metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)(thio­cyanato-κN)copper(II) perchlorate

aInstitute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, bInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, cInstitute of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China, and dKey Laboratory of Natural Medicine and Immunal Engineering, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: yanlin_online@163.com

(Received 4 August 2009; accepted 5 August 2009; online 12 August 2009)

The asymmetric unit of title compound, [Cu(NCS)(C10H8N2)2]ClO4, contains a bis­(2,2′-bipyridine)(isothio­cyanato)copper(II) cation and a perchlorate anion. In the cation, the Cu2+ ion is coordinated by four N atoms from two bidentate 2,2′-bipyridine mol­ecules and an N atom from an isothio­cyanate anion, resulting in a distorted CuN5 pyramidal configuration. The crystal structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯S hydrogen bonds, and weak ππ inter­actions between 2,2′-bipyridine rings [centroid–centroid distance = 3.908 (4) Å]. The perchlorate counteranion is disordered over two positions in a 0.66:0.34 ratio.

Related literature

For the potenial applications of metal-organic coordination compounds in catalysis, non-linear optics, gas absorption, luminescene and magnetism, see: Kitagawa & Matsuda (2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.]); Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C10H8N2)2]ClO4

  • Mr = 533.46

  • Monoclinic, P 21 /c

  • a = 15.151 (2) Å

  • b = 8.9518 (13) Å

  • c = 19.0409 (17) Å

  • β = 120.306 (7)°

  • V = 2229.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 0.856

  • 10831 measured reflections

  • 3917 independent reflections

  • 2370 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.116

  • S = 1.03

  • 3917 reflections

  • 335 parameters

  • 44 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N5 1.968 (4)
Cu1—N4 1.985 (3)
Cu1—N1 1.992 (4)
Cu1—N2 2.058 (4)
Cu1—N3 2.102 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O4′i 0.93 2.55 3.176 (15) 125
C10—H10A⋯S1ii 0.93 2.85 3.587 (6) 137
C18—H18A⋯O1′iii 0.93 2.45 3.335 (13) 159
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z; (iii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Recently, more attentions have been paid to metal-organic coordination compounds (MOCPs) due to their potenial applications in catalysis, nonlinear optics, gas absorption, luminescene and magnetism (Maspoch et al. 2007, Kitagawa & Matsuda 2007). In the field of coordination chemistry, dual-ligand or multidentate ligands are usually engaged in the costruction of MOCPs, among which N,N-bidentate ligands (such as 2,2'-bipyridine) is familiar chelate ligand. Herein, we report the structure of the title compound (I) containing organic dual ligands.

The title compound (I) consists of one [Cu(C10H8N2)2(SCN)]+ complex cations, one disordered [ClO4]- anion (Fig.1). In the molecular structure, the Cu2+ centre is coordinated by five N atoms, among which four N atoms come from two bidentate 2,2'-bipyridine molecule and another one N atom from an isothiocyanato anion. The environment of the Cu2+ cation is in a distorted pyramidal geometry with Cu–N bond lengths ranging from 1.968 (4) to 2.102 (4) Å (Table 1).

In addition, the crystal structure is stability by weak intermolecular C—H···O and C—H···S hydrogen bonds (Table 2), and weak π-π interactions between 2,2'-bipyridine rings with centroid-to centroid distance of 3.908 (4) Å.

Related literature top

For the potenial applications of metal-organic coordination compounds in catalysis, non-linear optics, gas absorption, luminescene and magnetism, see: Kitagawa & Matsuda (2007); Maspoch et al. (2007).

Experimental top

2,2'-Bipyridine (1 mol, 0.16 g) was suspended in 20 ml

ethanol solution, to which Cu(ClO4).2H2O (0.5 mmol, 0.19 g) was added, and then KSCN (0.5 mmol, 0.5 g) were added to the mixture. It was stirred under reflux for 4 h. The solution was cooled and filtered, and the filtrate was kept at the room temperature. After ten days, green blocks of (I) were obtained.

Refinement top

H atoms were treated as riding, with C—H distances of 0.93 Å, and were refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
Bis(2,2'-bipyridine-κ2N,N')(thiocyanato-κN)copper(II) perchlorate top
Crystal data top
[Cu(NCS)(C10H8N2)2]ClO4F(000) = 1084
Mr = 533.46Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2091 reflections
a = 15.151 (2) Åθ = 2.5–20.5°
b = 8.9518 (13) ŵ = 1.23 mm1
c = 19.0409 (17) ÅT = 293 K
β = 120.306 (7)°Block, green
V = 2229.6 (5) Å30.21 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3917 independent reflections
Radiation source: fine-focus sealed tube2370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 918
Tmin = 0.782, Tmax = 0.856k = 1010
10831 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
3917 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.60 e Å3
44 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Cu(NCS)(C10H8N2)2]ClO4V = 2229.6 (5) Å3
Mr = 533.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.151 (2) ŵ = 1.23 mm1
b = 8.9518 (13) ÅT = 293 K
c = 19.0409 (17) Å0.21 × 0.15 × 0.13 mm
β = 120.306 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3917 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2370 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.856Rint = 0.043
10831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04944 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.60 e Å3
3917 reflectionsΔρmin = 0.82 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28304 (4)0.52479 (6)0.58542 (3)0.0504 (2)
S10.21213 (11)0.09251 (15)0.69020 (9)0.0736 (4)
N10.4011 (3)0.4415 (4)0.5796 (2)0.0489 (10)
N20.3811 (3)0.7044 (4)0.6288 (2)0.0478 (9)
N30.1728 (3)0.5378 (4)0.4610 (2)0.0475 (9)
N40.1701 (3)0.6262 (4)0.5907 (2)0.0488 (9)
N50.2680 (3)0.3429 (5)0.6365 (3)0.0659 (12)
C10.4060 (4)0.3036 (5)0.5556 (3)0.0588 (13)
H1A0.34940.24160.53750.071*
C20.4912 (4)0.2495 (6)0.5565 (3)0.0637 (14)
H2A0.49180.15350.53810.076*
C30.5754 (4)0.3400 (6)0.5852 (3)0.0657 (14)
H3A0.63480.30550.58750.079*
C40.5712 (4)0.4814 (5)0.6103 (3)0.0576 (13)
H4A0.62780.54390.63000.069*
C50.4828 (3)0.5312 (5)0.6062 (3)0.0453 (11)
C60.4705 (3)0.6823 (5)0.6308 (3)0.0456 (11)
C70.5427 (4)0.7926 (5)0.6539 (3)0.0552 (13)
H7A0.60310.77530.65370.066*
C80.5246 (4)0.9294 (6)0.6772 (3)0.0651 (14)
H8A0.57321.00500.69410.078*
C90.4346 (4)0.9526 (5)0.6753 (3)0.0666 (14)
H9A0.42091.04400.69110.080*
C100.3643 (4)0.8385 (5)0.6498 (3)0.0584 (13)
H10A0.30210.85590.64710.070*
C110.1745 (4)0.4783 (5)0.3972 (3)0.0570 (13)
H11A0.23100.42170.40670.068*
C120.0976 (4)0.4968 (5)0.3191 (3)0.0642 (14)
H12A0.10070.45170.27640.077*
C130.0156 (4)0.5828 (6)0.3046 (3)0.0702 (15)
H13A0.03740.59870.25160.084*
C140.0126 (4)0.6453 (5)0.3689 (3)0.0617 (14)
H14A0.04240.70490.36000.074*
C150.0910 (3)0.6196 (5)0.4464 (3)0.0462 (11)
C160.0909 (3)0.6708 (5)0.5202 (3)0.0467 (11)
C170.0122 (4)0.7529 (6)0.5185 (3)0.0660 (15)
H17A0.04200.78670.46940.079*
C180.0157 (4)0.7834 (6)0.5909 (4)0.0721 (16)
H18A0.03650.83840.59080.087*
C190.0945 (4)0.7339 (5)0.6616 (4)0.0675 (15)
H19A0.09700.75270.71070.081*
C200.1706 (4)0.6553 (5)0.6597 (3)0.0612 (14)
H20A0.22500.62060.70850.073*
C210.2448 (3)0.2379 (5)0.6594 (3)0.0514 (12)
Cl10.24431 (10)0.98729 (15)0.40224 (9)0.0726 (4)
O1'0.1951 (6)1.1109 (9)0.4087 (6)0.190 (5)0.66
O2'0.1768 (7)0.8670 (8)0.3661 (5)0.193 (5)0.66
O3'0.3286 (6)0.9451 (11)0.4777 (4)0.177 (5)0.66
O4'0.2788 (8)1.0206 (15)0.3457 (6)0.268 (7)0.66
O10.1870 (7)0.9781 (12)0.4423 (6)0.0755 (10)0.34
O20.2143 (8)0.8817 (10)0.3404 (6)0.0728 (10)0.34
O30.3518 (6)0.9693 (14)0.4598 (7)0.0730 (10)0.34
O40.2356 (9)1.1359 (8)0.3709 (6)0.0730 (10)0.34
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0461 (4)0.0518 (4)0.0585 (4)0.0054 (3)0.0303 (3)0.0020 (3)
S10.0721 (10)0.0594 (9)0.1024 (12)0.0078 (7)0.0536 (9)0.0197 (8)
N10.049 (2)0.045 (2)0.057 (2)0.0044 (19)0.030 (2)0.0022 (19)
N20.047 (2)0.043 (2)0.056 (3)0.0038 (18)0.028 (2)0.0002 (19)
N30.046 (2)0.052 (2)0.051 (2)0.0014 (19)0.029 (2)0.0017 (19)
N40.047 (2)0.054 (2)0.054 (3)0.0036 (19)0.032 (2)0.001 (2)
N50.058 (3)0.068 (3)0.077 (3)0.003 (2)0.038 (3)0.009 (2)
C10.063 (3)0.048 (3)0.071 (4)0.004 (3)0.038 (3)0.003 (3)
C20.071 (4)0.054 (3)0.074 (4)0.018 (3)0.042 (3)0.001 (3)
C30.057 (4)0.073 (4)0.075 (4)0.020 (3)0.039 (3)0.002 (3)
C40.043 (3)0.066 (3)0.064 (3)0.006 (2)0.027 (3)0.000 (3)
C50.040 (3)0.049 (3)0.047 (3)0.004 (2)0.022 (2)0.003 (2)
C60.041 (3)0.051 (3)0.039 (3)0.004 (2)0.016 (2)0.004 (2)
C70.042 (3)0.058 (3)0.063 (3)0.003 (2)0.024 (3)0.003 (3)
C80.052 (3)0.056 (3)0.075 (4)0.007 (3)0.023 (3)0.003 (3)
C90.077 (4)0.050 (3)0.065 (4)0.005 (3)0.031 (3)0.009 (3)
C100.056 (3)0.053 (3)0.071 (4)0.006 (3)0.036 (3)0.002 (3)
C110.059 (3)0.065 (3)0.061 (3)0.002 (3)0.040 (3)0.000 (3)
C120.070 (4)0.078 (4)0.057 (4)0.012 (3)0.041 (3)0.008 (3)
C130.056 (4)0.090 (4)0.057 (4)0.013 (3)0.022 (3)0.007 (3)
C140.048 (3)0.072 (4)0.061 (4)0.005 (3)0.024 (3)0.006 (3)
C150.044 (3)0.042 (3)0.056 (3)0.001 (2)0.028 (3)0.002 (2)
C160.037 (3)0.047 (3)0.058 (3)0.001 (2)0.026 (3)0.002 (2)
C170.049 (3)0.072 (4)0.075 (4)0.013 (3)0.030 (3)0.004 (3)
C180.063 (4)0.070 (4)0.103 (5)0.004 (3)0.057 (4)0.014 (4)
C190.075 (4)0.065 (4)0.085 (4)0.009 (3)0.057 (4)0.013 (3)
C200.063 (3)0.069 (3)0.060 (3)0.000 (3)0.037 (3)0.002 (3)
C210.040 (3)0.053 (3)0.064 (3)0.010 (2)0.029 (3)0.001 (3)
Cl10.0573 (8)0.0714 (9)0.0791 (10)0.0056 (7)0.0270 (8)0.0106 (7)
O1'0.128 (7)0.134 (7)0.300 (13)0.047 (6)0.102 (8)0.069 (7)
O2'0.201 (10)0.176 (8)0.174 (9)0.140 (8)0.072 (7)0.028 (7)
O3'0.183 (9)0.215 (10)0.062 (5)0.082 (8)0.008 (6)0.001 (5)
O4'0.224 (13)0.41 (2)0.259 (14)0.040 (12)0.189 (13)0.037 (12)
O10.0592 (14)0.0735 (14)0.0817 (15)0.0063 (13)0.0267 (13)0.0106 (13)
O20.0582 (14)0.0710 (14)0.0786 (15)0.0059 (13)0.0266 (13)0.0119 (13)
O30.0569 (13)0.0713 (14)0.0797 (15)0.0063 (13)0.0263 (13)0.0118 (13)
O40.0577 (13)0.0715 (14)0.0796 (15)0.0058 (13)0.0270 (13)0.0097 (13)
Geometric parameters (Å, º) top
Cu1—N51.968 (4)C11—C121.360 (7)
Cu1—N41.985 (3)C11—H11A0.9300
Cu1—N11.992 (4)C12—C131.365 (6)
Cu1—N22.058 (4)C12—H12A0.9300
Cu1—N32.102 (4)C13—C141.369 (6)
S1—C211.605 (5)C13—H13A0.9300
N1—C11.331 (5)C14—C151.368 (6)
N1—C51.342 (5)C14—H14A0.9300
N2—C101.331 (5)C15—C161.478 (6)
N2—C61.349 (5)C16—C171.387 (6)
N3—C111.339 (5)C17—C181.380 (7)
N3—C151.342 (5)C17—H17A0.9300
N4—C161.332 (5)C18—C191.347 (7)
N4—C201.335 (5)C18—H18A0.9300
N5—C211.163 (5)C19—C201.368 (6)
C1—C21.371 (6)C19—H19A0.9300
C1—H1A0.9300C20—H20A0.9300
C2—C31.371 (6)Cl1—O1'1.374 (5)
C2—H2A0.9300Cl1—O21.395 (7)
C3—C41.366 (6)Cl1—O2'1.403 (5)
C3—H3A0.9300Cl1—O3'1.409 (5)
C4—C51.376 (6)Cl1—O11.419 (6)
C4—H4A0.9300Cl1—O41.437 (7)
C5—C61.473 (6)Cl1—O31.442 (7)
C6—C71.372 (6)Cl1—O4'1.446 (6)
C7—C81.377 (6)O1'—O41.180 (11)
C7—H7A0.9300O1'—O11.385 (11)
C8—C91.362 (7)O2'—O20.927 (11)
C8—H8A0.9300O2'—O11.701 (11)
C9—C101.375 (6)O3'—O30.638 (17)
C9—H9A0.9300O4'—O41.429 (12)
C10—H10A0.9300O4'—O21.553 (12)
N5—Cu1—N492.02 (16)N3—C15—C16114.5 (4)
N5—Cu1—N192.83 (16)C14—C15—C16123.8 (4)
N4—Cu1—N1174.75 (15)N4—C16—C17120.5 (4)
N5—Cu1—N2133.48 (16)N4—C16—C15115.7 (4)
N4—Cu1—N295.11 (14)C17—C16—C15123.7 (5)
N1—Cu1—N280.08 (15)C18—C17—C16118.9 (5)
N5—Cu1—N3112.25 (16)C18—C17—H17A120.6
N4—Cu1—N379.43 (15)C16—C17—H17A120.6
N1—Cu1—N3100.55 (14)C19—C18—C17120.1 (5)
N2—Cu1—N3114.25 (14)C19—C18—H18A119.9
C1—N1—C5119.0 (4)C17—C18—H18A119.9
C1—N1—Cu1125.0 (3)C18—C19—C20118.5 (5)
C5—N1—Cu1116.0 (3)C18—C19—H19A120.8
C10—N2—C6117.8 (4)C20—C19—H19A120.8
C10—N2—Cu1128.0 (3)N4—C20—C19122.7 (5)
C6—N2—Cu1114.1 (3)N4—C20—H20A118.7
C11—N3—C15117.8 (4)C19—C20—H20A118.7
C11—N3—Cu1129.2 (3)N5—C21—S1179.5 (6)
C15—N3—Cu1112.9 (3)O1'—Cl1—O2131.4 (6)
C16—N4—C20119.3 (4)O1'—Cl1—O2'111.6 (5)
C16—N4—Cu1116.5 (3)O2—Cl1—O2'38.7 (5)
C20—N4—Cu1124.2 (3)O1'—Cl1—O3'112.2 (5)
C21—N5—Cu1170.6 (4)O2—Cl1—O3'114.9 (6)
N1—C1—C2122.6 (5)O2'—Cl1—O3'110.8 (5)
N1—C1—H1A118.7O1'—Cl1—O159.4 (5)
C2—C1—H1A118.7O2—Cl1—O1112.8 (6)
C1—C2—C3118.5 (5)O2'—Cl1—O174.1 (5)
C1—C2—H2A120.7O3'—Cl1—O185.6 (5)
C3—C2—H2A120.7O1'—Cl1—O449.6 (5)
C4—C3—C2119.2 (5)O2—Cl1—O4110.7 (6)
C4—C3—H3A120.4O2'—Cl1—O4128.0 (6)
C2—C3—H3A120.4O3'—Cl1—O4121.2 (6)
C3—C4—C5119.8 (5)O1—Cl1—O4108.9 (5)
C3—C4—H4A120.1O1'—Cl1—O3118.5 (7)
C5—C4—H4A120.1O2—Cl1—O3109.2 (6)
N1—C5—C4120.9 (4)O2'—Cl1—O3123.4 (7)
N1—C5—C6115.4 (4)O3'—Cl1—O325.8 (7)
C4—C5—C6123.8 (4)O1—Cl1—O3110.4 (6)
N2—C6—C7122.0 (4)O4—Cl1—O3104.5 (6)
N2—C6—C5114.3 (4)O1'—Cl1—O4'108.5 (5)
C7—C6—C5123.6 (4)O2—Cl1—O4'66.3 (6)
C6—C7—C8119.2 (4)O2'—Cl1—O4'104.0 (5)
C6—C7—H7A120.4O3'—Cl1—O4'109.4 (5)
C8—C7—H7A120.4O1—Cl1—O4'164.2 (6)
C9—C8—C7119.1 (5)O4—Cl1—O4'59.4 (5)
C9—C8—H8A120.4O3—Cl1—O4'84.0 (7)
C7—C8—H8A120.4O4—O1'—Cl168.0 (4)
C8—C9—C10118.8 (5)O4—O1'—O1129.8 (6)
C8—C9—H9A120.6Cl1—O1'—O161.9 (4)
C10—C9—H9A120.6O2—O2'—Cl170.2 (6)
N2—C10—C9123.0 (5)O2—O2'—O1123.5 (7)
N2—C10—H10A118.5Cl1—O2'—O153.4 (3)
C9—C10—H10A118.5O3—O3'—Cl180.0 (9)
N3—C11—C12123.1 (5)O4—O4'—Cl160.0 (4)
N3—C11—H11A118.4O4—O4'—O2102.7 (6)
C12—C11—H11A118.4Cl1—O4'—O255.3 (4)
C11—C12—C13118.7 (5)O1'—O1—Cl158.7 (4)
C11—C12—H12A120.7O1'—O1—O2'95.7 (6)
C13—C12—H12A120.7Cl1—O1—O2'52.5 (3)
C12—C13—C14119.2 (5)O2'—O2—Cl171.1 (6)
C12—C13—H13A120.4O2'—O2—O4'127.8 (8)
C14—C13—H13A120.4Cl1—O2—O4'58.4 (4)
C15—C14—C13119.6 (5)O3'—O3—Cl174.2 (9)
C15—C14—H14A120.2O1'—O4—O4'122.4 (7)
C13—C14—H14A120.2O1'—O4—Cl162.4 (4)
N3—C15—C14121.6 (4)O4'—O4—Cl160.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O4i0.932.553.176 (15)125
C10—H10A···S1ii0.932.853.587 (6)137
C18—H18A···O1iii0.932.453.335 (13)159
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C10H8N2)2]ClO4
Mr533.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.151 (2), 8.9518 (13), 19.0409 (17)
β (°) 120.306 (7)
V3)2229.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.782, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
10831, 3917, 2370
Rint0.043
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.116, 1.03
No. of reflections3917
No. of parameters335
No. of restraints44
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.82

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—N51.968 (4)Cu1—N22.058 (4)
Cu1—N41.985 (3)Cu1—N32.102 (4)
Cu1—N11.992 (4)
N5—Cu1—N492.02 (16)N1—Cu1—N280.08 (15)
N5—Cu1—N192.83 (16)N5—Cu1—N3112.25 (16)
N4—Cu1—N1174.75 (15)N4—Cu1—N379.43 (15)
N5—Cu1—N2133.48 (16)N1—Cu1—N3100.55 (14)
N4—Cu1—N295.11 (14)N2—Cu1—N3114.25 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O4'i0.93002.55003.176 (15)125.00
C10—H10A···S1ii0.93002.85003.587 (6)137.00
C18—H18A···O1'iii0.93002.45003.335 (13)159.00
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x, y+2, z+1.
 

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.  Web of Science CrossRef CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds