (2)0.25000.0401 (8)
H1W0.563 (3)0.212 (2)0.241 (2)0.060*
O40.3097 (2)0.29375 (15)0.31366 (11)0.0390 (5)
O50.1974 (3)0.41373 (15)0.35629 (11)0.0439 (6)
C70.2553 (3)0.3704 (2)0.31174 (15)0.0285 (6)
O10.4894 (3)0.24792 (13)0.41823 (11)0.0339 (5)
H1WA0.428 (3)0.260 (2)0.3893 (14)0.051*
H1WB0.522 (4)0.2972 (16)0.4296 (18)0.051*
O20.6523 (3)0.18073 (14)0.52952 (11)0.0394 (6)
H2WA0.670 (4)0.151 (2)0.5621 (13)0.059*
H2WB0.697 (4)0.2292 (18)0.5291 (19)0.059*
O30.4655 (3)0.07205 (15)0.36187 (11)0.0382 (6)
H3WA0.420 (4)0.0246 (17)0.3576 (18)0.057*
H3WB0.490 (4)0.089 (2)0.3263 (12)0.057*
C80.2574 (4)0.4177 (2)0.24534 (16)0.0383 (8)
F10.3505 (12)0.3818 (7)0.2048 (5)0.067 (2)0.56 (3)
F20.286 (2)0.5036 (5)0.2486 (8)0.099 (4)0.56 (3)
F30.1294 (9)0.4106 (11)0.2175 (6)0.101 (4)0.56 (3)
F1'0.3771 (14)0.4040 (15)0.2124 (8)0.114 (5)0.44 (3)
F2'0.241 (2)0.5056 (6)0.2495 (9)0.081 (4)0.44 (3)
F3'0.1517 (15)0.3909 (10)0.2077 (8)0.081 (4)0.44 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02240 (17)0.01646 (16)0.02576 (18)0.00013 (13)0.00141 (14)0.00342 (13)
N10.0262 (12)0.0216 (12)0.0329 (13)0.0012 (10)0.0054 (10)0.0065 (10)
N50.0239 (12)0.0162 (11)0.0281 (12)0.0025 (9)0.0040 (10)0.0033 (9)
C10.0240 (15)0.0228 (14)0.0258 (15)0.0029 (12)0.0039 (12)0.0014 (11)
C30.0308 (17)0.046 (2)0.052 (2)0.0089 (16)0.0140 (16)0.0024 (16)
C20.0266 (15)0.0314 (16)0.0406 (19)0.0002 (14)0.0058 (14)0.0002 (14)
C40.041 (2)0.0367 (18)0.054 (2)0.0119 (15)0.0144 (17)0.0106 (16)
C50.0365 (17)0.0273 (16)0.0438 (19)0.0011 (14)0.0071 (15)0.0111 (14)
N20.0278 (13)0.0239 (13)0.0406 (15)0.0073 (10)0.0087 (11)0.0063 (10)
C60.0227 (14)0.0217 (13)0.0251 (14)0.0026 (11)0.0024 (12)0.0013 (11)
N30.0323 (14)0.0203 (12)0.0394 (15)0.0073 (11)0.0085 (12)0.0063 (11)
N40.0236 (12)0.0166 (11)0.0301 (13)0.0023 (10)0.0024 (10)0.0026 (9)
O1W0.054 (2)0.0308 (18)0.0356 (19)0.0000.0115 (17)0.000
O40.0455 (14)0.0298 (11)0.0418 (13)0.0104 (10)0.0031 (11)0.0040 (10)
O50.0642 (16)0.0362 (12)0.0314 (12)0.0172 (12)0.0148 (11)0.0070 (10)
C70.0260 (15)0.0286 (16)0.0311 (15)0.0017 (12)0.0020 (13)0.0027 (13)
O10.0426 (13)0.0163 (10)0.0428 (14)0.0028 (10)0.0170 (11)0.0042 (9)
O20.0622 (16)0.0264 (12)0.0296 (12)0.0194 (11)0.0146 (12)0.0060 (9)
O30.0556 (16)0.0317 (12)0.0272 (12)0.0181 (11)0.0036 (11)0.0010 (10)
C80.046 (2)0.0387 (18)0.0302 (18)0.0042 (16)0.0016 (15)0.0037 (15)
F10.114 (6)0.055 (4)0.032 (3)0.011 (3)0.026 (3)0.003 (3)
F20.204 (11)0.037 (4)0.055 (6)0.035 (5)0.039 (6)0.006 (4)
F30.061 (4)0.169 (10)0.073 (6)0.012 (5)0.030 (3)0.057 (6)
F1'0.072 (6)0.177 (13)0.093 (10)0.055 (7)0.056 (6)0.088 (8)
F2'0.175 (11)0.033 (4)0.035 (6)0.015 (5)0.010 (7)0.011 (4)
F3'0.129 (8)0.066 (5)0.048 (5)0.017 (6)0.038 (6)0.018 (4)
Geometric parameters (Å, º) top
Zn1—O12.081 (2)N2—N31.344 (3)
Zn1—O22.088 (2)N3—N41.307 (3)
Zn1—O32.098 (2)N4—Zn1i2.113 (2)
Zn1—N4i2.113 (2)O1W—H1W0.809 (18)
Zn1—N12.177 (2)O4—C71.235 (3)
Zn1—N52.179 (2)O5—C71.239 (4)
N1—C51.336 (4)C7—C81.538 (4)
N1—C11.347 (3)O1—H1WA0.842 (18)
N5—C61.335 (3)O1—H1WB0.818 (18)
N5—N41.337 (3)O2—H2WA0.815 (18)
C1—C21.380 (4)O2—H2WB0.825 (18)
C1—C61.459 (4)O3—H3WA0.818 (18)
C3—C41.373 (5)O3—H3WB0.809 (18)
C3—C21.379 (4)C8—F21.294 (8)
C3—H30.9300C8—F3'1.304 (9)
C2—H20.9300C8—F2'1.306 (9)
C4—C51.374 (4)C8—F1'1.307 (9)
C4—H40.9300C8—F11.308 (7)
C5—H50.9300C8—F31.312 (7)
N2—C61.332 (4)
O1—Zn1—O288.72 (9)N2—C6—N5111.1 (2)
O1—Zn1—O385.89 (9)N2—C6—C1128.0 (2)
O2—Zn1—O3174.52 (9)N5—C6—C1120.9 (2)
O1—Zn1—N4i94.53 (9)N4—N3—N2109.4 (2)
O2—Zn1—N4i91.59 (9)N3—N4—N5109.5 (2)
O3—Zn1—N4i89.76 (9)N3—N4—Zn1i125.28 (17)
O1—Zn1—N196.52 (9)N5—N4—Zn1i125.18 (17)
O2—Zn1—N188.98 (10)O4—C7—O5128.3 (3)
O3—Zn1—N190.71 (10)O4—C7—C8115.9 (3)
N4i—Zn1—N1168.94 (9)O5—C7—C8115.8 (3)
O1—Zn1—N5173.03 (9)Zn1—O1—H1WA128 (3)
O2—Zn1—N591.03 (9)Zn1—O1—H1WB127 (3)
O3—Zn1—N594.22 (9)H1WA—O1—H1WB105 (4)
N4i—Zn1—N592.44 (8)Zn1—O2—H2WA121 (3)
N1—Zn1—N576.51 (8)Zn1—O2—H2WB124 (3)
C5—N1—C1117.7 (2)H2WA—O2—H2WB112 (4)
C5—N1—Zn1126.3 (2)Zn1—O3—H3WA126 (3)
C1—N1—Zn1115.72 (17)Zn1—O3—H3WB123 (3)
C6—N5—N4105.1 (2)H3WA—O3—H3WB108 (4)
C6—N5—Zn1112.54 (17)F2—C8—F3'118.4 (11)
N4—N5—Zn1142.25 (17)F3'—C8—F2'104.6 (8)
N1—C1—C2122.5 (3)F2—C8—F1'90.5 (13)
N1—C1—C6114.1 (2)F3'—C8—F1'105.5 (8)
C2—C1—C6123.4 (3)F2'—C8—F1'106.5 (9)
C4—C3—C2119.0 (3)F2—C8—F1107.3 (8)
C4—C3—H3120.5F3'—C8—F188.9 (9)
C2—C3—H3120.5F2'—C8—F1121.2 (12)
C3—C2—C1118.7 (3)F2—C8—F3106.3 (8)
C3—C2—H2120.6F2'—C8—F390.2 (11)
C1—C2—H2120.6F1'—C8—F3120.8 (10)
C3—C4—C5119.1 (3)F1—C8—F3105.8 (6)
C3—C4—H4120.4F2—C8—C7113.5 (8)
C5—C4—H4120.4F3'—C8—C7112.7 (9)
N1—C5—C4122.8 (3)F2'—C8—C7112.8 (8)
N1—C5—H5118.6F1'—C8—C7113.9 (8)
C4—C5—H5118.6F1—C8—C7113.4 (6)
C6—N2—N3104.9 (2)F3—C8—C7110.1 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WB···O1W0.81 (2)2.03 (2)2.788 (3)156 (4)
O1—H1WA···O40.84 (2)1.97 (2)2.800 (3)171 (4)
O3—H3WA···O5ii0.82 (2)1.96 (2)2.771 (3)174 (4)
O2—H2WB···N3iii0.83 (2)2.08 (2)2.856 (3)156 (4)
O2—H2WA···O5iv0.82 (2)1.96 (2)2.769 (3)175 (4)
O1—H1WB···N2iii0.82 (2)2.02 (2)2.821 (3)165 (4)
O1W—H1W···O4v0.81 (2)2.02 (2)2.791 (3)158 (4)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+3/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C6H4N5)2(H2O)6](C2F3O2)2·H2O
Mr775.18
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)9.1750 (18), 14.722 (3), 20.657 (4)
V3)2790.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.708, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
27226, 3197, 2470
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.12
No. of reflections3197
No. of parameters253
No. of restraints251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.49

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WB···O1W0.809 (18)2.03 (2)2.788 (3)156 (4)
O1—H1WA···O40.842 (18)1.965 (19)2.800 (3)171 (4)
O3—H3WA···O5i0.818 (18)1.956 (19)2.771 (3)174 (4)
O2—H2WB···N3ii0.825 (18)2.08 (2)2.856 (3)156 (4)
O2—H2WA···O5iii0.815 (18)1.956 (19)2.769 (3)175 (4)
O1—H1WB···N2ii0.818 (18)2.02 (2)2.821 (3)165 (4)
O1W—H1W···O4iv0.809 (18)2.02 (2)2.791 (3)158 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationGeorgiev, I. G. & MacGillivray, L. R. (2007). Chem. Soc. Rev. 36, 1239–1248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m871-m872
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds