metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1035-m1036

Poly[[(μ2-benzene-1,4-di­carboxyl­ato-κ4O1,O1′:O4,O4′)(μ2-di-4-pyridyldiazene-κ2N1:N1′)cobalt(II)] N,N-di­methyl­formamide disolvate hemihydrate]

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 5 July 2009; accepted 29 July 2009; online 8 August 2009)

In the title compound, {[Co(C8H4O4)(C10H8N4)]·2C3H7NO·0.5H2O}n, the CoII atom is six-coordinated by four O atoms from two benzene-1,4-dicarboxyl­ate (H2bdc2−) groups and two N atoms from two 4,4′-azopyridine (4,4′-azpy, or di-4-pyridyldiazene) ligands, leading to a distorted octa­hedral geometry. The structure consists of two-dimensional corrugated sheets with a 44 topology in an …ABAB… packing pattern stacking along the a axis. The separation of the adjacent corrugated sheets is ca. 8.561 (2)  Å (Co⋯Co distance) along the a axis. The uncoordinated water molecule is half-occupied. The crystal structure is stabilized by O—H⋯N and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For background to metal-organic framework (MOF) materials, see: Halder & Kepert (2002[Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2002). Science, 298, 1762-1765.]); Murray & Cashion (2002[Murray, K. S. & Cashion, J. D. (2002). Science, 298, 1762-1765.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]); Rowsell et al. (2005[Rowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. (2005). Science, 309, 1350-1354.]); Seo et al. (2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982-986.]). For compounds containing H2bdc or 4,4′-azpy ligands, see: Halder et al. (2005[Halder, G. J. & Kepert, C. J. (2005). Aust. J. Chem. 58, 311-314.]); Jia (2007[Jia, C.-X. (2007). Acta Cryst. E63, m615-m616.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H4O4)(C10H8N4)]·2C3H7NO·0.5H2O

  • Mr = 562.45

  • Orthorhombic, F d d 2

  • a = 32.441 (4) Å

  • b = 34.138 (4) Å

  • c = 10.1972 (12) Å

  • V = 11293 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.88 (expected range = 0.906–0.949)

  • 21948 measured reflections

  • 5500 independent reflections

  • 4262 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.134

  • S = 1.07

  • 5500 reflections

  • 335 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2564 Friedel pairs

  • Flack parameter: 0.04 (2)

Table 1
Selected geometric parameters (Å, °)

N1—Co1 2.079 (4)
N4—Co1i 2.062 (4)
O1—Co1 2.153 (3)
O2—Co1 2.153 (3)
O3—Co1iv 2.059 (3)
O4—Co1iv 2.353 (3)
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}]; (iii) x, y, z+1; (iv) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N5ii 0.85 2.32 2.932 (7) 129
C7—H7⋯O7 0.93 2.30 3.126 (7) 147
C16—H16⋯O3 0.93 2.48 2.791 (4) 100
C17—H17⋯O1 0.93 2.49 2.800 (4) 100
C19—H19C⋯O1iv 0.96 2.37 3.150 (6) 138
C23—H23A⋯O6v 0.96 1.71 2.624 (5) 158
Symmetry codes: (ii) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (v) [-x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal organic framework (MOF) materials have attracted much attention due to their potential functionalities such as gas storage (Rosi et al., 2003; Rowsell et al., 2005), sensing (Halder et al., 2002), and catalysis (Seo et al., 2000). The organic ligands, especially, benzene-1,4-dicarboxylate (H2bdc) and 4,4'-azopyridine (4,4'-azpy), play a great role on constructing the topological architectures of MOFs (Jia, 2007; Halder et al., 2005). Here we employed H2bdc and 4,4'-azpy as mixed ligands to bridge the CoII atom, obtaining the title compound by solvothermal synthesis.

In the structure of the title compound, each CoII atom, lying on an inversion center, is coordinated by four oxygen atoms from two H2BDC groups and two nitrogen atoms from two 4,4'-azpy ligands, exhibiting a slightly distorted octahedral geometry (Fig. 1). The bond lengths of Co—O range from 2.059 (3) to 2.353 (3) Å, while the ones of Co—N are 2.079 (4) Å for Co1—N1 and 2.062 (4) Å for Co1—N4, respectively (Table 1). The CoII centers are linked by H2bdc groups into one-dimensional infinite zigzag chains along the b axis in the bc plane. Then, the chains are further linked by 4,4'- azpy ligands along the c axis, resulting in two-dimensional corrugated sheets with 44 topology. These corrugated sheets without interpenetration are stacking along the a axis in an ABAB packing mode (Fig. 2). The torsion angle of the adjacent sheets is ca. 45 ° in the bc plane, while the separation between adjacent corrugated sheets is ca. 8.56 Å (Co···Co distance) along the a axis.

The crystal structure is stabilized by O—H···N and C—H···O hydrogen bonding interactions (Table 2).

Related literature top

For background to metal-organic framework (MOF) materials, see: Halder et al. (2002); Murray & Cashion (2002); Rosi et al. (2003); Rowsell et al. (2005); Seo et al. (2000). For compounds containing H2bdc or 4,4'-azpy ligands, see: Halder et al. (2005); Jia (2007).

Experimental top

A mixture of CoCl2.6H2O (23.8 mg, 0.1 mmol), H2bdc (16.6 mg, 0.1 mmol), 4,4'-azpy (18.4 mg, 0.1 mmol) and DMF (N, N-dimethylformamide) (10 ml) was stirred for 15 min at room temperature and then transferred into a Teflon-lined stainless-steel vessel. The mixture was heated at 433 K for two days under autogenous pressure. After cooling the resulting solution to room temperature with the rate of 10 °C/h, purple and layer-shaped crystals were obtained. Analysis calculated for Co2N12O13C48H54: C 51.25, H 4.80, N 14.93%; found: C 51.16, H 4.65, N 14.92%.

Refinement top

The C(H) atoms of the H2bdc ligands, 4,4'-azpy ligands, and solvent DMF molecules were all placed in calculated position [C—H = 0.93 Å or 0.96 Å] and refined using a riding model, with Uĩso(H) = 1.2Ueq(C) or Uĩso(H) = 1.5Ueq(C). The O(H) atoms of the water molecules were located in a difference Fourier map and refined as riding [O—H = 0.85 Å], with Uĩso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Displacement ellipsoids are drawn at the 30% probablity level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the stacking without interpenetration of sheets along the a axis. Hydrogen atoms, solvent DMF molecules and water molecules are not involved for clarity.
Poly[[(µ2-benzene-1,4-dicarboxylato- κ4O1,O1':O4,O4')(µ2-di-4- pyridyldiazene-κ2N1:N1')cobalt(II)] N,N-dimethylformamide disolvate hemihydrate] top
Crystal data top
[Co(C8H4O4)(C10H8N4)]·2C3H7NO·0.5H2OF(000) = 4672
Mr = 562.45Dx = 1.323 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 3875 reflections
a = 32.441 (4) Åθ = 2.2–24.4°
b = 34.138 (4) ŵ = 0.66 mm1
c = 10.1972 (12) ÅT = 291 K
V = 11293 (2) Å3Pale, purple
Z = 160.25 × 0.20 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5500 independent reflections
Radiation source: sealed tube4262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 4040
Tmin = 0.84, Tmax = 0.88k = 4241
21948 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5500 reflectionsΔρmax = 0.35 e Å3
335 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 2564 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
[Co(C8H4O4)(C10H8N4)]·2C3H7NO·0.5H2OV = 11293 (2) Å3
Mr = 562.45Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 32.441 (4) ŵ = 0.66 mm1
b = 34.138 (4) ÅT = 291 K
c = 10.1972 (12) Å0.25 × 0.20 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4262 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.88Rint = 0.062
21948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.134Δρmax = 0.35 e Å3
S = 1.07Δρmin = 0.36 e Å3
5500 reflectionsAbsolute structure: Flack (1983), 2564 Freidel pairs
335 parametersAbsolute structure parameter: 0.04 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.52950 (14)0.07179 (14)0.9140 (5)0.0483 (11)
H10.52310.05170.97240.058*
C20.55879 (14)0.06426 (13)0.8190 (5)0.0469 (10)
H20.57190.04010.81530.056*
C30.56831 (13)0.09346 (13)0.7291 (5)0.0440 (10)
C40.54745 (14)0.12918 (13)0.7419 (5)0.0460 (11)
H40.55290.14980.68470.055*
C50.51897 (13)0.13334 (13)0.8397 (6)0.0543 (12)
H50.50500.15710.84520.065*
C60.51064 (14)0.08224 (13)0.3277 (5)0.0471 (10)
H60.49000.06340.32790.057*
C70.53796 (13)0.08165 (13)0.4260 (5)0.0447 (11)
H70.53550.06320.49270.054*
C80.57026 (13)0.10881 (12)0.4282 (4)0.0393 (10)
C90.57199 (12)0.13488 (13)0.3217 (5)0.0447 (10)
H90.59320.15310.31510.054*
C100.54305 (13)0.13299 (13)0.2316 (4)0.0448 (10)
H100.54490.15070.16250.054*
C110.43039 (14)0.16957 (14)1.0169 (4)0.0438 (10)
C120.40496 (7)0.20614 (7)0.9897 (3)0.0409 (10)
C130.41490 (7)0.24214 (8)1.0450 (3)0.0467 (11)
H130.43770.24441.09960.056*
C140.39070 (9)0.27481 (6)1.0187 (3)0.0460 (11)
H140.39730.29891.05570.055*
C150.35657 (8)0.27148 (7)0.9370 (3)0.0463 (11)
C160.34663 (7)0.23548 (8)0.8817 (3)0.0437 (10)
H160.32380.23330.82710.052*
C170.37083 (8)0.20281 (6)0.9081 (3)0.0419 (10)
H170.36420.17870.87110.050*
C180.32954 (13)0.30541 (13)0.9112 (4)0.0416 (10)
C190.34469 (15)0.31385 (14)0.5392 (4)0.0459 (11)
H19A0.36590.29650.57000.069*
H19B0.31890.30680.57900.069*
H19C0.35160.34030.56230.069*
C200.32794 (13)0.34669 (13)0.3270 (5)0.0469 (11)
H20A0.34270.34920.24590.070*
H20B0.33360.36890.38180.070*
H20C0.29890.34540.30940.070*
C210.35209 (14)0.27414 (13)0.3303 (5)0.0465 (10)
H21A0.37770.26320.34870.056*
C220.46065 (14)0.18349 (13)0.4854 (5)0.0464 (11)
H22A0.44940.17450.40370.070*
H22B0.44320.17530.55610.070*
H22C0.48770.17260.49710.070*
C230.44909 (13)0.24827 (14)0.6023 (4)0.0464 (11)
H23A0.47250.25570.65430.070*
H23B0.43130.23170.65310.070*
H23C0.43430.27130.57570.070*
C240.47026 (13)0.24724 (14)0.3600 (4)0.0453 (10)
H24A0.45470.26870.33360.054*
N10.50968 (12)0.10580 (11)0.9280 (4)0.0501 (10)
N20.59730 (11)0.08629 (11)0.6303 (4)0.0464 (9)
N30.59939 (11)0.11042 (11)0.5299 (4)0.0464 (9)
N40.51102 (12)0.10792 (11)0.2297 (4)0.0477 (10)
N50.34115 (11)0.31054 (11)0.3948 (4)0.0462 (9)
N60.46332 (12)0.22667 (11)0.4842 (4)0.0485 (9)
O10.41954 (9)0.13759 (9)0.9692 (3)0.0463 (7)
O20.46054 (10)0.17289 (9)1.0912 (3)0.0490 (8)
Co10.467820 (19)0.110280 (18)1.08164 (6)0.04633 (17)
O30.30051 (9)0.30257 (8)0.8275 (3)0.0450 (7)
O40.33472 (10)0.33757 (9)0.9713 (3)0.0470 (7)
O50.32930 (9)0.25672 (9)0.2523 (3)0.0490 (8)
O60.49957 (10)0.23314 (9)0.2912 (3)0.0495 (8)
O70.49198 (17)0.02737 (16)0.6249 (6)0.0438 (15)0.50
H7A0.47790.04400.66770.053*0.50
H7C0.51470.02330.66430.053*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (3)0.041 (2)0.049 (3)0.003 (2)0.011 (2)0.018 (2)
C20.052 (2)0.045 (2)0.044 (2)0.0129 (19)0.004 (2)0.011 (2)
C30.038 (2)0.045 (2)0.049 (3)0.0034 (19)0.0015 (19)0.013 (2)
C40.046 (2)0.034 (2)0.058 (3)0.0052 (19)0.008 (2)0.011 (2)
C50.039 (2)0.041 (2)0.083 (3)0.0057 (19)0.018 (3)0.023 (3)
C60.046 (2)0.051 (3)0.044 (2)0.0026 (19)0.014 (2)0.013 (2)
C70.041 (2)0.044 (3)0.049 (3)0.0074 (19)0.0096 (19)0.0190 (19)
C80.034 (2)0.037 (2)0.047 (2)0.0005 (17)0.0021 (17)0.0160 (18)
C90.046 (2)0.049 (2)0.039 (2)0.0168 (19)0.004 (2)0.016 (2)
C100.045 (2)0.046 (2)0.043 (2)0.002 (2)0.001 (2)0.014 (2)
C110.043 (2)0.049 (3)0.039 (2)0.0040 (19)0.007 (2)0.0094 (19)
C120.036 (2)0.041 (2)0.046 (2)0.0004 (17)0.0028 (19)0.0029 (19)
C130.048 (2)0.041 (2)0.051 (3)0.0011 (19)0.019 (2)0.0003 (19)
C140.042 (2)0.052 (3)0.044 (2)0.011 (2)0.0092 (19)0.011 (2)
C150.053 (3)0.048 (3)0.038 (2)0.006 (2)0.015 (2)0.008 (2)
C160.039 (2)0.053 (3)0.039 (2)0.0139 (19)0.0165 (18)0.002 (2)
C170.033 (2)0.045 (2)0.048 (3)0.0103 (18)0.0037 (18)0.0088 (19)
C180.042 (2)0.035 (2)0.048 (3)0.0035 (17)0.0090 (19)0.0017 (19)
C190.050 (2)0.047 (3)0.040 (2)0.011 (2)0.0153 (19)0.0161 (19)
C200.048 (2)0.045 (2)0.048 (2)0.0133 (18)0.025 (2)0.024 (2)
C210.050 (2)0.048 (2)0.041 (2)0.0162 (19)0.022 (2)0.011 (2)
C220.048 (2)0.045 (2)0.046 (2)0.016 (2)0.019 (2)0.018 (2)
C230.041 (2)0.052 (3)0.046 (3)0.0109 (19)0.0137 (19)0.016 (2)
C240.044 (2)0.047 (2)0.045 (2)0.0162 (19)0.0128 (19)0.0123 (19)
N10.045 (2)0.047 (2)0.058 (3)0.0075 (18)0.0063 (19)0.0187 (19)
N20.042 (2)0.042 (2)0.056 (2)0.0049 (16)0.0049 (17)0.0180 (17)
N30.046 (2)0.049 (2)0.0442 (19)0.0205 (17)0.0080 (16)0.0169 (17)
N40.055 (2)0.049 (2)0.039 (2)0.0110 (18)0.0065 (18)0.0142 (17)
N50.050 (2)0.044 (2)0.045 (2)0.0143 (17)0.0165 (17)0.0115 (17)
N60.048 (2)0.047 (2)0.051 (2)0.0154 (17)0.0111 (17)0.0098 (18)
O10.0475 (17)0.0440 (18)0.0475 (18)0.0113 (13)0.0030 (14)0.0084 (15)
O20.0545 (19)0.0475 (17)0.0449 (17)0.0085 (14)0.0040 (16)0.0148 (16)
Co10.0466 (3)0.0478 (3)0.0446 (3)0.0004 (3)0.0022 (3)0.0112 (3)
O30.0485 (16)0.0416 (16)0.0449 (16)0.0065 (13)0.0155 (15)0.0075 (15)
O40.0540 (18)0.0358 (16)0.0512 (18)0.0083 (14)0.0009 (15)0.0047 (14)
O50.0458 (17)0.0489 (19)0.0522 (19)0.0146 (13)0.0144 (14)0.0177 (15)
O60.0505 (17)0.0525 (18)0.0456 (18)0.0203 (15)0.0137 (14)0.0169 (14)
O70.040 (3)0.038 (3)0.053 (4)0.010 (2)0.015 (3)0.014 (3)
Geometric parameters (Å, º) top
C1—N11.335 (6)C18—O41.268 (5)
C1—C21.381 (6)C18—O31.275 (5)
C1—H10.9300C19—N51.482 (6)
C2—C31.389 (6)C19—H19A0.9600
C2—H20.9300C19—H19B0.9600
C3—N21.399 (6)C19—H19C0.9600
C3—C41.401 (6)C20—N51.478 (5)
C4—C51.367 (7)C20—H20A0.9600
C4—H40.9300C20—H20B0.9600
C5—N11.336 (6)C20—H20C0.9600
C5—H50.9300C21—O51.238 (5)
C6—N41.329 (6)C21—N51.449 (6)
C6—C71.338 (6)C21—H21A0.9300
C6—H60.9300C22—N61.477 (6)
C7—C81.399 (6)C22—H22A0.9600
C7—H70.9300C22—H22B0.9600
C8—N31.404 (6)C22—H22C0.9600
C8—C91.405 (6)C23—N61.486 (6)
C9—C101.315 (6)C23—H23A0.9600
C9—H90.9300C23—H23B0.9600
C10—N41.346 (6)C23—H23C0.9600
C10—H100.9300C24—O61.276 (5)
C11—O21.242 (6)C24—N61.465 (6)
C11—O11.246 (6)C24—H24A0.9300
C11—C121.522 (5)N1—Co12.079 (4)
C12—C131.3900N2—N31.316 (5)
C12—C171.3900N4—Co1i2.062 (4)
C13—C141.3900O1—Co12.153 (3)
C13—H130.9300O2—Co12.153 (3)
C14—C151.3900Co1—O3ii2.059 (3)
C14—H140.9300Co1—N4iii2.062 (4)
C15—C161.3900Co1—O4ii2.353 (3)
C15—C181.477 (5)O3—Co1iv2.059 (3)
C16—C171.3900O4—Co1iv2.353 (3)
C16—H160.9300O7—H7A0.8499
C17—H170.9300O7—H7C0.8501
N1—C1—C2124.6 (4)H19A—C19—H19C109.5
N1—C1—H1117.7H19B—C19—H19C109.5
C2—C1—H1117.7N5—C20—H20A109.5
C1—C2—C3118.8 (4)N5—C20—H20B109.5
C1—C2—H2120.6H20A—C20—H20B109.5
C3—C2—H2120.6N5—C20—H20C109.5
C2—C3—N2119.9 (4)H20A—C20—H20C109.5
C2—C3—C4117.1 (4)H20B—C20—H20C109.5
N2—C3—C4123.0 (4)O5—C21—N5123.8 (4)
C5—C4—C3119.0 (4)O5—C21—H21A118.1
C5—C4—H4120.5N5—C21—H21A118.1
C3—C4—H4120.5N6—C22—H22A109.5
N1—C5—C4124.8 (4)N6—C22—H22B109.5
N1—C5—H5117.6H22A—C22—H22B109.5
C4—C5—H5117.6N6—C22—H22C109.5
N4—C6—C7124.5 (4)H22A—C22—H22C109.5
N4—C6—H6117.7H22B—C22—H22C109.5
C7—C6—H6117.7N6—C23—H23A109.5
C6—C7—C8119.9 (4)N6—C23—H23B109.5
C6—C7—H7120.1H23A—C23—H23B109.5
C8—C7—H7120.1N6—C23—H23C109.5
C7—C8—N3122.8 (4)H23A—C23—H23C109.5
C7—C8—C9115.9 (4)H23B—C23—H23C109.5
N3—C8—C9121.3 (4)O6—C24—N6114.1 (4)
C10—C9—C8118.7 (4)O6—C24—H24A122.9
C10—C9—H9120.6N6—C24—H24A122.9
C8—C9—H9120.6C1—N1—C5115.6 (4)
C9—C10—N4126.3 (4)C1—N1—Co1117.3 (3)
C9—C10—H10116.9C5—N1—Co1127.1 (3)
N4—C10—H10116.9N3—N2—C3119.0 (4)
O2—C11—O1122.7 (4)N2—N3—C8121.1 (3)
O2—C11—C12117.6 (4)C6—N4—C10114.6 (4)
O1—C11—C12119.6 (4)C6—N4—Co1i124.7 (3)
O2—C11—Co161.4 (2)C10—N4—Co1i120.7 (3)
O1—C11—Co161.4 (2)C21—N5—C20125.1 (4)
C12—C11—Co1174.3 (3)C21—N5—C19119.8 (4)
C13—C12—C17120.0C20—N5—C19115.0 (4)
C13—C12—C11121.7 (2)C24—N6—C22119.6 (4)
C17—C12—C11118.3 (2)C24—N6—C23120.7 (3)
C12—C13—C14120.0C22—N6—C23118.1 (4)
C12—C13—H13120.0C11—O1—Co188.0 (3)
C14—C13—H13120.0C11—O2—Co188.2 (3)
C15—C14—C13120.0O3ii—Co1—N4iii100.02 (14)
C15—C14—H14120.0O3ii—Co1—N195.89 (14)
C13—C14—H14120.0N4iii—Co1—N196.03 (14)
C16—C15—C14120.0O3ii—Co1—O2156.86 (12)
C16—C15—C18118.9 (2)N4iii—Co1—O294.61 (14)
C14—C15—C18121.0 (2)N1—Co1—O2100.31 (14)
C17—C16—C15120.0O3ii—Co1—O1101.14 (13)
C17—C16—H16120.0N4iii—Co1—O1154.34 (15)
C15—C16—H16120.0N1—Co1—O196.06 (14)
C16—C17—C12120.0O2—Co1—O160.96 (12)
C16—C17—H17120.0O3ii—Co1—O4ii59.18 (11)
C12—C17—H17120.0N4iii—Co1—O4ii92.07 (13)
O4—C18—O3119.2 (4)N1—Co1—O4ii154.85 (14)
O4—C18—C15120.9 (4)O2—Co1—O4ii102.73 (12)
O3—C18—C15119.9 (3)O1—Co1—O4ii86.45 (11)
N5—C19—H19A109.5C18—O3—Co1iv97.3 (2)
N5—C19—H19B109.5C18—O4—Co1iv84.1 (3)
H19A—C19—H19B109.5H7A—O7—H7C109.5
N5—C19—H19C109.5
Symmetry codes: (i) x, y, z1; (ii) x+3/4, y1/4, z+1/4; (iii) x, y, z+1; (iv) x+3/4, y+1/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N5ii0.852.322.932 (7)129
C7—H7···O70.932.303.126 (7)147
C16—H16···O30.932.482.791 (4)100
C17—H17···O10.932.492.800 (4)100
C19—H19C···O1iv0.962.373.150 (6)138
C23—H23A···O6v0.961.712.624 (5)158
Symmetry codes: (ii) x+3/4, y1/4, z+1/4; (iv) x+3/4, y+1/4, z1/4; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(C10H8N4)]·2C3H7NO·0.5H2O
Mr562.45
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)291
a, b, c (Å)32.441 (4), 34.138 (4), 10.1972 (12)
V3)11293 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.25 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.84, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
21948, 5500, 4262
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.134, 1.07
No. of reflections5500
No. of parameters335
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.36
Absolute structureFlack (1983), 2564 Freidel pairs
Absolute structure parameter0.04 (2)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
N1—Co12.079 (4)Co1—N4iii2.062 (4)
N4—Co1i2.062 (4)Co1—O4ii2.353 (3)
O1—Co12.153 (3)O3—Co1iv2.059 (3)
O2—Co12.153 (3)O4—Co1iv2.353 (3)
Co1—O3ii2.059 (3)
N2—N3—C8121.1 (3)
Symmetry codes: (i) x, y, z1; (ii) x+3/4, y1/4, z+1/4; (iii) x, y, z+1; (iv) x+3/4, y+1/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N5ii0.852.322.932 (7)129
C7—H7···O70.932.303.126 (7)147
C16—H16···O30.932.482.791 (4)100
C17—H17···O10.932.492.800 (4)100
C19—H19C···O1iv0.962.373.150 (6)138
C23—H23A···O6v0.961.712.624 (5)158
Symmetry codes: (ii) x+3/4, y1/4, z+1/4; (iv) x+3/4, y+1/4, z1/4; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHalder, G. J. & Kepert, C. J. (2005). Aust. J. Chem. 58, 311–314.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2002). Science, 298, 1762–1765.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJia, C.-X. (2007). Acta Cryst. E63, m615–m616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurray, K. S. & Cashion, J. D. (2002). Science, 298, 1762–1765.  Web of Science PubMed Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. (2005). Science, 309, 1350–1354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1035-m1036
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds