metal-organic compounds
Tetrapyridinebis(trichloroacetato)nickel(II)
aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com
The title compound, [Ni(C2Cl3O2)2(C5H5N)4], was prepared by the reaction of pyridine and trichloroacetatonickel(II) in ethanol solution at room temperature. The NiII atom is located on a twofold rotation axis and has a slightly distorted octahedral coordination made up of four N atoms of the pyridine ligands and two O atoms of trichloroacetate anions. The molecular structure and packing are stabilized by intra- and intermolecular C—H⋯O hydrogen-bonding interactions.
Related literature
For the structural and magnetic properties of transition metal complexes involving a pyridine or a substituted pyridine ligand, see: Crawford & Hatfield (1977); Marsh et al. (1981); Swank & Willett (1980). For Ni—O and Ni—N bond lengths, see: Bentiss et al. (2002); Rodopoulos et al. (2001).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809030025/at2853sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030025/at2853Isup2.hkl
The title compound was obtained by adding pyridine (4 mmol) dropwise to a solution of nickel(II) trichloroacetic acid (1 mmol) in ethanol (30 ml) under stirred for 1 h at room temperature. A green solution was formed and after a few days block crystals precipitated.
H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2Ueq.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
[Ni(C2Cl3O2)2(C5H5N)4] | F(000) = 1416 |
Mr = 699.85 | Dx = 1.612 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2898 reflections |
a = 9.1073 (18) Å | θ = 3.1–27.5° |
b = 17.078 (3) Å | µ = 1.27 mm−1 |
c = 19.376 (6) Å | T = 293 K |
β = 106.94 (3)° | Block, green |
V = 2882.9 (12) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2898 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
ϕ and ω scans | h = −11→11 |
13819 measured reflections | k = −22→22 |
3312 independent reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.187 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0862P)2 + 12.4612P] where P = (Fo2 + 2Fc2)/3 |
3312 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 1.63 e Å−3 |
0 restraints | Δρmin = −1.04 e Å−3 |
[Ni(C2Cl3O2)2(C5H5N)4] | V = 2882.9 (12) Å3 |
Mr = 699.85 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 9.1073 (18) Å | µ = 1.27 mm−1 |
b = 17.078 (3) Å | T = 293 K |
c = 19.376 (6) Å | 0.30 × 0.20 × 0.10 mm |
β = 106.94 (3)° |
Bruker SMART CCD area-detector diffractometer | 2898 reflections with I > 2σ(I) |
13819 measured reflections | Rint = 0.054 |
3312 independent reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.187 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0862P)2 + 12.4612P] where P = (Fo2 + 2Fc2)/3 |
3312 reflections | Δρmax = 1.63 e Å−3 |
177 parameters | Δρmin = −1.04 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.0000 | 0.03441 (4) | 0.2500 | 0.0324 (2) | |
Cl1 | 0.1137 (2) | 0.13260 (11) | 0.03902 (9) | 0.0835 (5) | |
Cl2 | 0.3294 (2) | 0.01282 (11) | 0.02840 (8) | 0.0816 (5) | |
Cl3 | 0.40222 (17) | 0.11568 (9) | 0.14971 (9) | 0.0755 (4) | |
O1 | 0.2031 (5) | −0.0615 (2) | 0.1326 (2) | 0.0663 (10) | |
O2 | 0.1059 (4) | 0.04555 (17) | 0.16902 (15) | 0.0444 (7) | |
N2 | −0.1503 (4) | 0.12325 (18) | 0.19207 (16) | 0.0366 (7) | |
N1 | 0.1589 (4) | −0.05134 (18) | 0.30435 (17) | 0.0369 (7) | |
C1 | 0.2501 (5) | 0.0635 (3) | 0.0878 (2) | 0.0467 (9) | |
C3B | −0.3058 (6) | 0.2490 (3) | 0.1124 (3) | 0.0587 (12) | |
H3BA | −0.3558 | 0.2915 | 0.0857 | 0.070* | |
C2A | 0.2185 (6) | −0.1699 (3) | 0.3717 (3) | 0.0556 (11) | |
H2AA | 0.1850 | −0.2112 | 0.3946 | 0.067* | |
C3A | 0.3683 (6) | −0.1660 (3) | 0.3713 (3) | 0.0603 (12) | |
H3AA | 0.4381 | −0.2046 | 0.3936 | 0.072* | |
C2 | 0.1764 (4) | 0.0082 (3) | 0.1343 (2) | 0.0406 (8) | |
C4B | −0.2629 (6) | 0.2506 (3) | 0.1859 (3) | 0.0565 (12) | |
H4BA | −0.2852 | 0.2940 | 0.2101 | 0.068* | |
C4A | 0.4137 (5) | −0.1035 (3) | 0.3372 (3) | 0.0575 (12) | |
H4AA | 0.5147 | −0.0992 | 0.3360 | 0.069* | |
C2B | −0.2737 (6) | 0.1829 (3) | 0.0785 (3) | 0.0565 (11) | |
H2BA | −0.3042 | 0.1796 | 0.0284 | 0.068* | |
C5B | −0.1861 (5) | 0.1875 (3) | 0.2240 (2) | 0.0458 (9) | |
H5BA | −0.1577 | 0.1894 | 0.2741 | 0.055* | |
C5A | 0.3063 (5) | −0.0477 (3) | 0.3048 (3) | 0.0482 (10) | |
H5AA | 0.3376 | −0.0055 | 0.2823 | 0.058* | |
C1B | −0.1961 (5) | 0.1222 (3) | 0.1197 (2) | 0.0445 (9) | |
H1BA | −0.1742 | 0.0781 | 0.0963 | 0.053* | |
C1A | 0.1178 (5) | −0.1121 (2) | 0.3380 (2) | 0.0452 (9) | |
H1AA | 0.0162 | −0.1155 | 0.3386 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0382 (4) | 0.0279 (3) | 0.0332 (3) | 0.000 | 0.0136 (3) | 0.000 |
Cl1 | 0.0853 (10) | 0.0995 (12) | 0.0730 (9) | 0.0308 (9) | 0.0347 (8) | 0.0410 (8) |
Cl2 | 0.0984 (11) | 0.0965 (11) | 0.0680 (8) | 0.0099 (9) | 0.0529 (8) | −0.0121 (8) |
Cl3 | 0.0637 (8) | 0.0730 (9) | 0.0956 (11) | −0.0224 (7) | 0.0323 (7) | −0.0145 (8) |
O1 | 0.070 (2) | 0.0427 (17) | 0.100 (3) | −0.0004 (16) | 0.047 (2) | −0.0027 (18) |
O2 | 0.0524 (16) | 0.0448 (16) | 0.0427 (15) | 0.0042 (13) | 0.0245 (13) | 0.0029 (12) |
N2 | 0.0428 (17) | 0.0319 (15) | 0.0361 (15) | 0.0023 (13) | 0.0130 (13) | 0.0004 (12) |
N1 | 0.0396 (16) | 0.0324 (15) | 0.0386 (16) | 0.0006 (12) | 0.0114 (13) | 0.0020 (12) |
C1 | 0.051 (2) | 0.050 (2) | 0.045 (2) | 0.0052 (19) | 0.0234 (18) | 0.0020 (18) |
C3B | 0.060 (3) | 0.046 (2) | 0.067 (3) | 0.009 (2) | 0.014 (2) | 0.015 (2) |
C2A | 0.067 (3) | 0.045 (2) | 0.057 (3) | 0.009 (2) | 0.020 (2) | 0.011 (2) |
C3A | 0.059 (3) | 0.057 (3) | 0.059 (3) | 0.018 (2) | 0.008 (2) | 0.006 (2) |
C2 | 0.0380 (19) | 0.044 (2) | 0.042 (2) | −0.0003 (16) | 0.0146 (16) | 0.0001 (16) |
C4B | 0.066 (3) | 0.036 (2) | 0.068 (3) | 0.011 (2) | 0.020 (2) | −0.002 (2) |
C4A | 0.038 (2) | 0.064 (3) | 0.067 (3) | 0.003 (2) | 0.010 (2) | 0.003 (2) |
C2B | 0.057 (3) | 0.066 (3) | 0.044 (2) | 0.007 (2) | 0.0107 (19) | 0.009 (2) |
C5B | 0.051 (2) | 0.041 (2) | 0.047 (2) | 0.0073 (18) | 0.0161 (18) | −0.0020 (17) |
C5A | 0.040 (2) | 0.049 (2) | 0.055 (2) | −0.0046 (17) | 0.0125 (18) | 0.0059 (19) |
C1B | 0.053 (2) | 0.043 (2) | 0.0371 (19) | 0.0042 (18) | 0.0130 (17) | −0.0007 (16) |
C1A | 0.047 (2) | 0.040 (2) | 0.052 (2) | 0.0021 (17) | 0.0204 (18) | 0.0031 (18) |
Ni—O2 | 2.076 (3) | C3B—C2B | 1.379 (7) |
Ni—O2i | 2.076 (3) | C3B—H3BA | 0.9300 |
Ni—N1i | 2.112 (3) | C2A—C3A | 1.368 (8) |
Ni—N1 | 2.112 (3) | C2A—C1A | 1.377 (6) |
Ni—N2i | 2.131 (3) | C2A—H2AA | 0.9300 |
Ni—N2 | 2.131 (3) | C3A—C4A | 1.381 (8) |
Cl1—C1 | 1.773 (5) | C3A—H3AA | 0.9300 |
Cl2—C1 | 1.754 (4) | C4B—C5B | 1.377 (6) |
Cl3—C1 | 1.784 (5) | C4B—H4BA | 0.9300 |
O1—C2 | 1.217 (5) | C4A—C5A | 1.378 (7) |
O2—C2 | 1.234 (5) | C4A—H4AA | 0.9300 |
N2—C1B | 1.341 (5) | C2B—C1B | 1.373 (6) |
N2—C5B | 1.346 (5) | C2B—H2BA | 0.9300 |
N1—C1A | 1.335 (5) | C5B—H5BA | 0.9300 |
N1—C5A | 1.342 (5) | C5A—H5AA | 0.9300 |
C1—C2 | 1.585 (6) | C1B—H1BA | 0.9300 |
C3B—C4B | 1.362 (8) | C1A—H1AA | 0.9300 |
O2—Ni—O2i | 169.48 (17) | C3A—C2A—C1A | 119.3 (5) |
O2—Ni—N1i | 95.06 (13) | C3A—C2A—H2AA | 120.3 |
O2i—Ni—N1i | 92.23 (12) | C1A—C2A—H2AA | 120.3 |
O2—Ni—N1 | 92.23 (12) | C2A—C3A—C4A | 118.6 (4) |
O2i—Ni—N1 | 95.06 (13) | C2A—C3A—H3AA | 120.7 |
N1i—Ni—N1 | 92.18 (18) | C4A—C3A—H3AA | 120.7 |
O2—Ni—N2i | 87.95 (12) | O1—C2—O2 | 131.3 (4) |
O2i—Ni—N2i | 84.56 (12) | O1—C2—C1 | 116.6 (4) |
N1i—Ni—N2i | 176.54 (12) | O2—C2—C1 | 112.1 (4) |
N1—Ni—N2i | 89.39 (13) | C3B—C4B—C5B | 119.4 (4) |
O2—Ni—N2 | 84.56 (12) | C3B—C4B—H4BA | 120.3 |
O2i—Ni—N2 | 87.95 (12) | C5B—C4B—H4BA | 120.3 |
N1i—Ni—N2 | 89.39 (13) | C5A—C4A—C3A | 118.7 (4) |
N1—Ni—N2 | 176.54 (12) | C5A—C4A—H4AA | 120.6 |
N2i—Ni—N2 | 89.20 (17) | C3A—C4A—H4AA | 120.6 |
C2—O2—Ni | 142.6 (3) | C1B—C2B—C3B | 119.0 (4) |
C1B—N2—C5B | 116.7 (3) | C1B—C2B—H2BA | 120.5 |
C1B—N2—Ni | 119.8 (3) | C3B—C2B—H2BA | 120.5 |
C5B—N2—Ni | 122.9 (3) | N2—C5B—C4B | 123.0 (4) |
C1A—N1—C5A | 117.1 (4) | N2—C5B—H5BA | 118.5 |
C1A—N1—Ni | 122.2 (3) | C4B—C5B—H5BA | 118.5 |
C5A—N1—Ni | 120.7 (3) | N1—C5A—C4A | 123.2 (4) |
C2—C1—Cl2 | 113.7 (3) | N1—C5A—H5AA | 118.4 |
C2—C1—Cl1 | 110.6 (3) | C4A—C5A—H5AA | 118.4 |
Cl2—C1—Cl1 | 109.7 (2) | N2—C1B—C2B | 123.3 (4) |
C2—C1—Cl3 | 106.8 (3) | N2—C1B—H1BA | 118.4 |
Cl2—C1—Cl3 | 107.5 (2) | C2B—C1B—H1BA | 118.4 |
Cl1—C1—Cl3 | 108.2 (3) | N1—C1A—C2A | 123.2 (4) |
C4B—C3B—C2B | 118.6 (4) | N1—C1A—H1AA | 118.4 |
C4B—C3B—H3BA | 120.7 | C2A—C1A—H1AA | 118.4 |
C2B—C3B—H3BA | 120.7 | ||
O2i—Ni—O2—C2 | 167.2 (5) | Ni—O2—C2—C1 | −169.6 (3) |
N1i—Ni—O2—C2 | −59.1 (5) | Cl2—C1—C2—O1 | 11.1 (5) |
N1—Ni—O2—C2 | 33.3 (5) | Cl1—C1—C2—O1 | 135.1 (4) |
N2i—Ni—O2—C2 | 122.6 (5) | Cl3—C1—C2—O1 | −107.3 (4) |
N2—Ni—O2—C2 | −148.0 (5) | Cl2—C1—C2—O2 | −171.9 (3) |
O2—Ni—N2—C1B | 39.1 (3) | Cl1—C1—C2—O2 | −47.9 (4) |
O2i—Ni—N2—C1B | −148.3 (3) | Cl3—C1—C2—O2 | 69.7 (4) |
N1i—Ni—N2—C1B | −56.0 (3) | C2B—C3B—C4B—C5B | 1.4 (8) |
N2i—Ni—N2—C1B | 127.1 (3) | C2A—C3A—C4A—C5A | 0.0 (8) |
O2—Ni—N2—C5B | −131.3 (3) | C4B—C3B—C2B—C1B | −1.8 (8) |
O2i—Ni—N2—C5B | 41.3 (3) | C1B—N2—C5B—C4B | −1.3 (6) |
N1i—Ni—N2—C5B | 133.5 (3) | Ni—N2—C5B—C4B | 169.4 (4) |
N2i—Ni—N2—C5B | −43.3 (3) | C3B—C4B—C5B—N2 | 0.2 (8) |
O2—Ni—N1—C1A | −143.2 (3) | C1A—N1—C5A—C4A | 0.9 (7) |
O2i—Ni—N1—C1A | 44.4 (3) | Ni—N1—C5A—C4A | −177.6 (4) |
N1i—Ni—N1—C1A | −48.1 (3) | C3A—C4A—C5A—N1 | −0.6 (8) |
N2i—Ni—N1—C1A | 128.8 (3) | C5B—N2—C1B—C2B | 0.9 (6) |
O2—Ni—N1—C5A | 35.1 (3) | Ni—N2—C1B—C2B | −170.1 (4) |
O2i—Ni—N1—C5A | −137.3 (3) | C3B—C2B—C1B—N2 | 0.6 (8) |
N1i—Ni—N1—C5A | 130.3 (4) | C5A—N1—C1A—C2A | −0.5 (6) |
N2i—Ni—N1—C5A | −52.8 (3) | Ni—N1—C1A—C2A | 177.9 (4) |
C1A—C2A—C3A—C4A | 0.3 (8) | C3A—C2A—C1A—N1 | −0.1 (7) |
Ni—O2—C2—O1 | 6.8 (8) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4A—H4AA···O1ii | 0.93 | 2.55 | 3.442 (7) | 162 |
C1B—H1BA···O2 | 0.93 | 2.59 | 2.943 (6) | 103 |
C1A—H1AA···O1i | 0.93 | 2.41 | 3.253 (7) | 151 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2Cl3O2)2(C5H5N)4] |
Mr | 699.85 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.1073 (18), 17.078 (3), 19.376 (6) |
β (°) | 106.94 (3) |
V (Å3) | 2882.9 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13819, 3312, 2898 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.187, 1.07 |
No. of reflections | 3312 |
No. of parameters | 177 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0862P)2 + 12.4612P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.63, −1.04 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C4A—H4AA···O1i | 0.9300 | 2.5500 | 3.442 (7) | 162.00 |
C1B—H1BA···O2 | 0.9300 | 2.5900 | 2.943 (6) | 103.00 |
C1A—H1AA···O1ii | 0.9300 | 2.4100 | 3.253 (7) | 151.00 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2. |
Acknowledgements
The authors thank the Natural Science Foundation of Shandong Province for support (No. Y2008B30).
References
Bentiss, F., Lagrenee, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crawford, V. H. & Hatfield, W. E. (1977). Inorg. Chem. 16, 1336–1341. CrossRef CAS Web of Science Google Scholar
Marsh, W. E., Valente, E. J. & Hodgson, D. J. (1981). Inorg. Chim. Acta, 51, 49–53. CSD CrossRef CAS Web of Science Google Scholar
Rodopoulos, M., Rodopoulos, T., Bridson, J. N., Elding, L. I., Rettig, S. J. & Mcauley, A. (2001). Inorg. Chem. 40, 2737–2742. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swank, D. D. & Willett, R. D. (1980). Inorg. Chem. 19, 2321–2323. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structural and magnetic properties of transition metal complexes in the solid state have been the subjects of numerous recent publications. This is particularly true for the cases where L is pyridine or a substituted pyridine (Swank & Willett, 1980; Marsh et al., 1981; Crawford & Hatfield, 1977). Much of this work has been concerned with the correlation of the structural properties of these complexes with their magnetic properties. In order to search for new complexes of this type, we synthesized the title compound and report its crystal structure here.
The title compound contains one nickel(II), four pyridine ligands and two trichloroacetic acid molecules. The coordination sphere of the nickel(II) ion is best described as a slightly distorted octahedron. The Ni—O and Ni—N bond lengths are in agreement with those reported recently (Bentiss et al., 2002; Rodopoulos et al., 2001). The crystal packing is stabilized by C—H···O intra- and intermolecular hydrogen interaction (Table 1).