metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2-[1-(2-Pyridylmethyl­imino)eth­yl]phenolato}bis­­[azido­copper(II)]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 10 July 2009; accepted 31 July 2009; online 26 August 2009)

The title compound, [Cu2(C14H13N2O)2(N3)2], was synthesized by the reaction of Cu(NO3)2·3H2O with the Schiff base 2-[1-(2-pyridylmethyl­imino)eth­yl]phenol (HL) in methanol–water solution, adding NaN3 as the bridging ligand. The asymmetric unit contains one half-mol­ecule, the other half being generated by the inversion center. Each CuII atom shows a slightly distorted trigonal-pyramidal geometry formed by two N atoms and one O atom from one Schiff base ligand, by another O atom of a second Schiff base ligand and by an azide N atom. The crystal structure is stabilized by intermolecular C—H⋯N hydrogen bonds.

Related literature

For the potential applications in catalysis and enzymatic reactions, magnetism and mol­ecular architecture of transition metal compounds containing Schiff base ligands, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.]). For the synthesis, see: Pointeau et al. (1986[Pointeau, P., Patin, H., Mousser, A. & le Marouile, J.-Y. (1986). J. Organomet. Chem. 312, 263-276.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H13N2O)2(N3)2]

  • Mr = 661.67

  • Monoclinic, P 21 /n

  • a = 10.1066 (12) Å

  • b = 8.0545 (10) Å

  • c = 16.7027 (18) Å

  • β = 96.251 (1)°

  • V = 1351.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 298 K

  • 0.20 × 0.12 × 0.09 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.737, Tmax = 0.868

  • 6641 measured reflections

  • 2379 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.062

  • S = 1.02

  • 2379 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N5i 0.97 2.55 3.399 (5) 147
C14—H14⋯N3 0.93 2.55 3.052 (4) 114
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal compounds containing Schiff base ligands have been of great interest since many years. These compounds play an important role in the development of coordination chemistry related to their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (You & Zhu, 2004; Li & Zhang, 2004). We have focused on the synthesis of Schiff base complexes which is formed by 2-(pyridin-2-ylethyliminomethyl)phenol (HL1) and some metal salts. To enrich our studies on schiff bases, we used HL (Pointeau, et al., 1986) instead of HL1 and gained the title compound. So, we reported this dinuclear copper(II) complex here.

The structure analyses show that complex crystallizes in monoclinic space group P21/n. The asymmetric unit contains only half of the unique molecule, and the other half is related by the inversion center (Fig.1). The molecule of the title compound is composed of two CuII atoms, two schiff base ligand 2-[1-(pyridin-2-ylmethylimino)-ethyl]-phenol and two azidos. Each CuII atom shows a slightly distorted trigonal-bipyramidal geometry formed by two N atoms and one O atom from one schiff base ligand (You & Zhu, 2004), the another O atom of the second schiff base, together with another N atom from azido.

In the structure, there are intra and intermolecular C—H···N hydrogen bond interactions (Table 2).

Related literature top

For the potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture of tTransition metal compounds containing Schiff base ligands, see: Li & Zhang (2004); You & Zhu (2004). Forthe synthesis, see: Pointeau et al. (1986).

Experimental top

The title compound was synthesized by Cu(NO3)2.3H2O, schiff base ligand 2-[1-(pyridin-2'-ylmethylimino)-ethyl]-phenol and sodium azide. All chemicals used (reagent grade) were commercially available. 2'-hydroxyacetophenone(0.136 g, 1 mmol) was dissolved in ethanol (5 mL) and ethanol solution (5 ml) containing 2-aminoethylpyri dine (0.108 g, 1 mmol) was added slowly with stirring. The resulting yellow solution was continuously stirred for about 30 min. at room temperature, and then Cu(NO3)2.3H2O (0.241 g, 1 mmol) and sodium azide (0.13 g, 2 mmol) in aqueous solution (5 ml) was added with stirring homogeneously. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.93-0.97Å and Uiso(H) =1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis{µ-2-[1-(2-Pyridylmethylimino)ethyl]phenolato}bis[azidocopper(II)] top
Crystal data top
[Cu2(C14H13N2O)2(N3)2]F(000) = 676
Mr = 661.67Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13380 reflections
a = 10.1066 (12) Åθ = 3.0–27.6°
b = 8.0545 (10) ŵ = 1.62 mm1
c = 16.7027 (18) ÅT = 298 K
β = 96.251 (1)°Prism, dark green
V = 1351.6 (3) Å30.20 × 0.12 × 0.09 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2379 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.3°
Thin–slice ω scansh = 127
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.737, Tmax = 0.868l = 1919
6641 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0192P)2]
where P = (Fo2 + 2Fc2)/3
2379 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu2(C14H13N2O)2(N3)2]V = 1351.6 (3) Å3
Mr = 661.67Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1066 (12) ŵ = 1.62 mm1
b = 8.0545 (10) ÅT = 298 K
c = 16.7027 (18) Å0.20 × 0.12 × 0.09 mm
β = 96.251 (1)°
Data collection top
Rigaku SCXmini
diffractometer
2379 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1720 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.868Rint = 0.042
6641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
2379 reflectionsΔρmin = 0.33 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00744 (4)0.69734 (4)0.00638 (2)0.03343 (13)
N10.0002 (2)0.6887 (3)0.12413 (13)0.0349 (6)
N20.1427 (2)0.8584 (3)0.01237 (14)0.0324 (6)
N30.0263 (3)0.7564 (3)0.10588 (15)0.0448 (7)
N40.1145 (3)0.7080 (3)0.14292 (14)0.0391 (7)
N50.1975 (3)0.6669 (4)0.18111 (16)0.0579 (9)
O10.14375 (17)0.5289 (2)0.01510 (10)0.0333 (5)
C10.0637 (3)0.6042 (5)0.26461 (17)0.0594 (10)
H1A0.10240.69320.29750.089*
H1B0.10290.50080.28340.089*
H1C0.03050.60090.26780.089*
C20.0898 (3)0.6322 (4)0.17764 (17)0.0374 (8)
C30.2216 (3)0.5861 (4)0.15511 (17)0.0359 (8)
C40.2396 (3)0.5298 (4)0.07618 (17)0.0347 (8)
C50.3666 (3)0.4732 (4)0.06349 (19)0.0417 (8)
H50.37880.42580.01410.050*
C60.4741 (3)0.4850 (4)0.1214 (2)0.0530 (9)
H60.55730.44770.11040.064*
C70.4584 (4)0.5521 (4)0.1957 (2)0.0583 (11)
H70.53140.56610.23400.070*
C80.3338 (4)0.5977 (4)0.21236 (19)0.0482 (9)
H80.32300.63790.26340.058*
C90.1311 (3)0.7385 (4)0.14550 (18)0.0443 (9)
H9A0.12170.79140.19800.053*
H9B0.18710.64130.14830.053*
C100.1947 (3)0.8571 (4)0.08326 (18)0.0366 (8)
C110.2990 (3)0.9584 (4)0.0981 (2)0.0496 (10)
H110.33320.95480.14750.060*
C120.3517 (3)1.0650 (4)0.0388 (2)0.0528 (10)
H120.42171.13500.04780.063*
C130.3000 (3)1.0671 (4)0.0340 (2)0.0473 (9)
H130.33521.13730.07520.057*
C140.1951 (3)0.9631 (4)0.04483 (19)0.0421 (8)
H140.15930.96580.09380.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0379 (2)0.0380 (2)0.0248 (2)0.0016 (2)0.00541 (15)0.00083 (19)
N10.0380 (16)0.0401 (16)0.0275 (14)0.0004 (13)0.0078 (11)0.0019 (13)
N20.0352 (16)0.0305 (15)0.0317 (15)0.0032 (11)0.0049 (12)0.0038 (11)
N30.0442 (18)0.061 (2)0.0314 (15)0.0104 (14)0.0125 (13)0.0084 (13)
N40.0471 (19)0.0414 (17)0.0282 (15)0.0024 (15)0.0017 (13)0.0035 (13)
N50.063 (2)0.066 (2)0.0480 (18)0.0109 (17)0.0234 (16)0.0012 (16)
O10.0343 (12)0.0404 (14)0.0245 (11)0.0027 (10)0.0009 (9)0.0022 (9)
C10.075 (3)0.076 (3)0.029 (2)0.009 (2)0.0094 (17)0.0074 (18)
C20.053 (2)0.0332 (19)0.0261 (18)0.0024 (16)0.0044 (16)0.0019 (14)
C30.042 (2)0.0366 (19)0.0282 (18)0.0008 (16)0.0008 (15)0.0049 (14)
C40.0376 (19)0.032 (2)0.0349 (19)0.0034 (14)0.0051 (15)0.0039 (14)
C50.039 (2)0.047 (2)0.0389 (19)0.0029 (17)0.0041 (15)0.0007 (16)
C60.039 (2)0.060 (2)0.058 (2)0.0060 (19)0.0008 (17)0.006 (2)
C70.047 (2)0.069 (3)0.053 (3)0.0019 (19)0.0188 (18)0.004 (2)
C80.061 (3)0.049 (2)0.033 (2)0.0034 (19)0.0043 (17)0.0018 (16)
C90.049 (2)0.053 (2)0.0342 (19)0.0045 (17)0.0166 (16)0.0016 (16)
C100.038 (2)0.035 (2)0.037 (2)0.0054 (15)0.0083 (15)0.0065 (15)
C110.048 (2)0.051 (3)0.051 (2)0.0052 (18)0.0162 (18)0.0071 (18)
C120.042 (2)0.052 (2)0.065 (3)0.0054 (18)0.0059 (19)0.016 (2)
C130.044 (2)0.039 (2)0.056 (2)0.0018 (17)0.0072 (17)0.0015 (17)
C140.046 (2)0.042 (2)0.038 (2)0.0022 (16)0.0022 (15)0.0026 (16)
Geometric parameters (Å, º) top
Cu1—O11.9278 (18)C4—C51.399 (4)
Cu1—N31.964 (2)C5—C61.377 (4)
Cu1—N11.978 (2)C5—H50.9300
Cu1—N22.007 (2)C6—C71.379 (4)
Cu1—O1i2.3799 (19)C6—H60.9300
N1—C21.287 (4)C7—C81.369 (4)
N1—C91.463 (3)C7—H70.9300
N2—C141.340 (4)C8—H80.9300
N2—C101.347 (3)C9—C101.503 (4)
N3—N41.204 (3)C9—H9A0.9700
N4—N51.156 (3)C9—H9B0.9700
O1—C41.328 (3)C10—C111.377 (4)
O1—Cu1i2.3799 (19)C11—C121.373 (4)
C1—C21.521 (4)C11—H110.9300
C1—H1A0.9600C12—C131.375 (4)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—C141.378 (4)
C2—C31.471 (4)C13—H130.9300
C3—C81.404 (4)C14—H140.9300
C3—C41.424 (4)
O1—Cu1—N395.73 (9)C5—C4—C3117.1 (3)
O1—Cu1—N190.30 (9)C6—C5—C4122.5 (3)
N3—Cu1—N1167.49 (11)C6—C5—H5118.7
O1—Cu1—N2171.51 (8)C4—C5—H5118.7
N3—Cu1—N292.50 (10)C5—C6—C7120.0 (3)
N1—Cu1—N282.03 (10)C5—C6—H6120.0
O1—Cu1—O1i85.08 (7)C7—C6—H6120.0
N3—Cu1—O1i99.74 (9)C8—C7—C6119.1 (3)
N1—Cu1—O1i91.66 (8)C8—C7—H7120.4
N2—Cu1—O1i91.47 (8)C6—C7—H7120.4
C2—N1—C9121.1 (2)C7—C8—C3122.4 (3)
C2—N1—Cu1127.0 (2)C7—C8—H8118.8
C9—N1—Cu1111.55 (18)C3—C8—H8118.8
C14—N2—C10118.1 (3)N1—C9—C10109.6 (2)
C14—N2—Cu1127.9 (2)N1—C9—H9A109.8
C10—N2—Cu1114.1 (2)C10—C9—H9A109.8
N4—N3—Cu1124.5 (2)N1—C9—H9B109.8
N5—N4—N3176.9 (3)C10—C9—H9B109.8
C4—O1—Cu1120.63 (17)H9A—C9—H9B108.2
C4—O1—Cu1i121.52 (17)N2—C10—C11122.2 (3)
Cu1—O1—Cu1i94.91 (7)N2—C10—C9115.8 (3)
C2—C1—H1A109.5C11—C10—C9122.0 (3)
C2—C1—H1B109.5C12—C11—C10119.1 (3)
H1A—C1—H1B109.5C12—C11—H11120.5
C2—C1—H1C109.5C10—C11—H11120.5
H1A—C1—H1C109.5C11—C12—C13119.4 (3)
H1B—C1—H1C109.5C11—C12—H12120.3
N1—C2—C3120.2 (3)C13—C12—H12120.3
N1—C2—C1122.2 (3)C12—C13—C14118.7 (3)
C3—C2—C1117.6 (3)C12—C13—H13120.7
C8—C3—C4118.5 (3)C14—C13—H13120.7
C8—C3—C2119.7 (3)N2—C14—C13122.6 (3)
C4—C3—C2121.9 (3)N2—C14—H14118.7
O1—C4—C5119.1 (3)C13—C14—H14118.7
O1—C4—C3123.8 (3)
O1—Cu1—N1—C220.2 (3)C1—C2—C3—C4149.0 (3)
N3—Cu1—N1—C298.8 (6)Cu1—O1—C4—C5146.9 (2)
N2—Cu1—N1—C2163.5 (3)Cu1i—O1—C4—C594.4 (3)
O1i—Cu1—N1—C2105.2 (3)Cu1—O1—C4—C332.9 (4)
O1—Cu1—N1—C9153.2 (2)Cu1i—O1—C4—C385.7 (3)
N3—Cu1—N1—C987.8 (5)C8—C3—C4—O1173.3 (3)
N2—Cu1—N1—C923.2 (2)C2—C3—C4—O16.6 (5)
O1i—Cu1—N1—C968.1 (2)C8—C3—C4—C56.5 (4)
N3—Cu1—N2—C142.0 (3)C2—C3—C4—C5173.6 (3)
N1—Cu1—N2—C14166.7 (3)O1—C4—C5—C6173.6 (3)
O1i—Cu1—N2—C14101.8 (2)C3—C4—C5—C66.2 (5)
N3—Cu1—N2—C10177.8 (2)C4—C5—C6—C71.1 (5)
N1—Cu1—N2—C1013.5 (2)C5—C6—C7—C83.6 (5)
O1i—Cu1—N2—C1078.0 (2)C6—C7—C8—C33.1 (5)
O1—Cu1—N3—N49.5 (3)C4—C3—C8—C72.1 (5)
N1—Cu1—N3—N4109.0 (5)C2—C3—C8—C7178.0 (3)
N2—Cu1—N3—N4172.6 (3)C2—N1—C9—C10158.1 (3)
O1i—Cu1—N3—N495.5 (3)Cu1—N1—C9—C1028.1 (3)
N3—Cu1—O1—C4129.3 (2)C14—N2—C10—C110.3 (4)
N1—Cu1—O1—C439.7 (2)Cu1—N2—C10—C11179.6 (2)
O1i—Cu1—O1—C4131.4 (2)C14—N2—C10—C9179.4 (3)
N3—Cu1—O1—Cu1i99.33 (9)Cu1—N2—C10—C90.8 (3)
N1—Cu1—O1—Cu1i91.64 (8)N1—C9—C10—N217.9 (4)
O1i—Cu1—O1—Cu1i0.0N1—C9—C10—C11161.8 (3)
C9—N1—C2—C3178.8 (3)N2—C10—C11—C120.2 (5)
Cu1—N1—C2—C38.5 (4)C9—C10—C11—C12179.4 (3)
C9—N1—C2—C13.6 (5)C10—C11—C12—C130.5 (5)
Cu1—N1—C2—C1169.1 (2)C11—C12—C13—C140.9 (5)
N1—C2—C3—C8151.1 (3)C10—N2—C14—C130.7 (4)
C1—C2—C3—C831.2 (4)Cu1—N2—C14—C13179.1 (2)
N1—C2—C3—C428.7 (4)C12—C13—C14—N21.0 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N5i0.972.553.399 (5)147
C14—H14···N30.932.553.052 (4)114
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C14H13N2O)2(N3)2]
Mr661.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.1066 (12), 8.0545 (10), 16.7027 (18)
β (°) 96.251 (1)
V3)1351.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.20 × 0.12 × 0.09
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.737, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
6641, 2379, 1720
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.062, 1.02
No. of reflections2379
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N5i0.972.553.399 (5)147
C14—H14···N30.932.553.052 (4)114
Symmetry code: (i) x, y+1, z.
 

References

First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPointeau, P., Patin, H., Mousser, A. & le Marouile, J.-Y. (1986). J. Organomet. Chem. 312, 263–276.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754–2760.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds