metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1033-m1034

Di-μ-cyanido-1:2κ2C:N,2:3κ2N:C-hexa­cyanido-1κ3C,3κ3C-tetra­kis(1,10-phenanthroline)-1κ2N,N′;2κ4N,N′;3κ2N,N′-1,3-dicobalt(III)-2-iron(II) tetra­hydrate

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bInstitute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 26 June 2009; accepted 29 July 2009; online 8 August 2009)

The hydro­thermal reaction of CoCl2·6H2O, 1,10-phenanthroline (phen) and K3[Fe(CN)6] in deionized water yielded the title cyanide-bridged trinuclear cluster, [Co2Fe(CN)8(C12H8N2)4]·4H2O or [{CoIII(phen)(CN)4}2{FeII(phen)2}]·4H2O, which contains two CoIII centers and one FeII center linked by cyanide bridges. The combination of coordinative bonds, O—H⋯N and O—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.630 (2) Å] results in the stabilization of a supra­molecular structure. All uncoordinated water molecules are disordered. Thermogravimetric analysis reveals that the title complex loses the four crystal water mol­ecules at about 333 K, then the anhydrous phase loses no further mass up to about 573 K, above which decomposition occurs.

Related literature

For background to cyanide-bridged complexes, see: Rodríguez-Diéguez et al. (2007[Rodríguez-Diéguez, A., Kivekäs, R., Sakiyama, H., Debdoubi, A. & Colacio, E. (2007). Dalton Trans. pp. 2145-2149.]); Colacio et al. (2003[Colacio, E., Domínguez-Vera, J. M., Lloret, F., Moreno Sánchez, J. M., Kivekäs, R., Rodríguez, A. & Sillanpää, R. (2003). Inorg. Chem. 42, 4209-4214.], 2005[Colacio, E., Debdoubi, A., Kivekäs, R. & Rodríguez, A. (2005). Eur. J. Inorg. Chem. pp. 2860-2868.]); Chen et al. (2006[Chen, X. B., Li, Y. Z. & You, X. Z. (2006). Appl. Organomet. Chem. 20, 305-309.]); Ferlay et al. (1995[Ferlay, S., Malleh, T., Ouakès, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701-703.]); Fernández-Armas et al. (2007[Fernández-Armas, S., Mesa, J. L., Pizarro, J. L., Arriortua, M. I. & Roji, T. (2007). Mater. Res. Bull. 42, 544-552.]); Goodwin et al. (2008[Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794-797.]); He et al. (2005[He, X., Lu, C. Z., Yuan, D. Q., Chen, S. M. & Chen, J. T. (2005). Eur. J. Inorg. Chem. pp. 2181-2188.]); Kosaka et al. (2009[Kosaka, W., Imoto, K., Tsunobuchi, Y. & Ohkoshi, S. I. (2009). Inorg. Chem. 48, 4604-4606.]); Mao et al. (2005[Mao, H., Zhang, C., Xu, C., Zhang, H., Shen, X., Wu, B., Zhu, Y., Wu, Q. & Wang, H. (2005). Inorg. Chim. Acta, 358, 1934-1942.]); Overgaard et al. (2004[Overgaard, J., Rentschler, E., Timco, G. A. & Larsen, F. K. (2004). ChemPhysChem, 5, 1755-1761.]); Paredes-García et al. (2006[Paredes-García, V., Venegas-Yazigi, D., Latorre, R. O. & Spodine, E. (2006). Polyhedron, 25, 2026-2032.]); Phillips et al. (2008[Phillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 1396-1399.]); Reguera Balmaseda, del Castillo et al. (2008[Reguera, L., Balmaseda, J., del Castillo, L. F. & Reguera, E. (2008). J. Phys. Chem. C, 112, 5589-5597.]); Reguera, Balmaseda, Krap et al. (2008[Reguera, L., Balmaseda, J., Krap, C. P. & Reguera, E. (2008). J. Phys. Chem. C, 112, 10490-10501.]); Rodriguez et al. (2005[Rodriguez, A., Sakiyama, H., Masciocchi, N., Galli, S., Gálvez, N., Lloret, F. & Colacio, E. (2005). Inorg. Chem. 44, 8399-8406.]); Xie et al. (2007[Xie, L. H., Liu, S. X., Gao, C. Y., Cao, R., Cao, J. F., Sun, C. Y. & Su, Z. M. (2007). Inorg. Chem. 46, 7782-7788.]); Yu et al. (2003[Yu, J. H., Xu, J. Q., Yang, Q. X., Pan, L. Y., Wang, T. G., Lü, C. H. & Ma, T. H. (2003). J. Mol. Struct. 658, 1-7.]). For related structures, see: Halbauer et al. (2008[Halbauer, K., Görls, H. & Imhof, W. (2008). Inorg. Chem. Commun. 11, 1177-1180.]); Guo et al. (2007[Guo, Y., Feng, Y. H., Liu, Z. Q. & Liao, D. Z. (2007). J. Coord. Chem. 60, 2713-2720.]); Zhao et al. (2008[Zhao, Y. G., Guo, D., Liu, Y., He, C. & Duan, C. Y. (2008). Chem. Commun. pp. 5725-5727.]); Brewer et al. (2007[Brewer, C. T., Brewer, G., Butcher, R. J., Carpenter, E. E., Schmiedekamp, A. M. & Viragh, C. (2007). Dalton Trans. pp. 295-298.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2Fe(CN)8(C12H8N2)4]·4H2O

  • Mr = 1174.75

  • Triclinic, [P \overline 1]

  • a = 12.855 (3) Å

  • b = 14.006 (3) Å

  • c = 16.334 (3) Å

  • α = 72.68 (3)°

  • β = 82.54 (3)°

  • γ = 65.99 (3)°

  • V = 2564.5 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 173 K

  • 0.74 × 0.56 × 0.33 mm

Data collection
  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.555, Tmax = 0.755

  • 41118 measured reflections

  • 11723 independent reflections

  • 10898 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.03

  • 11723 reflections

  • 726 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—C6 1.8747 (16)
Co1—C7 1.8779 (18)
Co1—C2 1.8960 (16)
Co1—C8 1.9076 (17)
Co1—N15 1.9693 (13)
Co1—N16 1.9762 (15)
Co2—C3 1.8744 (17)
Co2—C4 1.8822 (17)
Co2—C5 1.8975 (17)
Co2—C1 1.9044 (16)
Co2—N13 1.9652 (15)
Co2—N14 1.9665 (14)
Fe1—N2 2.0365 (14)
Fe1—N1 2.0464 (15)
Fe1—N12 2.0821 (15)
Fe1—N10 2.0845 (16)
Fe1—N11 2.0960 (16)
Fe1—N9 2.1067 (16)
N1—C1 1.144 (2)
N2—C2 1.144 (2)
N3—C3 1.147 (2)
N4—C4 1.147 (2)
N5—C5 1.149 (2)
N6—C6 1.148 (2)
N7—C7 1.156 (2)
N8—C8 1.146 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N7 0.82 2.34 3.143 (2) 167
O1—H1B⋯N3 0.82 2.12 2.939 (2) 172
O2—H2A⋯N8i 0.82 2.33 3.118 (3) 163
O2—H2B⋯N4 0.82 2.16 2.970 (2) 170
O3A—H3A⋯O2ii 0.82 2.22 2.971 (3) 153
O3A—H3B⋯O1 0.82 2.12 2.930 (3) 169
O3B—H3C⋯O1 0.85 1.97 2.823 (16) 179
O3B—H3D⋯O2ii 0.90 2.11 2.889 (18) 144
O4A—H4A⋯N6iii 0.84 2.11 2.930 (6) 165
O4A—H4B⋯N5 0.82 2.13 2.870 (4) 151
O4B—H4D⋯N5 0.82 2.09 2.848 (4) 153
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z; (iii) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyanide-bridged complexes have been investigated extensively over the past few years due to their excellent properties and potential applications, such as, high Tc molecular-based magnets (Ferlay et al., 1995; Kosaka et al., 2009), hydrogen storages (Reguera, Balmaseda & Krap et al., 2008; Reguera, Balmaseda & del Castillo et al., 2008), negative thermal expansion materials (Goodwin et al., 2008; Phillips et al., 2008), and so on. Increasing studies have shown that the hydrothermal reaction is a versatile and useful technique to prepare cyanide-bridged complexes, though the majority of synthetic procedures of cyanide-based systems still follow conventional solution routes. Recently, Colacio (Colacio et al., 2003; Rodriguez et al., 2005; Colacio et al., 2005; Rodríguez-Diéguez et al., 2007) and others (Yu et al., 2003; He et al., 2005; Mao et al., 2005; Chen et al., 2006) have shown that cyanide-bridged bimetallic complexes can also be assembled through hydrothermal reactions by using either [M(CN)6]3- (M = FeIII, CoIII) anions as a source of cyanide groups, which act as both reducing agents and bridging ligands.

Bearing this in mind, we introduced CoCl2.6H2O, 1,10-phenanthroline (phen), and K3[Fe(CN)6] (or Na2[Fe(CN)5NO].2H2O) into the reaction in order to obtain a Co—Fe bimetallic monometallic complex. It is interesting that a novel cyanide-bridged trinuclear cluster [{CoIII(phen)(CN)4}2{FeII(phen)2}].4H2O, was obtained. It should be noted here that, to the best of our knowledge, the title complex is the first example of a trinuclear cluster prepared by hydrothermal method in the cyanide-based system.

The asymmetric unit of the structure of the title complex is given in Fig. 1. Selected bond lengths and angles are listed in Table 1. Within the neutral [{CoIII(phen)(CN)4}2{FeII(phen)2}] unit, there are one FeII center and two CoIII centers, with {FeN6} and {CoN2C4} coordination environments, respectively. The Fe center is six-coordinate and adopts a distorted slightly octahedral geometry. Each Fe center is coordinated with two coordinated phen ligands and two bridging cyanide groups in a cis arrangement with the angle N1—Fe1—N2 = 89.63 (6)°. The dihedral angle between the planes of chelating phen ligands with the Fe1 atom is ca 85°. The mean basal plane is constructed by three N atoms (N9, N11, and N12) from two phen ligands and N1 atom from one bridging cyanide group, while the axial positions are occupied by N10 atom from one phen ligand and N2 atom of the other bridging cyanide group. The geometrical data of the [FeII(phen)2(CN)2] unit in the title complex are similar to those found for the [FeII(phen)2(CN)2] unit in the one-dimensional complex [Cu2FeII(CN)4(phen)3]n.0.5nH2O (He et al., 2005), the [FeII(bipy)2(CN)2] unit in the two-dimensional complex [FeII(bipy)2(CN)4Cu2] (Colacio et al., 2003), and three-dimensional complex [FeII(CN)4(phen)2Cu2] (Colacio et al., 2005).

The CoIII centers (Co1 and Co2) are both coordinated by two N atoms from one phen ligand, one C atom from one bridging cyanide ligand, and three C atoms from three terminal cyanide ligands. For the CoIII centers, the basal plane is formed by two N atoms of one phen ligand and two C atoms of two terminal cyanide groups, while the axial sites are occupied by two C atoms of the other two cyanide groups. As in all other cyanide-bridged complexes, the M—C bond is much shorter than the M—N bond (Table 1). Furthermore, the Co—C—N angles are closed to be linear with the angles spanning from 171° to 179°, which are comparable with those observed for the complexes obtained by hydrothermal methods (Colacio et al., 2003; He et al., 2005; Mao et al., 2005; Colacio et al., 2005), based on [Fe(CN)6]3- as the building block.

Thus, cyanide bridges connect one FeII atom to two CoIII atoms in cis arrangement, giving rise to a CoIII2FeII trinuclear cluster with a Fe1 ··· Co1 distance of 5.052 Å and a Fe1 ··· Co2 distance of 5.056 Å. It is noteworthy that the structure of the title complex is distinguished from that of cyanide-based mixed-valence CoII/CoIII complexes (Halbauer et al., 2008; Guo et al., 2007), and mixed-valence FeII/FeIII (Zhao et al., 2008; Overgaard et al., 2004; Brewer et al., 2007; Xie et al., 2007; Fernández-Armas et al., 2007; Paredes-García et al., 2006) complexes belonging to other systems.

The crystallized water molecules are hydrogen-bonded to each other and terminal cyanide groups. The probable hydrogen bonding interactions are given in Table 2. In addition, weak face-to-face π-π interactions between the aromatic rings of adjacent phen ligands from neighboring trinuclear clusters also play important roles in the formation and stabilization of the three-dimensional supramolecular structure (Fig. 2). The distance between two adjacent aromatic ring center is ca 3.63 Å.

The IR spectrum (Fig. 3) of the title complex exhibits two strong peaks at 2080 cm-1 and 2133 cm-1, and one weak peak at 2171 cm-1, which indicates the existence of different types of cyanide bridges in the structure. The lower frequencies at 2080 cm-1 and 2133 cm-1 are reasonably assigned to the terminal cyanide stretching vibrations, while the higher one of 2171 cm-1 confirms the presence of bridging cyanide groups.

There is a broad band at the wavenumber range of 3700–2900 cm-1 ascribed to the O—H stretching absorption (νO—H) in H2O molecules. The IR spectrum exhibits characteristic strong bands of the coordinated phen ligands at 1638, 1521, 1425, 844, and 722 cm-1 (δC—H benzene ring). The bands at 1521, 1425 and 722 cm-1 are shifted from their positions for the free phen ligands (1503, 1420 and 737 cm-1), indicating nitrogen coordination. The IR feature has been confirmed by single-crystal X-ray crystallographic analysis.

Thermogravimetric analysis (Fig. 4) is performed to study the thermal stability of the title complex, which shows the title complex loses four crystallized water molecules at above 333 K with a weight loss of 6.29% (Calc. 6.17%). The anhydrous phase loses no further mass up to about 573 K, above which thermal decomposition occurs.

Related literature top

For background to cyanide-bridged complexes, see: Rodríguez-Diéguez et al. (2007); Colacio et al. (2003, 2005); Chen et al. (2006); Ferlay et al. (1995); Fernández-Armas et al. (2007); Goodwin et al. (2008); He et al. (2005); Kosaka et al. (2009); Mao et al. (2005); Overgaard et al. (2004); Paredes-García et al. (2006); Phillips et al. (2008); Reguera Balmaseda, del Castillo et al. (2008); Reguera, Balmaseda, Krap et al. (2008); Rodriguez et al. (2005); Xie et al. (2007); Yu et al. (2003). For related structures, see: Halbauer et al. (2008); Guo et al. (2007); Zhao et al. (2008); Brewer et al. (2007).

Experimental top

All starting reagents were of analytical grade quality, obtained from commercial sources and used without further purification. A mixture of CoCl2.6H2O (0.1071 g, 0.45 mmol), 1,10-phenanthroline (phen, 0.0892 g, 0.45 mmol), K3[Fe(CN)6] (0.1482 g, 0.45 mmol) in a molar ratio of 1:1:1 combined with 10 ml deionized water was stirred for 20 min at room temperature and then transferred into a 25 ml Teflon-lined stainless-steel vessel. The mixture was heated hydrothermally at 413 K for two days under autogenous pressure. Slow cooling of the resulting solution to room temperature afforded dark red, prism-shaped crystals suitable for single-crystal X-ray structure analysis. Yield: 30% (based on Fe). These crystals were separated, washed thoroughly with deionized water and finally with ethanol, and dried. Analysis calculated for C56H40N16O4Co2Fe: C 57.51, H 3.42, N 19.17%. Found: C 57.46, H 3.35, N 19.12%. EDS (energy dispersive spectrometer): Fe 32.33, Co 67.67. It is of interest that when working under the same hydrothermal conditions, except for using Na2[Fe(CN)5NO] instead of K3[Fe(CN)6] as the cyanide source, the same product was obtained (CCDC-732054). From the viewpoint of the mechanism of the formation of the title complex, it is reasonable that free cyanide groups from the dissociation of [Fe(CN)6]3- or [Fe(CN)5NO]2- might be responsible for the oxidation of the Co center from the original reduction state +II in the precursor CoCl2.6H2O to the oxidation state +III in the title complex.

Refinement top

All non-H atoms were refined anisotropically. The C(H) atoms of the phen ligand were placed in calculated position (C—H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The O(H) atoms of the water molecules were located in a difference Fourier map and refined as riding, with Uiso(H) = 1.5Ueq(O). O3 and O4 were both split into two positions (O3A and O3B, and O4A and O4B, respectively) with occupancy of 50% each.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title complex showing 50% probability displacement ellipsoids. Water molecules have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen-bonded supramolecular structure of the complex.
[Figure 3] Fig. 3. IR spectrum of the title complex.
[Figure 4] Fig. 4. Thermogravimetric curve of the title complex.
Di-µ-cyanido-1:2κ2C:N,2:3κ2N:C- hexacyanido-1κ3C,3κ3C-tetrakis(1,10-phenanthroline)- 1κ2N,N';2κ4N,N';3κ2N,N'- 1,3-dicobalt(III)-2-iron(II) tetrahydrate top
Crystal data top
[Co2Fe(CN)8(C12H8N2)4]·4H2OZ = 2
Mr = 1174.75F(000) = 1200
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.855 (3) ÅCell parameters from 7618 reflections
b = 14.006 (3) Åθ = 3.2–27.0°
c = 16.334 (3) ŵ = 0.98 mm1
α = 72.68 (3)°T = 173 K
β = 82.54 (3)°Block, dark red
γ = 65.99 (3)°0.74 × 0.56 × 0.33 mm
V = 2564.5 (12) Å3
Data collection top
Rigaku R-AXIS Spider
diffractometer
11723 independent reflections
Radiation source: fine-focus sealed tube10898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.555, Tmax = 0.755k = 1817
41118 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0331P)2 + 1.5388P]
where P = (Fo2 + 2Fc2)/3
11723 reflections(Δ/σ)max = 0.001
726 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co2Fe(CN)8(C12H8N2)4]·4H2Oγ = 65.99 (3)°
Mr = 1174.75V = 2564.5 (12) Å3
Triclinic, P1Z = 2
a = 12.855 (3) ÅMo Kα radiation
b = 14.006 (3) ŵ = 0.98 mm1
c = 16.334 (3) ÅT = 173 K
α = 72.68 (3)°0.74 × 0.56 × 0.33 mm
β = 82.54 (3)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
11723 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
10898 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 0.755Rint = 0.040
41118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
11723 reflectionsΔρmin = 0.70 e Å3
726 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.124533 (16)0.330081 (16)0.192167 (12)0.01867 (6)
Co20.211367 (16)0.613907 (16)0.329103 (12)0.01846 (5)
Fe10.272543 (16)0.259948 (16)0.270557 (12)0.01544 (5)
N10.22567 (11)0.40567 (11)0.29752 (8)0.0231 (3)
N20.11105 (11)0.30592 (11)0.23131 (8)0.0225 (3)
N30.03701 (12)0.73776 (12)0.28215 (9)0.0272 (3)
N40.27633 (15)0.69837 (14)0.14501 (10)0.0416 (4)
N50.22982 (14)0.80318 (13)0.37282 (11)0.0354 (3)
N60.15698 (12)0.26931 (14)0.38441 (9)0.0357 (4)
N70.22187 (13)0.57067 (12)0.18027 (10)0.0329 (3)
N80.35730 (13)0.34691 (15)0.15092 (10)0.0377 (4)
N90.23205 (12)0.19390 (12)0.39825 (9)0.0275 (3)
N100.42921 (12)0.19929 (12)0.33001 (10)0.0288 (3)
N110.31060 (11)0.13043 (11)0.21731 (9)0.0267 (3)
N120.33409 (11)0.31894 (11)0.15018 (8)0.0235 (3)
N130.36947 (11)0.52399 (10)0.36591 (8)0.0204 (2)
N140.17586 (10)0.55913 (10)0.45039 (8)0.0184 (2)
N150.08549 (10)0.35289 (10)0.06914 (8)0.0191 (2)
N160.05795 (11)0.17536 (11)0.19295 (8)0.0213 (3)
C10.21160 (12)0.48801 (13)0.30657 (9)0.0204 (3)
C20.02146 (13)0.31837 (12)0.21564 (9)0.0203 (3)
C30.05769 (13)0.69236 (12)0.29917 (9)0.0214 (3)
C40.25134 (14)0.66576 (14)0.21445 (10)0.0269 (3)
C50.22034 (13)0.73388 (13)0.35471 (10)0.0239 (3)
C60.14966 (13)0.29636 (14)0.31107 (10)0.0250 (3)
C70.18567 (13)0.47879 (14)0.18580 (10)0.0239 (3)
C80.27138 (14)0.34141 (14)0.16896 (10)0.0253 (3)
C90.52910 (15)0.19642 (15)0.29379 (15)0.0383 (4)
H90.53510.21780.23300.046*
C100.62613 (16)0.16242 (16)0.34347 (19)0.0520 (6)
H100.69620.16140.31590.062*
C110.62013 (18)0.13123 (15)0.43026 (18)0.0507 (6)
H110.68550.10890.46350.061*
C120.51653 (17)0.13222 (14)0.47063 (15)0.0401 (5)
C130.4999 (2)0.09982 (15)0.56160 (15)0.0511 (6)
H130.56220.07680.59820.061*
C140.3988 (2)0.10091 (16)0.59683 (14)0.0493 (6)
H140.39060.08020.65740.059*
C150.30395 (18)0.13297 (14)0.54370 (12)0.0373 (4)
C160.1974 (2)0.13174 (15)0.57587 (12)0.0439 (5)
H160.18440.11170.63600.053*
C170.11322 (19)0.15941 (16)0.52032 (13)0.0427 (5)
H170.04130.15790.54140.051*
C180.13308 (15)0.19032 (15)0.43129 (12)0.0341 (4)
H180.07340.20940.39330.041*
C190.31693 (15)0.16514 (13)0.45389 (11)0.0280 (3)
C200.42345 (15)0.16639 (13)0.41689 (12)0.0287 (4)
C210.35029 (14)0.41126 (14)0.11906 (11)0.0280 (3)
H210.33710.45640.15590.034*
C220.38586 (15)0.44472 (15)0.03462 (11)0.0317 (4)
H220.39700.51100.01510.038*
C230.40454 (15)0.38120 (15)0.01973 (11)0.0328 (4)
H230.42780.40340.07740.039*
C240.38890 (14)0.28262 (15)0.01076 (11)0.0299 (4)
C250.40323 (17)0.21135 (17)0.04085 (12)0.0396 (4)
H250.42520.23000.09930.048*
C260.38619 (17)0.11833 (17)0.00829 (13)0.0414 (5)
H260.39470.07360.04450.050*
C270.35531 (15)0.08576 (15)0.08027 (13)0.0344 (4)
C280.33953 (17)0.01117 (16)0.11841 (16)0.0444 (5)
H280.34930.06000.08550.053*
C290.30996 (17)0.03515 (16)0.20326 (16)0.0462 (5)
H290.29960.10090.22990.055*
C300.29509 (15)0.03833 (15)0.25071 (14)0.0374 (4)
H300.27300.02140.30930.045*
C310.34010 (13)0.15426 (13)0.13257 (11)0.0260 (3)
C320.35473 (13)0.25445 (13)0.09695 (10)0.0245 (3)
C330.46540 (14)0.50782 (14)0.32018 (11)0.0265 (3)
H330.46210.54670.26130.032*
C340.57127 (14)0.43506 (14)0.35623 (12)0.0291 (3)
H340.63840.42550.32180.035*
C350.57866 (13)0.37764 (13)0.44087 (11)0.0263 (3)
H350.65050.32850.46540.032*
C360.47828 (13)0.39246 (12)0.49103 (10)0.0225 (3)
C370.47374 (14)0.33739 (13)0.57997 (11)0.0272 (3)
H370.54240.28670.60880.033*
C380.37353 (15)0.35609 (13)0.62381 (11)0.0276 (3)
H380.37330.31810.68260.033*
C390.26799 (13)0.43218 (12)0.58304 (10)0.0219 (3)
C400.16036 (14)0.45744 (13)0.62392 (10)0.0252 (3)
H400.15360.42250.68270.030*
C410.06563 (14)0.53278 (14)0.57807 (10)0.0250 (3)
H410.00700.55160.60550.030*
C420.07574 (13)0.58191 (13)0.49106 (10)0.0213 (3)
H420.00910.63320.46000.026*
C430.27068 (12)0.48641 (12)0.49617 (9)0.0188 (3)
C440.37582 (12)0.46686 (12)0.45018 (10)0.0194 (3)
C450.10336 (13)0.44500 (13)0.00828 (10)0.0226 (3)
H450.14220.51190.02260.027*
C460.06668 (14)0.44644 (14)0.07650 (10)0.0269 (3)
H460.08130.51370.11880.032*
C470.00973 (15)0.35077 (15)0.09852 (10)0.0277 (3)
H470.01580.35140.15580.033*
C480.01046 (14)0.25187 (14)0.03546 (10)0.0243 (3)
C490.06927 (15)0.14634 (15)0.04983 (11)0.0304 (4)
H490.09830.14080.10550.037*
C500.08422 (15)0.05469 (14)0.01403 (11)0.0303 (4)
H500.12450.01390.00260.036*
C510.04031 (13)0.05916 (13)0.09894 (11)0.0253 (3)
C520.04915 (15)0.03224 (14)0.16798 (12)0.0307 (4)
H520.08550.10330.16050.037*
C530.00447 (15)0.01708 (14)0.24631 (11)0.0316 (4)
H530.00900.07800.29330.038*
C540.04757 (14)0.08730 (14)0.25723 (10)0.0276 (3)
H540.07650.09590.31230.033*
C550.01538 (13)0.16124 (13)0.11473 (10)0.0209 (3)
C560.03016 (12)0.25769 (12)0.04762 (9)0.0200 (3)
O10.25835 (11)0.79447 (12)0.20885 (9)0.0415 (3)
H1A0.24710.74100.19260.062*
H1B0.19480.78140.22460.062*
O20.28189 (17)0.81586 (13)0.03875 (10)0.0616 (5)
H2A0.29850.76400.05840.092*
H2B0.28860.77760.01080.092*
O3A0.3779 (2)1.03096 (19)0.15433 (19)0.0758 (9)0.866 (5)
H3A0.36181.06950.11030.114*0.866 (5)
H3B0.33780.96600.16440.114*0.866 (5)
O3B0.3120 (16)1.0178 (13)0.1828 (13)0.0758 (9)0.134 (5)
H3C0.29480.95030.19080.114*0.134 (5)
H3D0.32711.06450.12990.114*0.134 (5)
O4A0.0980 (4)0.9375 (4)0.4824 (3)0.0666 (17)0.546 (10)
H4A0.10180.88210.52260.100*0.546 (10)
H4B0.14020.91930.44300.100*0.546 (10)
O4B0.1348 (4)0.9808 (4)0.4474 (4)0.0616 (18)0.454 (10)
H4C0.05121.00050.46780.092*0.454 (10)
H4D0.15140.92060.44020.092*0.454 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01406 (10)0.02221 (11)0.01562 (10)0.00363 (8)0.00056 (7)0.00400 (8)
Co20.01609 (10)0.01932 (10)0.01740 (10)0.00382 (8)0.00002 (7)0.00580 (8)
Fe10.01103 (9)0.01723 (10)0.01583 (10)0.00423 (8)0.00069 (7)0.00288 (8)
N10.0201 (6)0.0255 (7)0.0227 (6)0.0078 (5)0.0019 (5)0.0061 (5)
N20.0178 (6)0.0213 (6)0.0221 (6)0.0030 (5)0.0008 (5)0.0032 (5)
N30.0231 (7)0.0308 (7)0.0236 (7)0.0049 (6)0.0026 (5)0.0084 (6)
N40.0442 (10)0.0446 (10)0.0260 (8)0.0130 (8)0.0058 (7)0.0044 (7)
N50.0332 (8)0.0305 (8)0.0433 (9)0.0082 (7)0.0060 (7)0.0144 (7)
N60.0211 (7)0.0528 (10)0.0221 (7)0.0059 (7)0.0024 (5)0.0075 (7)
N70.0334 (8)0.0305 (8)0.0283 (7)0.0022 (6)0.0074 (6)0.0107 (6)
N80.0261 (8)0.0523 (10)0.0325 (8)0.0189 (7)0.0042 (6)0.0016 (7)
N90.0227 (7)0.0257 (7)0.0286 (7)0.0032 (6)0.0009 (5)0.0089 (6)
N100.0185 (6)0.0246 (7)0.0447 (8)0.0071 (6)0.0010 (6)0.0139 (6)
N110.0176 (6)0.0250 (7)0.0333 (7)0.0084 (6)0.0059 (5)0.0005 (6)
N120.0231 (6)0.0239 (7)0.0219 (6)0.0096 (6)0.0034 (5)0.0020 (5)
N130.0165 (6)0.0202 (6)0.0237 (6)0.0044 (5)0.0004 (5)0.0090 (5)
N140.0176 (6)0.0186 (6)0.0194 (6)0.0058 (5)0.0002 (5)0.0075 (5)
N150.0160 (6)0.0218 (6)0.0177 (6)0.0062 (5)0.0008 (5)0.0043 (5)
N160.0187 (6)0.0221 (6)0.0202 (6)0.0071 (5)0.0008 (5)0.0024 (5)
C10.0153 (7)0.0261 (8)0.0169 (6)0.0051 (6)0.0001 (5)0.0062 (6)
C20.0198 (7)0.0193 (7)0.0161 (6)0.0027 (6)0.0010 (5)0.0039 (5)
C30.0233 (8)0.0221 (7)0.0175 (7)0.0065 (6)0.0002 (6)0.0070 (6)
C40.0241 (8)0.0267 (8)0.0250 (8)0.0055 (7)0.0008 (6)0.0070 (6)
C50.0189 (7)0.0232 (8)0.0239 (7)0.0033 (6)0.0020 (6)0.0045 (6)
C60.0129 (7)0.0332 (9)0.0233 (8)0.0035 (6)0.0009 (5)0.0079 (6)
C70.0184 (7)0.0301 (8)0.0188 (7)0.0037 (6)0.0032 (6)0.0073 (6)
C80.0231 (8)0.0298 (8)0.0187 (7)0.0087 (7)0.0011 (6)0.0032 (6)
C90.0210 (8)0.0286 (9)0.0652 (13)0.0103 (7)0.0039 (8)0.0133 (9)
C100.0198 (9)0.0264 (10)0.107 (2)0.0088 (8)0.0075 (10)0.0107 (11)
C110.0358 (11)0.0200 (9)0.0948 (19)0.0052 (8)0.0312 (11)0.0087 (10)
C120.0379 (10)0.0169 (8)0.0654 (13)0.0018 (7)0.0244 (9)0.0138 (8)
C130.0695 (16)0.0226 (9)0.0585 (13)0.0035 (10)0.0400 (12)0.0112 (9)
C140.0746 (17)0.0268 (9)0.0397 (11)0.0047 (10)0.0236 (11)0.0110 (8)
C150.0548 (12)0.0189 (8)0.0304 (9)0.0014 (8)0.0074 (8)0.0111 (7)
C160.0616 (13)0.0251 (9)0.0284 (9)0.0016 (9)0.0082 (9)0.0090 (7)
C170.0432 (11)0.0311 (10)0.0373 (10)0.0035 (9)0.0147 (9)0.0079 (8)
C180.0261 (8)0.0315 (9)0.0342 (9)0.0045 (7)0.0066 (7)0.0067 (7)
C190.0314 (9)0.0178 (7)0.0298 (8)0.0005 (7)0.0057 (7)0.0102 (6)
C200.0275 (8)0.0171 (7)0.0405 (9)0.0021 (6)0.0099 (7)0.0121 (7)
C210.0263 (8)0.0274 (8)0.0289 (8)0.0123 (7)0.0026 (6)0.0022 (7)
C220.0270 (8)0.0313 (9)0.0316 (9)0.0136 (7)0.0022 (7)0.0029 (7)
C230.0247 (8)0.0381 (10)0.0242 (8)0.0077 (7)0.0001 (6)0.0012 (7)
C240.0233 (8)0.0318 (9)0.0246 (8)0.0024 (7)0.0041 (6)0.0039 (7)
C250.0357 (10)0.0425 (11)0.0285 (9)0.0012 (9)0.0042 (7)0.0110 (8)
C260.0370 (10)0.0386 (10)0.0425 (11)0.0007 (8)0.0117 (8)0.0196 (9)
C270.0243 (8)0.0283 (9)0.0472 (11)0.0017 (7)0.0107 (7)0.0130 (8)
C280.0294 (10)0.0294 (10)0.0745 (15)0.0053 (8)0.0110 (10)0.0186 (10)
C290.0294 (10)0.0227 (9)0.0813 (16)0.0101 (8)0.0108 (10)0.0027 (9)
C300.0225 (8)0.0299 (9)0.0506 (11)0.0104 (7)0.0086 (8)0.0056 (8)
C310.0183 (7)0.0248 (8)0.0305 (8)0.0043 (6)0.0073 (6)0.0043 (6)
C320.0187 (7)0.0253 (8)0.0245 (7)0.0047 (6)0.0050 (6)0.0035 (6)
C330.0217 (8)0.0288 (8)0.0276 (8)0.0077 (7)0.0037 (6)0.0103 (7)
C340.0177 (7)0.0310 (9)0.0387 (9)0.0051 (7)0.0043 (7)0.0176 (7)
C350.0166 (7)0.0224 (8)0.0400 (9)0.0022 (6)0.0036 (6)0.0147 (7)
C360.0200 (7)0.0170 (7)0.0315 (8)0.0047 (6)0.0044 (6)0.0097 (6)
C370.0256 (8)0.0193 (7)0.0338 (8)0.0050 (6)0.0110 (7)0.0040 (6)
C380.0316 (9)0.0240 (8)0.0259 (8)0.0112 (7)0.0083 (7)0.0007 (6)
C390.0252 (8)0.0207 (7)0.0228 (7)0.0108 (6)0.0033 (6)0.0061 (6)
C400.0308 (8)0.0286 (8)0.0196 (7)0.0157 (7)0.0010 (6)0.0060 (6)
C410.0237 (8)0.0302 (8)0.0239 (7)0.0123 (7)0.0052 (6)0.0111 (6)
C420.0182 (7)0.0231 (7)0.0228 (7)0.0063 (6)0.0010 (6)0.0095 (6)
C430.0183 (7)0.0172 (7)0.0225 (7)0.0063 (6)0.0018 (5)0.0080 (6)
C440.0183 (7)0.0172 (7)0.0239 (7)0.0057 (6)0.0016 (6)0.0085 (6)
C450.0206 (7)0.0217 (7)0.0228 (7)0.0073 (6)0.0028 (6)0.0025 (6)
C460.0291 (8)0.0288 (8)0.0199 (7)0.0133 (7)0.0021 (6)0.0013 (6)
C470.0306 (8)0.0367 (9)0.0178 (7)0.0166 (7)0.0026 (6)0.0062 (6)
C480.0228 (7)0.0297 (8)0.0221 (7)0.0113 (7)0.0019 (6)0.0085 (6)
C490.0312 (9)0.0359 (9)0.0285 (8)0.0142 (8)0.0084 (7)0.0167 (7)
C500.0279 (8)0.0287 (8)0.0360 (9)0.0090 (7)0.0045 (7)0.0158 (7)
C510.0206 (7)0.0246 (8)0.0297 (8)0.0076 (6)0.0010 (6)0.0075 (6)
C520.0263 (8)0.0213 (8)0.0403 (9)0.0064 (7)0.0043 (7)0.0048 (7)
C530.0308 (9)0.0243 (8)0.0322 (9)0.0098 (7)0.0051 (7)0.0038 (7)
C540.0266 (8)0.0283 (8)0.0225 (7)0.0103 (7)0.0014 (6)0.0009 (6)
C550.0176 (7)0.0226 (7)0.0210 (7)0.0072 (6)0.0009 (5)0.0044 (6)
C560.0169 (7)0.0220 (7)0.0206 (7)0.0071 (6)0.0009 (5)0.0053 (6)
O10.0304 (7)0.0427 (8)0.0432 (8)0.0101 (6)0.0054 (6)0.0036 (6)
O20.0890 (13)0.0424 (9)0.0356 (8)0.0130 (9)0.0044 (8)0.0055 (7)
O3A0.0557 (17)0.0548 (12)0.113 (2)0.0134 (12)0.0160 (14)0.0362 (13)
O3B0.0557 (17)0.0548 (12)0.113 (2)0.0134 (12)0.0160 (14)0.0362 (13)
O4A0.074 (3)0.041 (2)0.073 (3)0.0097 (19)0.011 (2)0.021 (2)
O4B0.080 (3)0.034 (2)0.074 (3)0.022 (2)0.023 (2)0.028 (2)
Geometric parameters (Å, º) top
Co1—C61.8747 (16)C23—H230.9500
Co1—C71.8779 (18)C24—C321.407 (2)
Co1—C21.8960 (16)C24—C251.432 (3)
Co1—C81.9076 (17)C25—C261.348 (3)
Co1—N151.9693 (13)C25—H250.9500
Co1—N161.9762 (15)C26—C271.437 (3)
Co2—C31.8744 (17)C26—H260.9500
Co2—C41.8822 (17)C27—C281.400 (3)
Co2—C51.8975 (17)C27—C311.407 (2)
Co2—C11.9044 (16)C28—C291.367 (3)
Co2—N131.9652 (15)C28—H280.9500
Co2—N141.9665 (14)C29—C301.405 (3)
Fe1—N22.0365 (14)C29—H290.9500
Fe1—N12.0464 (15)C30—H300.9500
Fe1—N122.0821 (15)C31—C321.429 (2)
Fe1—N102.0845 (16)C33—C341.400 (2)
Fe1—N112.0960 (16)C33—H330.9500
Fe1—N92.1067 (16)C34—C351.370 (3)
N1—C11.144 (2)C34—H340.9500
N2—C21.144 (2)C35—C361.410 (2)
N3—C31.147 (2)C35—H350.9500
N4—C41.147 (2)C36—C441.401 (2)
N5—C51.149 (2)C36—C371.434 (2)
N6—C61.148 (2)C37—C381.356 (2)
N7—C71.156 (2)C37—H370.9500
N8—C81.146 (2)C38—C391.434 (2)
N9—C181.330 (2)C38—H380.9500
N9—C191.364 (2)C39—C431.399 (2)
N10—C91.332 (2)C39—C401.410 (2)
N10—C201.358 (2)C40—C411.370 (2)
N11—C301.328 (2)C40—H400.9500
N11—C311.365 (2)C41—C421.397 (2)
N12—C211.332 (2)C41—H410.9500
N12—C321.362 (2)C42—H420.9500
N13—C331.328 (2)C43—C441.423 (2)
N13—C441.365 (2)C45—C461.401 (2)
N14—C421.3302 (19)C45—H450.9500
N14—C431.362 (2)C46—C471.372 (3)
N15—C451.327 (2)C46—H460.9500
N15—C561.360 (2)C47—C481.405 (2)
N16—C541.331 (2)C47—H470.9500
N16—C551.361 (2)C48—C561.403 (2)
C9—C101.411 (3)C48—C491.436 (2)
C9—H90.9500C49—C501.352 (3)
C10—C111.355 (4)C49—H490.9500
C10—H100.9500C50—C511.437 (2)
C11—C121.404 (3)C50—H500.9500
C11—H110.9500C51—C551.401 (2)
C12—C201.410 (2)C51—C521.407 (2)
C12—C131.433 (3)C52—C531.373 (3)
C13—C141.347 (4)C52—H520.9500
C13—H130.9500C53—C541.395 (3)
C14—C151.428 (3)C53—H530.9500
C14—H140.9500C54—H540.9500
C15—C161.407 (3)C55—C561.423 (2)
C15—C191.410 (2)O1—H1A0.8200
C16—C171.360 (3)O1—H1B0.8200
C16—H160.9500O2—H2A0.8200
C17—C181.409 (3)O2—H2B0.8200
C17—H170.9500O3A—H3A0.8199
C18—H180.9500O3A—H3B0.8199
C19—C201.428 (3)O3B—H3C0.8505
C21—C221.399 (2)O3B—H3D0.9027
C21—H210.9500O4A—H4A0.8422
C22—C231.371 (3)O4A—H4B0.8174
C22—H220.9500O4B—H4C1.0307
C23—C241.409 (3)O4B—H4D0.8225
C6—Co1—C790.48 (8)N12—C21—C22122.94 (17)
C6—Co1—C287.01 (7)N12—C21—H21118.5
C7—Co1—C290.57 (7)C22—C21—H21118.5
C6—Co1—C892.80 (7)C23—C22—C21119.48 (17)
C7—Co1—C889.57 (8)C23—C22—H22120.3
C2—Co1—C8179.77 (7)C21—C22—H22120.3
C6—Co1—N15174.69 (6)C22—C23—C24119.38 (16)
C7—Co1—N1593.95 (7)C22—C23—H23120.3
C2—Co1—N1590.01 (6)C24—C23—H23120.3
C8—Co1—N1590.17 (7)C32—C24—C23117.35 (16)
C6—Co1—N1692.28 (7)C32—C24—C25118.53 (17)
C7—Co1—N16177.21 (6)C23—C24—C25124.11 (17)
C2—Co1—N1689.20 (7)C26—C25—C24121.49 (18)
C8—Co1—N1690.68 (7)C26—C25—H25119.3
N15—Co1—N1683.28 (6)C24—C25—H25119.3
C3—Co2—C488.80 (8)C25—C26—C27121.08 (18)
C3—Co2—C591.73 (7)C25—C26—H26119.5
C4—Co2—C589.44 (8)C27—C26—H26119.5
C3—Co2—C191.83 (7)C28—C27—C31117.43 (19)
C4—Co2—C191.26 (7)C28—C27—C26123.79 (19)
C5—Co2—C1176.38 (6)C31—C27—C26118.78 (17)
C3—Co2—N13176.12 (6)C29—C28—C27119.58 (19)
C4—Co2—N1394.35 (7)C29—C28—H28120.2
C5—Co2—N1390.56 (7)C27—C28—H28120.2
C1—Co2—N1385.85 (6)C28—C29—C30119.40 (18)
C3—Co2—N1493.37 (7)C28—C29—H29120.3
C4—Co2—N14177.57 (6)C30—C29—H29120.3
C5—Co2—N1489.40 (6)N11—C30—C29122.93 (19)
C1—Co2—N1489.76 (6)N11—C30—H30118.5
N13—Co2—N1483.52 (6)C29—C30—H30118.5
N2—Fe1—N189.63 (6)N11—C31—C27123.07 (16)
N2—Fe1—N1295.57 (6)N11—C31—C32117.09 (15)
N1—Fe1—N1291.20 (6)C27—C31—C32119.84 (16)
N2—Fe1—N10170.46 (6)N12—C32—C24123.00 (15)
N1—Fe1—N1091.63 (6)N12—C32—C31116.79 (14)
N12—Fe1—N1093.86 (6)C24—C32—C31120.21 (16)
N2—Fe1—N1184.52 (6)N13—C33—C34121.87 (16)
N1—Fe1—N11168.24 (5)N13—C33—H33119.1
N12—Fe1—N1179.27 (6)C34—C33—H33119.1
N10—Fe1—N1195.84 (6)C35—C34—C33120.36 (15)
N2—Fe1—N992.00 (6)C35—C34—H34119.8
N1—Fe1—N988.78 (6)C33—C34—H34119.8
N12—Fe1—N9172.44 (5)C34—C35—C36119.16 (15)
N10—Fe1—N978.58 (7)C34—C35—H35120.4
N11—Fe1—N9101.58 (6)C36—C35—H35120.4
C1—N1—Fe1171.17 (13)C44—C36—C35116.95 (15)
C2—N2—Fe1170.94 (13)C44—C36—C37118.12 (15)
C18—N9—C19117.69 (16)C35—C36—C37124.93 (15)
C18—N9—Fe1128.98 (13)C38—C37—C36121.37 (15)
C19—N9—Fe1112.69 (12)C38—C37—H37119.3
C9—N10—C20118.00 (16)C36—C37—H37119.3
C9—N10—Fe1128.11 (14)C37—C38—C39121.21 (15)
C20—N10—Fe1113.72 (11)C37—C38—H38119.4
C30—N11—C31117.58 (16)C39—C38—H38119.4
C30—N11—Fe1129.09 (14)C43—C39—C40116.81 (14)
C31—N11—Fe1112.63 (11)C43—C39—C38118.24 (15)
C21—N12—C32117.82 (14)C40—C39—C38124.95 (15)
C21—N12—Fe1128.64 (12)C41—C40—C39119.40 (14)
C32—N12—Fe1113.47 (11)C41—C40—H40120.3
C33—N13—C44118.25 (14)C39—C40—H40120.3
C33—N13—Co2129.55 (11)C40—C41—C42120.06 (15)
C44—N13—Co2112.08 (10)C40—C41—H41120.0
C42—N14—C43118.18 (13)C42—C41—H41120.0
C42—N14—Co2129.60 (11)N14—C42—C41122.02 (15)
C43—N14—Co2112.22 (10)N14—C42—H42119.0
C45—N15—C56118.39 (13)C41—C42—H42119.0
C45—N15—Co1129.36 (11)N14—C43—C39123.49 (14)
C56—N15—Co1112.23 (10)N14—C43—C44115.95 (13)
C54—N16—C55117.99 (14)C39—C43—C44120.55 (14)
C54—N16—Co1129.90 (12)N13—C44—C36123.41 (14)
C55—N16—Co1112.10 (11)N13—C44—C43116.08 (13)
N1—C1—Co2171.05 (13)C36—C44—C43120.51 (14)
N2—C2—Co1176.64 (14)N15—C45—C46121.92 (15)
N3—C3—Co2178.00 (15)N15—C45—H45119.0
N4—C4—Co2178.90 (17)C46—C45—H45119.0
N5—C5—Co2176.80 (15)C47—C46—C45120.05 (15)
N6—C6—Co1174.75 (15)C47—C46—H46120.0
N7—C7—Co1178.49 (16)C45—C46—H46120.0
N8—C8—Co1176.31 (15)C46—C47—C48119.35 (15)
N10—C9—C10121.6 (2)C46—C47—H47120.3
N10—C9—H9119.2C48—C47—H47120.3
C10—C9—H9119.2C56—C48—C47116.96 (15)
C11—C10—C9120.5 (2)C56—C48—C49118.09 (15)
C11—C10—H10119.8C47—C48—C49124.96 (15)
C9—C10—H10119.8C50—C49—C48121.51 (15)
C10—C11—C12119.47 (19)C50—C49—H49119.2
C10—C11—H11120.3C48—C49—H49119.2
C12—C11—H11120.3C49—C50—C51121.16 (16)
C11—C12—C20116.9 (2)C49—C50—H50119.4
C11—C12—C13124.7 (2)C51—C50—H50119.4
C20—C12—C13118.4 (2)C55—C51—C52117.22 (15)
C14—C13—C12122.14 (19)C55—C51—C50118.22 (15)
C14—C13—H13118.9C52—C51—C50124.56 (16)
C12—C13—H13118.9C53—C52—C51118.91 (16)
C13—C14—C15120.5 (2)C53—C52—H52120.5
C13—C14—H14119.8C51—C52—H52120.5
C15—C14—H14119.8C52—C53—C54120.35 (16)
C16—C15—C19117.28 (18)C52—C53—H53119.8
C16—C15—C14123.6 (2)C54—C53—H53119.8
C19—C15—C14119.1 (2)N16—C54—C53122.09 (16)
C17—C16—C15119.55 (18)N16—C54—H54119.0
C17—C16—H16120.2C53—C54—H54119.0
C15—C16—H16120.2N16—C55—C51123.43 (15)
C16—C17—C18119.7 (2)N16—C55—C56116.02 (14)
C16—C17—H17120.1C51—C55—C56120.55 (14)
C18—C17—H17120.1N15—C56—C48123.33 (14)
N9—C18—C17122.64 (19)N15—C56—C55116.23 (13)
N9—C18—H18118.7C48—C56—C55120.44 (14)
C17—C18—H18118.7H1A—O1—H1B101.9
N9—C19—C15123.11 (17)H2A—O2—H2B92.6
N9—C19—C20116.68 (15)H3A—O3A—H3B115.5
C15—C19—C20120.20 (17)H3C—O3B—H3D121.5
N10—C20—C12123.52 (18)H4A—O4A—H4B109.9
N10—C20—C19116.86 (15)H4C—O4B—H4D102.0
C12—C20—C19119.60 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N70.822.343.143 (2)167
O1—H1B···N30.822.122.939 (2)172
O2—H2A···N8i0.822.333.118 (3)163
O2—H2B···N40.822.162.970 (2)170
O3A—H3A···O2ii0.822.222.971 (3)153
O3A—H3B···O10.822.122.930 (3)169
O3B—H3C···O10.851.972.823 (16)179
O3B—H3D···O2ii0.902.112.889 (18)144
O4A—H4A···N6iii0.842.112.930 (6)165
O4A—H4B···N50.822.132.870 (4)151
O4B—H4D···N50.822.092.848 (4)153
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co2Fe(CN)8(C12H8N2)4]·4H2O
Mr1174.75
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)12.855 (3), 14.006 (3), 16.334 (3)
α, β, γ (°)72.68 (3), 82.54 (3), 65.99 (3)
V3)2564.5 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.74 × 0.56 × 0.33
Data collection
DiffractometerRigaku R-AXIS Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.555, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
41118, 11723, 10898
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.03
No. of reflections11723
No. of parameters726
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.70

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Co1—C61.8747 (16)Fe1—N12.0464 (15)
Co1—C71.8779 (18)Fe1—N122.0821 (15)
Co1—C21.8960 (16)Fe1—N102.0845 (16)
Co1—C81.9076 (17)Fe1—N112.0960 (16)
Co1—N151.9693 (13)Fe1—N92.1067 (16)
Co1—N161.9762 (15)N1—C11.144 (2)
Co2—C31.8744 (17)N2—C21.144 (2)
Co2—C41.8822 (17)N3—C31.147 (2)
Co2—C51.8975 (17)N4—C41.147 (2)
Co2—C11.9044 (16)N5—C51.149 (2)
Co2—N131.9652 (15)N6—C61.148 (2)
Co2—N141.9665 (14)N7—C71.156 (2)
Fe1—N22.0365 (14)N8—C81.146 (2)
C1—N1—Fe1171.17 (13)N4—C4—Co2178.90 (17)
C2—N2—Fe1170.94 (13)N5—C5—Co2176.80 (15)
N1—C1—Co2171.05 (13)N6—C6—Co1174.75 (15)
N2—C2—Co1176.64 (14)N7—C7—Co1178.49 (16)
N3—C3—Co2178.00 (15)N8—C8—Co1176.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N70.822.343.143 (2)166.6
O1—H1B···N30.822.122.939 (2)172.2
O2—H2A···N8i0.822.333.118 (3)162.6
O2—H2B···N40.822.162.970 (2)169.6
O3A—H3A···O2ii0.822.222.971 (3)153.3
O3A—H3B···O10.822.122.930 (3)168.9
O3B—H3C···O10.851.972.823 (16)178.8
O3B—H3D···O2ii0.902.112.889 (18)144.2
O4A—H4A···N6iii0.842.112.930 (6)165.0
O4A—H4B···N50.822.132.870 (4)150.8
O4B—H4D···N50.822.092.848 (4)153.0
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y+1, z+1.
 

Acknowledgements

The work was supported by the University Natural Science Foundation of China Jiangsu Province (No. 07KJB150030).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrewer, C. T., Brewer, G., Butcher, R. J., Carpenter, E. E., Schmiedekamp, A. M. & Viragh, C. (2007). Dalton Trans. pp. 295–298.  Web of Science CSD CrossRef Google Scholar
First citationChen, X. B., Li, Y. Z. & You, X. Z. (2006). Appl. Organomet. Chem. 20, 305–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationColacio, E., Debdoubi, A., Kivekäs, R. & Rodríguez, A. (2005). Eur. J. Inorg. Chem. pp. 2860–2868.  Web of Science CSD CrossRef Google Scholar
First citationColacio, E., Domínguez-Vera, J. M., Lloret, F., Moreno Sánchez, J. M., Kivekäs, R., Rodríguez, A. & Sillanpää, R. (2003). Inorg. Chem. 42, 4209–4214.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFerlay, S., Malleh, T., Ouakès, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701–703.  CrossRef CAS Web of Science Google Scholar
First citationFernández-Armas, S., Mesa, J. L., Pizarro, J. L., Arriortua, M. I. & Roji, T. (2007). Mater. Res. Bull. 42, 544–552.  Google Scholar
First citationGoodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L. & Tucker, M. G. (2008). Science, 319, 794–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuo, Y., Feng, Y. H., Liu, Z. Q. & Liao, D. Z. (2007). J. Coord. Chem. 60, 2713–2720.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalbauer, K., Görls, H. & Imhof, W. (2008). Inorg. Chem. Commun. 11, 1177–1180.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, X., Lu, C. Z., Yuan, D. Q., Chen, S. M. & Chen, J. T. (2005). Eur. J. Inorg. Chem. pp. 2181–2188.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKosaka, W., Imoto, K., Tsunobuchi, Y. & Ohkoshi, S. I. (2009). Inorg. Chem. 48, 4604–4606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, H., Zhang, C., Xu, C., Zhang, H., Shen, X., Wu, B., Zhu, Y., Wu, Q. & Wang, H. (2005). Inorg. Chim. Acta, 358, 1934–1942.  Web of Science CSD CrossRef CAS Google Scholar
First citationOvergaard, J., Rentschler, E., Timco, G. A. & Larsen, F. K. (2004). ChemPhysChem, 5, 1755–1761.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParedes-García, V., Venegas-Yazigi, D., Latorre, R. O. & Spodine, E. (2006). Polyhedron, 25, 2026–2032.  Google Scholar
First citationPhillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. (2008). Angew. Chem. Int. Ed. 47, 1396–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationReguera, L., Balmaseda, J., del Castillo, L. F. & Reguera, E. (2008). J. Phys. Chem. C, 112, 5589–5597.  Web of Science CrossRef CAS Google Scholar
First citationReguera, L., Balmaseda, J., Krap, C. P. & Reguera, E. (2008). J. Phys. Chem. C, 112, 10490–10501.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodriguez, A., Sakiyama, H., Masciocchi, N., Galli, S., Gálvez, N., Lloret, F. & Colacio, E. (2005). Inorg. Chem. 44, 8399–8406.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodríguez-Diéguez, A., Kivekäs, R., Sakiyama, H., Debdoubi, A. & Colacio, E. (2007). Dalton Trans. pp. 2145–2149.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, L. H., Liu, S. X., Gao, C. Y., Cao, R., Cao, J. F., Sun, C. Y. & Su, Z. M. (2007). Inorg. Chem. 46, 7782–7788.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, J. H., Xu, J. Q., Yang, Q. X., Pan, L. Y., Wang, T. G., Lü, C. H. & Ma, T. H. (2003). J. Mol. Struct. 658, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, Y. G., Guo, D., Liu, Y., He, C. & Duan, C. Y. (2008). Chem. Commun. pp. 5725–5727.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1033-m1034
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds