organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-tert-butane­sulfinamide

aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea, and bChemistry Department, Loughborough University, Loughborough LE11 3TU, England
*Correspondence e-mail: ajbuglass@kaist.ac.kr

(Received 11 July 2009; accepted 20 July 2009; online 29 July 2009)

In the racemic title compound, C10H15NOS, the packing exhibits centrosymmetric pairs of mol­ecules linked by N—H⋯O=S hydrogen bonds in a head-to-tail fashion. The N—Car­yl bond [1.4083 (12) Å] is considerably shorter than the N—Calk­yl bonds typically found in N-alkyl­alkanesulfinamides (1.470–1.530 Å).

Related literature

For N-aryl­alkanesulfinamides, see: Datta et al. (2008[Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.]) and for cyclic N-aryl­alkanesulfinamides (sultims), see: Schulze et al. (2005[Schulze, B., Taubert, K., Siegemund, A., Freysoldt, T. H. E. & Sieler, J. (2005). Z. Naturforsch. Teil B, 60, 41-47.]). For N-alkyl­alkanesulfinamides, see: Sato et al. (1975[Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.]); Schuckmann et al. (1978[Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.]); Ferreira et al. (2005[Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.]). For the synthesis, see: Stretter et al. (1969[Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NOS

  • Mr = 197.29

  • Monoclinic, P 21 /c

  • a = 7.4822 (3) Å

  • b = 15.7881 (6) Å

  • c = 8.8333 (4) Å

  • β = 99.3865 (6)°

  • V = 1029.50 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.54 × 0.49 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.866, Tmax = 0.900

  • 12022 measured reflections

  • 3150 independent reflections

  • 2861 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 3150 reflections

  • 125 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.808 (12) 2.085 (12) 2.8882 (11) 173.1 (14)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The molecular structure of (I) (Fig. 1) exhibits a short N—(aryl)C Bond (1.4083 (12) Å), like that in N-phenyladamantane-1-sulfinamide (1.409 (2) Å) (Datta et al., 2008), and in contrast with N—(alkyl)C bonds in N-alkylalkanesulfinamides (1.470–1.530 Å) (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). Otherwise, molecular geometry is similar to other sulfinamides. The molecules of (I) in the crystal lattice are linked by pairs of N—H···O=S hydrogen bonds (Fig. 2 and Table 1). There is no evidence of weak intermolecular C—H···O=S hydrogen bonds, as in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008). The crystal system and space group for (I) and N-phenyladamantane-1-sulfinamide are the same (namely monoclinic and P21/c, respectively).

Related literature top

For N-arylalkanesulfinamides, see: Datta et al. (2008) and for cyclic N-arylalkanesulfinamides (sultims), see: Schulze et al. (2005). For N-alkylalkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005). For the synthesis, see: Stretter et al. (1969).

Experimental top

Compound (I) was prepared by the method of Stretter et al. (1969), using tert-butanesulfinyl chloride (702.5 mg, 5 mmol) and aniline (930 mg, 10 mmol) in dry chloroform (30 ml). After 6 h (with TLC monitoring) the white solid amine salt was filtered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, dichloromethane) provided (I) as white crystals (950 mg, 96%), m.p. 376–377 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in dichloromethane at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3015, 2599, 2330, 1496, 1469, 1420, 1370, 1274, 1068,1026, 888, 859. 1H NMR (400 MHz, CDCl3 p.p.m. with respect to TMS) δ 7.26–7.22 (m, 2H), 7.00–6.98 (m, 3H), 5.48 (bs, 1H), 1.30 (s, 9H). 13C NMR (100 MHz, CDCl3 p.p.m. with respect to TMS) δ 142.0, 129.4, 123.0, 118.4, 56.5, 22.4. EIMS m/z (%) 197 (M+, 18) 141 (100), 140 (M+-tBu, 28), 105 (M+—PhNH, 86), 92 (M+-tBuSO, 72), 78 (77), 57 (93).

Refinement top

H atoms were located in a difference Fourier map and refined geometrically using a riding model except for NHfor which the coordinates were freely refined. Bond lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 50% probablility displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding between a pair of opposite enantiomers of (I) in the crystal packing. Symmetry code i = -x, -y + 1, -z + 1.
N-Phenyl-tert-butanesulfinamide top
Crystal data top
C10H15NOSF(000) = 424
Mr = 197.29Dx = 1.273 Mg m3
Monoclinic, P21/cMelting point = 376–377 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4822 (3) ÅCell parameters from 6597 reflections
b = 15.7881 (6) Åθ = 2.3–30.5°
c = 8.8333 (4) ŵ = 0.28 mm1
β = 99.3865 (6)°T = 150 K
V = 1029.50 (7) Å3Block, colourless
Z = 40.54 × 0.49 × 0.39 mm
Data collection top
Bruker APEXII CCD
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube2861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω rotation with narrow frames scansθmax = 30.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.866, Tmax = 0.900k = 2222
12022 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2529P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3150 reflectionsΔρmax = 0.38 e Å3
125 parametersΔρmin = 0.36 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C10H15NOSV = 1029.50 (7) Å3
Mr = 197.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4822 (3) ŵ = 0.28 mm1
b = 15.7881 (6) ÅT = 150 K
c = 8.8333 (4) Å0.54 × 0.49 × 0.39 mm
β = 99.3865 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3150 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2861 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.900Rint = 0.020
12022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
3150 reflectionsΔρmin = 0.36 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06049 (10)0.60738 (4)0.41648 (9)0.02295 (16)
S10.10835 (3)0.601595 (13)0.34614 (3)0.01896 (9)
N10.17155 (13)0.50050 (5)0.35165 (10)0.02446 (18)
H10.1463 (19)0.4727 (9)0.4219 (15)0.029*
C10.19492 (12)0.45439 (6)0.21979 (11)0.01998 (18)
C20.24483 (16)0.49296 (7)0.09080 (12)0.0281 (2)
H20.25890.55270.08770.034*
C30.27381 (17)0.44344 (7)0.03327 (13)0.0318 (2)
H30.30530.47000.12180.038*
C40.25757 (15)0.35617 (7)0.02991 (13)0.0295 (2)
H40.27900.32300.11480.035*
C50.20955 (14)0.31769 (6)0.09922 (12)0.0257 (2)
H50.19900.25780.10290.031*
C60.17690 (13)0.36629 (6)0.22303 (11)0.02134 (18)
H60.14220.33960.31010.026*
C70.29072 (13)0.64579 (6)0.48984 (11)0.02172 (18)
C80.24368 (16)0.73950 (7)0.50283 (14)0.0316 (2)
H8A0.34440.76870.56680.047*
H8B0.13420.74480.54970.047*
H8C0.22230.76500.40030.047*
C90.46486 (15)0.63537 (8)0.42278 (14)0.0312 (2)
H9A0.56580.66130.49190.047*
H9B0.45120.66320.32240.047*
H9C0.48940.57500.41100.047*
C100.30068 (15)0.60073 (6)0.64357 (12)0.0265 (2)
H10A0.32900.54080.63140.040*
H10B0.18390.60570.67940.040*
H10C0.39560.62670.71880.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (3)0.0215 (3)0.0264 (4)0.0011 (2)0.0067 (3)0.0021 (2)
S10.02263 (13)0.01561 (12)0.01895 (13)0.00052 (7)0.00429 (8)0.00155 (7)
N10.0397 (5)0.0153 (3)0.0206 (4)0.0013 (3)0.0114 (3)0.0012 (3)
C10.0214 (4)0.0187 (4)0.0202 (4)0.0003 (3)0.0045 (3)0.0011 (3)
C20.0397 (6)0.0210 (4)0.0254 (5)0.0014 (4)0.0112 (4)0.0010 (4)
C30.0422 (6)0.0327 (6)0.0224 (5)0.0011 (4)0.0111 (4)0.0006 (4)
C40.0324 (5)0.0316 (5)0.0251 (5)0.0014 (4)0.0063 (4)0.0080 (4)
C50.0247 (5)0.0218 (4)0.0304 (5)0.0010 (3)0.0043 (4)0.0060 (4)
C60.0207 (4)0.0186 (4)0.0252 (4)0.0012 (3)0.0053 (3)0.0006 (3)
C70.0218 (4)0.0186 (4)0.0242 (4)0.0006 (3)0.0022 (3)0.0001 (3)
C80.0352 (5)0.0183 (4)0.0387 (6)0.0002 (4)0.0013 (4)0.0037 (4)
C90.0230 (5)0.0366 (6)0.0346 (6)0.0004 (4)0.0065 (4)0.0042 (4)
C100.0290 (5)0.0278 (5)0.0220 (5)0.0026 (4)0.0020 (4)0.0006 (3)
Geometric parameters (Å, º) top
O1—S11.4988 (7)C5—H50.9500
S1—N11.6632 (9)C6—H60.9500
S1—C71.8426 (10)C7—C101.5241 (14)
N1—C11.4083 (12)C7—C91.5255 (14)
N1—H10.808 (12)C7—C81.5294 (14)
C1—C21.3954 (13)C8—H8A0.9800
C1—C61.3982 (12)C8—H8B0.9800
C2—C31.3918 (15)C8—H8C0.9800
C2—H20.9500C9—H9A0.9800
C3—C41.3838 (17)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C4—C51.3903 (15)C10—H10A0.9800
C4—H40.9500C10—H10B0.9800
C5—C61.3898 (13)C10—H10C0.9800
O1—S1—N1107.53 (4)C10—C7—C9112.02 (8)
O1—S1—C7105.72 (4)C10—C7—C8111.29 (9)
N1—S1—C799.69 (5)C9—C7—C8110.80 (9)
C1—N1—S1123.02 (7)C10—C7—S1111.11 (7)
C1—N1—H1115.5 (10)C9—C7—S1105.97 (7)
S1—N1—H1116.3 (10)C8—C7—S1105.33 (7)
C2—C1—C6119.36 (9)C7—C8—H8A109.5
C2—C1—N1122.39 (8)C7—C8—H8B109.5
C6—C1—N1118.16 (8)H8A—C8—H8B109.5
C3—C2—C1119.65 (10)C7—C8—H8C109.5
C3—C2—H2120.2H8A—C8—H8C109.5
C1—C2—H2120.2H8B—C8—H8C109.5
C4—C3—C2121.12 (10)C7—C9—H9A109.5
C4—C3—H3119.4C7—C9—H9B109.5
C2—C3—H3119.4H9A—C9—H9B109.5
C3—C4—C5119.21 (9)C7—C9—H9C109.5
C3—C4—H4120.4H9A—C9—H9C109.5
C5—C4—H4120.4H9B—C9—H9C109.5
C6—C5—C4120.43 (9)C7—C10—H10A109.5
C6—C5—H5119.8C7—C10—H10B109.5
C4—C5—H5119.8H10A—C10—H10B109.5
C5—C6—C1120.21 (9)C7—C10—H10C109.5
C5—C6—H6119.9H10A—C10—H10C109.5
C1—C6—H6119.9H10B—C10—H10C109.5
O1—S1—N1—C1123.13 (8)C4—C5—C6—C11.02 (15)
C7—S1—N1—C1126.86 (8)C2—C1—C6—C50.40 (14)
S1—N1—C1—C228.58 (14)N1—C1—C6—C5176.09 (9)
S1—N1—C1—C6155.05 (8)O1—S1—C7—C1054.89 (8)
C6—C1—C2—C30.76 (16)N1—S1—C7—C1056.55 (8)
N1—C1—C2—C3177.09 (10)O1—S1—C7—C9176.79 (7)
C1—C2—C3—C41.32 (18)N1—S1—C7—C965.35 (7)
C2—C3—C4—C50.70 (17)O1—S1—C7—C865.73 (8)
C3—C4—C5—C60.48 (16)N1—S1—C7—C8177.17 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (1)2.09 (1)2.8882 (11)173 (1)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H15NOS
Mr197.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)7.4822 (3), 15.7881 (6), 8.8333 (4)
β (°) 99.3865 (6)
V3)1029.50 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.54 × 0.49 × 0.39
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.866, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
12022, 3150, 2861
Rint0.020
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections3150
No. of parameters125
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.808 (12)2.085 (12)2.8882 (11)173.1 (14)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

MD and AJB thank KAIST for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchulze, B., Taubert, K., Siegemund, A., Freysoldt, T. H. E. & Sieler, J. (2005). Z. Naturforsch. Teil B, 60, 41–47.  CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357–3363.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds