metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­pyridine­bis­(tri­chloro­acetato)nickel(II)

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 27 July 2009; accepted 29 July 2009; online 8 August 2009)

The title compound, [Ni(C2Cl3O2)2(C5H5N)4], was prepared by the reaction of pyridine and trichloro­acetatonickel(II) in ethanol solution at room temperature. The NiII atom is located on a twofold rotation axis and has a slightly distorted octa­hedral coordination made up of four N atoms of the pyridine ligands and two O atoms of trichloro­acetate anions. The mol­ecular structure and packing are stabilized by intra- and inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the structural and magnetic properties of transition metal complexes involving a pyridine or a substituted pyridine ligand, see: Crawford & Hatfield (1977[Crawford, V. H. & Hatfield, W. E. (1977). Inorg. Chem. 16, 1336-1341.]); Marsh et al. (1981[Marsh, W. E., Valente, E. J. & Hodgson, D. J. (1981). Inorg. Chim. Acta, 51, 49-53.]); Swank & Willett (1980[Swank, D. D. & Willett, R. D. (1980). Inorg. Chem. 19, 2321-2323.]). For Ni—O and Ni—N bond lengths, see: Bentiss et al. (2002[Bentiss, F., Lagrenee, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403-408.]); Rodopoulos et al. (2001[Rodopoulos, M., Rodopoulos, T., Bridson, J. N., Elding, L. I., Rettig, S. J. & Mcauley, A. (2001). Inorg. Chem. 40, 2737-2742.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2Cl3O2)2(C5H5N)4]

  • Mr = 699.85

  • Monoclinic, C 2/c

  • a = 9.1073 (18) Å

  • b = 17.078 (3) Å

  • c = 19.376 (6) Å

  • β = 106.94 (3)°

  • V = 2882.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 13819 measured reflections

  • 3312 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.187

  • S = 1.07

  • 3312 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 1.63 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O1i 0.93 2.55 3.442 (7) 162
C1B—H1BA⋯O2 0.93 2.59 2.943 (6) 103
C1A—H1AA⋯O1ii 0.93 2.41 3.253 (7) 151
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structural and magnetic properties of transition metal complexes in the solid state have been the subjects of numerous recent publications. This is particularly true for the cases where L is pyridine or a substituted pyridine (Swank & Willett, 1980; Marsh et al., 1981; Crawford & Hatfield, 1977). Much of this work has been concerned with the correlation of the structural properties of these complexes with their magnetic properties. In order to search for new complexes of this type, we synthesized the title compound and report its crystal structure here.

The title compound contains one nickel(II), four pyridine ligands and two trichloroacetic acid molecules. The coordination sphere of the nickel(II) ion is best described as a slightly distorted octahedron. The Ni—O and Ni—N bond lengths are in agreement with those reported recently (Bentiss et al., 2002; Rodopoulos et al., 2001). The crystal packing is stabilized by C—H···O intra- and intermolecular hydrogen interaction (Table 1).

Related literature top

For the structural and magnetic properties of transition metal complexes involving a pyridine or a substituted

pyridine ligand, see: Crawford & Hatfield (1977); Marsh et al. (1981); Swank & Willett (1980). For Ni—O and Ni—N

bond lengths, see: Bentiss et al. (2002); Rodopoulos et al. (2001).

Experimental top

The title compound was obtained by adding pyridine (4 mmol) dropwise to a solution of nickel(II) trichloroacetic acid (1 mmol) in ethanol (30 ml) under stirred for 1 h at room temperature. A green solution was formed and after a few days block crystals precipitated.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Tetrapyridinebis(trichloroacetato)nickel(II) top
Crystal data top
[Ni(C2Cl3O2)2(C5H5N)4]F(000) = 1416
Mr = 699.85Dx = 1.612 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2898 reflections
a = 9.1073 (18) Åθ = 3.1–27.5°
b = 17.078 (3) ŵ = 1.27 mm1
c = 19.376 (6) ÅT = 293 K
β = 106.94 (3)°Block, green
V = 2882.9 (12) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2898 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1111
13819 measured reflectionsk = 2222
3312 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0862P)2 + 12.4612P]
where P = (Fo2 + 2Fc2)/3
3312 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 1.63 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Ni(C2Cl3O2)2(C5H5N)4]V = 2882.9 (12) Å3
Mr = 699.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.1073 (18) ŵ = 1.27 mm1
b = 17.078 (3) ÅT = 293 K
c = 19.376 (6) Å0.30 × 0.20 × 0.10 mm
β = 106.94 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2898 reflections with I > 2σ(I)
13819 measured reflectionsRint = 0.054
3312 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0862P)2 + 12.4612P]
where P = (Fo2 + 2Fc2)/3
3312 reflectionsΔρmax = 1.63 e Å3
177 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.03441 (4)0.25000.0324 (2)
Cl10.1137 (2)0.13260 (11)0.03902 (9)0.0835 (5)
Cl20.3294 (2)0.01282 (11)0.02840 (8)0.0816 (5)
Cl30.40222 (17)0.11568 (9)0.14971 (9)0.0755 (4)
O10.2031 (5)0.0615 (2)0.1326 (2)0.0663 (10)
O20.1059 (4)0.04555 (17)0.16902 (15)0.0444 (7)
N20.1503 (4)0.12325 (18)0.19207 (16)0.0366 (7)
N10.1589 (4)0.05134 (18)0.30435 (17)0.0369 (7)
C10.2501 (5)0.0635 (3)0.0878 (2)0.0467 (9)
C3B0.3058 (6)0.2490 (3)0.1124 (3)0.0587 (12)
H3BA0.35580.29150.08570.070*
C2A0.2185 (6)0.1699 (3)0.3717 (3)0.0556 (11)
H2AA0.18500.21120.39460.067*
C3A0.3683 (6)0.1660 (3)0.3713 (3)0.0603 (12)
H3AA0.43810.20460.39360.072*
C20.1764 (4)0.0082 (3)0.1343 (2)0.0406 (8)
C4B0.2629 (6)0.2506 (3)0.1859 (3)0.0565 (12)
H4BA0.28520.29400.21010.068*
C4A0.4137 (5)0.1035 (3)0.3372 (3)0.0575 (12)
H4AA0.51470.09920.33600.069*
C2B0.2737 (6)0.1829 (3)0.0785 (3)0.0565 (11)
H2BA0.30420.17960.02840.068*
C5B0.1861 (5)0.1875 (3)0.2240 (2)0.0458 (9)
H5BA0.15770.18940.27410.055*
C5A0.3063 (5)0.0477 (3)0.3048 (3)0.0482 (10)
H5AA0.33760.00550.28230.058*
C1B0.1961 (5)0.1222 (3)0.1197 (2)0.0445 (9)
H1BA0.17420.07810.09630.053*
C1A0.1178 (5)0.1121 (2)0.3380 (2)0.0452 (9)
H1AA0.01620.11550.33860.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0382 (4)0.0279 (3)0.0332 (3)0.0000.0136 (3)0.000
Cl10.0853 (10)0.0995 (12)0.0730 (9)0.0308 (9)0.0347 (8)0.0410 (8)
Cl20.0984 (11)0.0965 (11)0.0680 (8)0.0099 (9)0.0529 (8)0.0121 (8)
Cl30.0637 (8)0.0730 (9)0.0956 (11)0.0224 (7)0.0323 (7)0.0145 (8)
O10.070 (2)0.0427 (17)0.100 (3)0.0004 (16)0.047 (2)0.0027 (18)
O20.0524 (16)0.0448 (16)0.0427 (15)0.0042 (13)0.0245 (13)0.0029 (12)
N20.0428 (17)0.0319 (15)0.0361 (15)0.0023 (13)0.0130 (13)0.0004 (12)
N10.0396 (16)0.0324 (15)0.0386 (16)0.0006 (12)0.0114 (13)0.0020 (12)
C10.051 (2)0.050 (2)0.045 (2)0.0052 (19)0.0234 (18)0.0020 (18)
C3B0.060 (3)0.046 (2)0.067 (3)0.009 (2)0.014 (2)0.015 (2)
C2A0.067 (3)0.045 (2)0.057 (3)0.009 (2)0.020 (2)0.011 (2)
C3A0.059 (3)0.057 (3)0.059 (3)0.018 (2)0.008 (2)0.006 (2)
C20.0380 (19)0.044 (2)0.042 (2)0.0003 (16)0.0146 (16)0.0001 (16)
C4B0.066 (3)0.036 (2)0.068 (3)0.011 (2)0.020 (2)0.002 (2)
C4A0.038 (2)0.064 (3)0.067 (3)0.003 (2)0.010 (2)0.003 (2)
C2B0.057 (3)0.066 (3)0.044 (2)0.007 (2)0.0107 (19)0.009 (2)
C5B0.051 (2)0.041 (2)0.047 (2)0.0073 (18)0.0161 (18)0.0020 (17)
C5A0.040 (2)0.049 (2)0.055 (2)0.0046 (17)0.0125 (18)0.0059 (19)
C1B0.053 (2)0.043 (2)0.0371 (19)0.0042 (18)0.0130 (17)0.0007 (16)
C1A0.047 (2)0.040 (2)0.052 (2)0.0021 (17)0.0204 (18)0.0031 (18)
Geometric parameters (Å, º) top
Ni—O22.076 (3)C3B—C2B1.379 (7)
Ni—O2i2.076 (3)C3B—H3BA0.9300
Ni—N1i2.112 (3)C2A—C3A1.368 (8)
Ni—N12.112 (3)C2A—C1A1.377 (6)
Ni—N2i2.131 (3)C2A—H2AA0.9300
Ni—N22.131 (3)C3A—C4A1.381 (8)
Cl1—C11.773 (5)C3A—H3AA0.9300
Cl2—C11.754 (4)C4B—C5B1.377 (6)
Cl3—C11.784 (5)C4B—H4BA0.9300
O1—C21.217 (5)C4A—C5A1.378 (7)
O2—C21.234 (5)C4A—H4AA0.9300
N2—C1B1.341 (5)C2B—C1B1.373 (6)
N2—C5B1.346 (5)C2B—H2BA0.9300
N1—C1A1.335 (5)C5B—H5BA0.9300
N1—C5A1.342 (5)C5A—H5AA0.9300
C1—C21.585 (6)C1B—H1BA0.9300
C3B—C4B1.362 (8)C1A—H1AA0.9300
O2—Ni—O2i169.48 (17)C3A—C2A—C1A119.3 (5)
O2—Ni—N1i95.06 (13)C3A—C2A—H2AA120.3
O2i—Ni—N1i92.23 (12)C1A—C2A—H2AA120.3
O2—Ni—N192.23 (12)C2A—C3A—C4A118.6 (4)
O2i—Ni—N195.06 (13)C2A—C3A—H3AA120.7
N1i—Ni—N192.18 (18)C4A—C3A—H3AA120.7
O2—Ni—N2i87.95 (12)O1—C2—O2131.3 (4)
O2i—Ni—N2i84.56 (12)O1—C2—C1116.6 (4)
N1i—Ni—N2i176.54 (12)O2—C2—C1112.1 (4)
N1—Ni—N2i89.39 (13)C3B—C4B—C5B119.4 (4)
O2—Ni—N284.56 (12)C3B—C4B—H4BA120.3
O2i—Ni—N287.95 (12)C5B—C4B—H4BA120.3
N1i—Ni—N289.39 (13)C5A—C4A—C3A118.7 (4)
N1—Ni—N2176.54 (12)C5A—C4A—H4AA120.6
N2i—Ni—N289.20 (17)C3A—C4A—H4AA120.6
C2—O2—Ni142.6 (3)C1B—C2B—C3B119.0 (4)
C1B—N2—C5B116.7 (3)C1B—C2B—H2BA120.5
C1B—N2—Ni119.8 (3)C3B—C2B—H2BA120.5
C5B—N2—Ni122.9 (3)N2—C5B—C4B123.0 (4)
C1A—N1—C5A117.1 (4)N2—C5B—H5BA118.5
C1A—N1—Ni122.2 (3)C4B—C5B—H5BA118.5
C5A—N1—Ni120.7 (3)N1—C5A—C4A123.2 (4)
C2—C1—Cl2113.7 (3)N1—C5A—H5AA118.4
C2—C1—Cl1110.6 (3)C4A—C5A—H5AA118.4
Cl2—C1—Cl1109.7 (2)N2—C1B—C2B123.3 (4)
C2—C1—Cl3106.8 (3)N2—C1B—H1BA118.4
Cl2—C1—Cl3107.5 (2)C2B—C1B—H1BA118.4
Cl1—C1—Cl3108.2 (3)N1—C1A—C2A123.2 (4)
C4B—C3B—C2B118.6 (4)N1—C1A—H1AA118.4
C4B—C3B—H3BA120.7C2A—C1A—H1AA118.4
C2B—C3B—H3BA120.7
O2i—Ni—O2—C2167.2 (5)Ni—O2—C2—C1169.6 (3)
N1i—Ni—O2—C259.1 (5)Cl2—C1—C2—O111.1 (5)
N1—Ni—O2—C233.3 (5)Cl1—C1—C2—O1135.1 (4)
N2i—Ni—O2—C2122.6 (5)Cl3—C1—C2—O1107.3 (4)
N2—Ni—O2—C2148.0 (5)Cl2—C1—C2—O2171.9 (3)
O2—Ni—N2—C1B39.1 (3)Cl1—C1—C2—O247.9 (4)
O2i—Ni—N2—C1B148.3 (3)Cl3—C1—C2—O269.7 (4)
N1i—Ni—N2—C1B56.0 (3)C2B—C3B—C4B—C5B1.4 (8)
N2i—Ni—N2—C1B127.1 (3)C2A—C3A—C4A—C5A0.0 (8)
O2—Ni—N2—C5B131.3 (3)C4B—C3B—C2B—C1B1.8 (8)
O2i—Ni—N2—C5B41.3 (3)C1B—N2—C5B—C4B1.3 (6)
N1i—Ni—N2—C5B133.5 (3)Ni—N2—C5B—C4B169.4 (4)
N2i—Ni—N2—C5B43.3 (3)C3B—C4B—C5B—N20.2 (8)
O2—Ni—N1—C1A143.2 (3)C1A—N1—C5A—C4A0.9 (7)
O2i—Ni—N1—C1A44.4 (3)Ni—N1—C5A—C4A177.6 (4)
N1i—Ni—N1—C1A48.1 (3)C3A—C4A—C5A—N10.6 (8)
N2i—Ni—N1—C1A128.8 (3)C5B—N2—C1B—C2B0.9 (6)
O2—Ni—N1—C5A35.1 (3)Ni—N2—C1B—C2B170.1 (4)
O2i—Ni—N1—C5A137.3 (3)C3B—C2B—C1B—N20.6 (8)
N1i—Ni—N1—C5A130.3 (4)C5A—N1—C1A—C2A0.5 (6)
N2i—Ni—N1—C5A52.8 (3)Ni—N1—C1A—C2A177.9 (4)
C1A—C2A—C3A—C4A0.3 (8)C3A—C2A—C1A—N10.1 (7)
Ni—O2—C2—O16.8 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O1ii0.932.553.442 (7)162
C1B—H1BA···O20.932.592.943 (6)103
C1A—H1AA···O1i0.932.413.253 (7)151
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2Cl3O2)2(C5H5N)4]
Mr699.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)9.1073 (18), 17.078 (3), 19.376 (6)
β (°) 106.94 (3)
V3)2882.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13819, 3312, 2898
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.187, 1.07
No. of reflections3312
No. of parameters177
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0862P)2 + 12.4612P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.63, 1.04

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O1i0.93002.55003.442 (7)162.00
C1B—H1BA···O20.93002.59002.943 (6)103.00
C1A—H1AA···O1ii0.93002.41003.253 (7)151.00
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province for support (No. Y2008B30).

References

First citationBentiss, F., Lagrenee, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrawford, V. H. & Hatfield, W. E. (1977). Inorg. Chem. 16, 1336–1341.  CrossRef CAS Web of Science Google Scholar
First citationMarsh, W. E., Valente, E. J. & Hodgson, D. J. (1981). Inorg. Chim. Acta, 51, 49–53.  CSD CrossRef CAS Web of Science Google Scholar
First citationRodopoulos, M., Rodopoulos, T., Bridson, J. N., Elding, L. I., Rettig, S. J. & Mcauley, A. (2001). Inorg. Chem. 40, 2737–2742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwank, D. D. & Willett, R. D. (1980). Inorg. Chem. 19, 2321–2323.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds