organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzoxazol-2-ylsulfan­yl)-1-phenyl­ethanone

aChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran
*Correspondence e-mail: loghmani_h@yahoo.com

(Received 10 August 2009; accepted 25 August 2009; online 29 August 2009)

In the title compound, C15H11NO2S, a new thio-benzoxazole derivative, the dihedral angle between the benzoxazole ring and the phenyl ring is 9.91 (9)°. An inter­esting feature of the crystal structure is the short C⋯S [3.4858 (17) Å] contact, which is shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, mol­ecules are linked together by zigzag inter­molecular C—H⋯N inter­actions into a column along the a axis. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid–centroid = 3.8048 (10) Å].

Related literature

For applications of 2-(benzo[d]oxazol-2-ylthio)-1-phenyl­ethanone and β-keto-sulfones in organic synthesis, see: Marco et al. (1995[Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678-6679.]); Fuju et al. (1988[Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495-500.]); Ni et al. (2006[Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829-6833.]). For uses of haloalkyl sulfones, see: Grossert et al. (1984[Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798-807.]); Oishi et al. (1988[Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.]); Antane et al. (2004[Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443-2449.]). For their biological activity, see: Padmavathi et al. (2008[Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO2S

  • Mr = 269.31

  • Orthorhombic, P 21 21 21

  • a = 4.8580 (2) Å

  • b = 14.0780 (5) Å

  • c = 18.6840 (7) Å

  • V = 1277.82 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.976

  • 13902 measured reflections

  • 3659 independent reflections

  • 3175 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 1.04

  • 3659 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1514 Friedel pairs

  • Flack parameter: 0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N1i 0.93 2.56 3.395 (2) 149
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2004[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst. 37, 258-264.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-(Benzo[d]oxazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β-Keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco et al., 1995; Fuju et al., 1988; Ni et al., 2006). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl sulfones and dihalomethyl sulfones. Halomethyl sulfones and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides, and β-hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert et al., 1984; Oishi et al., 1988; Antane et al., 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We prepared this compound as a precursor for synthesis of gem-difluoromethylene- containing heterocycle.

In the molecule of the title compound, (Fig. 1), a new thio-benzoxazole derivative, the dihedral angle between the benzoxazole ring and the phenyl ring is 9.91 (9)°. The interesting feature of the crystal structure is the short C6···S1i [3.4858 (17) Å; (i) -1 + x, y, z] contact which is shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, the molecules are linked together by a zig-zag intermolecular C—H···N interactions (Table 1) which packed into a column along the a axis (Fig. 2). The crystal structure is further stabilized by the intramolecular ππ interactions [Cg1···Cg2i = 3.8048 (10) Å].

Related literature top

For applications of 2-(benzo[d]oxazol-2-ylthio)-1-phenylethanone and β-keto-sulfones in organic synthesis, see: Marco et al. (1995); Fuju et al. (1988); Ni et al. (2006). For uses of haloalkyl sulfones, see: Grossert et al. (1984); Oishi et al. (1988); Antane et al. (2004). For their biological activity, see: Padmavathi et al. (2008). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzoxazole (3 mmol) in ethanol (15 mL) and water (15 mL) and stirred in room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min. showed the complete disappearance of starting material. The reaction mixture was poured into 100 mL of 1M HCl containing 50 g of crushed ice. The product was filtered under vacuum and filtrate washed with 10 mL ice-cold ethanol and 10 mL water. Recrystalization from petrol ether and filtration gave the title compound. m.p.: 397-398 K; 1H NMR (400 MHz; CDCl3): δ 7.86-7.21 (m, 9H), 4.58 (s, 2H). 13C NMR (126 MHz; CDCl3): δ 194.1 (CO), 164.3, 148.9, 140.8, 136.1, 132.6, 128.0, 127.8, 124.1, 122.9, 118.3, 109.6, 37.3. IR (KBr, cm-1 ): 3027, 2581, 1671 (CO), 1593, 1492, 1447, 1382, 1326, 1291, 1230, 1182, 1025, 993, 738. Analysis calculated for C15H11NO2S: C 66.89, H 4.12, N 5.20%. Found: C 66.96, H 4.06, N 5.17%.

Refinement top

All of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model approximation with Uiso (H) = 1.2 Ueq (C). In the presence of sufficient anomalous scattering the absolute structure was determined (1514 Friedel pairs).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2004); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c-axis, showing linking of the molecules along the a-axis through intermolecular C—H···N interactions. Intermolecular interactions are drawn as dashed lines.
2-(1,3-Benzoxazol-2-ylsulfanyl)-1-phenylethanone top
Crystal data top
C15H11NO2SDx = 1.400 Mg m3
Mr = 269.31Melting point: 398 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4173 reflections
a = 4.8580 (2) Åθ = 2.6–28.2°
b = 14.0780 (5) ŵ = 0.25 mm1
c = 18.6840 (7) ÅT = 296 K
V = 1277.82 (8) Å3Needle, colourless
Z = 40.50 × 0.10 × 0.10 mm
F(000) = 560
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.886, Tmax = 0.976k = 1919
13902 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1389P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3659 reflectionsΔρmax = 0.35 e Å3
172 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1514 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C15H11NO2SV = 1277.82 (8) Å3
Mr = 269.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8580 (2) ŵ = 0.25 mm1
b = 14.0780 (5) ÅT = 296 K
c = 18.6840 (7) Å0.50 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3175 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.976Rint = 0.037
13902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.35 e Å3
S = 1.04Δρmin = 0.19 e Å3
3659 reflectionsAbsolute structure: Flack (1983), 1514 Friedel pairs
172 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01065 (10)0.44145 (3)0.66514 (2)0.02920 (11)
O10.3102 (3)0.29909 (9)0.71157 (6)0.0295 (3)
N10.4022 (3)0.33643 (10)0.59627 (7)0.0250 (3)
C10.5079 (4)0.23556 (11)0.68726 (8)0.0262 (3)
C20.6325 (4)0.16254 (14)0.72375 (10)0.0346 (4)
H2A0.58950.14800.77100.042*
C30.8271 (4)0.11206 (14)0.68500 (10)0.0366 (4)
H3A0.91930.06210.70710.044*
C40.8889 (4)0.13370 (13)0.61400 (10)0.0341 (4)
H4A1.02090.09800.59000.041*
C50.7576 (4)0.20749 (13)0.57839 (9)0.0292 (4)
H5A0.79820.22180.53100.035*
C60.5639 (3)0.25876 (12)0.61651 (8)0.0244 (3)
C70.2612 (3)0.35517 (12)0.65300 (8)0.0251 (3)
C80.0098 (4)0.47588 (12)0.57236 (8)0.0289 (3)
H8A0.16640.50080.55670.035*
H8B0.05360.42090.54320.035*
C90.2291 (3)0.55059 (12)0.56314 (9)0.0266 (3)
C100.2762 (4)0.58747 (12)0.48943 (9)0.0264 (3)
C110.4792 (4)0.65637 (12)0.47888 (10)0.0337 (4)
H11A0.58230.67800.51750.040*
C120.5275 (5)0.69250 (13)0.41129 (11)0.0396 (5)
H12A0.66300.73830.40450.048*
C130.3744 (4)0.66049 (14)0.35363 (11)0.0397 (5)
H13A0.40700.68500.30820.048*
C140.1733 (4)0.59220 (15)0.36330 (10)0.0375 (4)
H14A0.07130.57070.32440.045*
C150.1237 (4)0.55572 (14)0.43100 (10)0.0312 (4)
H15A0.01200.50990.43740.037*
O20.3588 (3)0.57915 (10)0.61422 (7)0.0390 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (2)0.0325 (2)0.02181 (18)0.0053 (2)0.00128 (18)0.00418 (15)
O10.0362 (7)0.0345 (6)0.0179 (5)0.0024 (5)0.0020 (5)0.0012 (5)
N10.0279 (7)0.0290 (7)0.0180 (6)0.0018 (6)0.0013 (5)0.0011 (5)
C10.0289 (8)0.0297 (7)0.0200 (6)0.0035 (8)0.0007 (7)0.0003 (5)
C20.0439 (11)0.0348 (9)0.0253 (8)0.0017 (8)0.0021 (8)0.0072 (7)
C30.0413 (11)0.0305 (9)0.0381 (10)0.0046 (8)0.0074 (8)0.0052 (8)
C40.0343 (9)0.0313 (9)0.0367 (10)0.0049 (8)0.0024 (8)0.0049 (8)
C50.0322 (9)0.0335 (9)0.0219 (8)0.0007 (8)0.0020 (7)0.0034 (7)
C60.0283 (9)0.0263 (8)0.0185 (7)0.0028 (6)0.0038 (6)0.0009 (6)
C70.0276 (8)0.0279 (8)0.0198 (7)0.0024 (7)0.0030 (6)0.0012 (6)
C80.0290 (8)0.0332 (8)0.0243 (7)0.0037 (8)0.0008 (8)0.0017 (6)
C90.0253 (8)0.0227 (7)0.0316 (8)0.0029 (7)0.0008 (6)0.0021 (7)
C100.0251 (8)0.0221 (8)0.0322 (9)0.0040 (6)0.0028 (7)0.0011 (6)
C110.0319 (9)0.0282 (8)0.0409 (9)0.0010 (8)0.0054 (8)0.0018 (7)
C120.0377 (11)0.0300 (9)0.0512 (11)0.0011 (9)0.0159 (10)0.0046 (8)
C130.0438 (11)0.0370 (10)0.0383 (10)0.0096 (9)0.0134 (8)0.0083 (8)
C140.0359 (10)0.0449 (11)0.0317 (9)0.0048 (9)0.0024 (8)0.0045 (8)
C150.0287 (8)0.0335 (9)0.0313 (8)0.0005 (8)0.0023 (7)0.0035 (8)
O20.0440 (8)0.0376 (7)0.0355 (7)0.0095 (6)0.0076 (6)0.0020 (6)
Geometric parameters (Å, º) top
S1—C71.7343 (17)C8—C91.507 (2)
S1—C81.8028 (16)C8—H8A0.9700
O1—C71.3704 (19)C8—H8B0.9700
O1—C11.389 (2)C9—O21.212 (2)
N1—C71.290 (2)C9—C101.489 (2)
N1—C61.398 (2)C10—C151.393 (3)
C1—C21.374 (2)C10—C111.397 (3)
C1—C61.389 (2)C11—C121.381 (2)
C2—C31.387 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.385 (3)
C3—C41.394 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.383 (3)
C4—C51.389 (3)C13—H13A0.9300
C4—H4A0.9300C14—C151.386 (3)
C5—C61.383 (2)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C7—S1—C895.81 (8)S1—C8—H8A109.7
C7—O1—C1103.29 (12)C9—C8—H8B109.7
C7—N1—C6103.67 (14)S1—C8—H8B109.7
C2—C1—O1128.62 (15)H8A—C8—H8B108.2
C2—C1—C6124.18 (18)O2—C9—C10122.17 (16)
O1—C1—C6107.20 (14)O2—C9—C8120.60 (16)
C1—C2—C3115.13 (17)C10—C9—C8117.23 (14)
C1—C2—H2A122.4C15—C10—C11119.18 (16)
C3—C2—H2A122.4C15—C10—C9122.08 (16)
C2—C3—C4122.13 (18)C11—C10—C9118.74 (16)
C2—C3—H3A118.9C12—C11—C10120.30 (18)
C4—C3—H3A118.9C12—C11—H11A119.8
C5—C4—C3121.36 (18)C10—C11—H11A119.9
C5—C4—H4A119.3C11—C12—C13120.01 (18)
C3—C4—H4A119.3C11—C12—H12A120.0
C6—C5—C4117.13 (16)C13—C12—H12A120.0
C6—C5—H5A121.4C14—C13—C12120.29 (18)
C4—C5—H5A121.4C14—C13—H13A119.9
C5—C6—C1120.06 (16)C12—C13—H13A119.9
C5—C6—N1130.61 (15)C13—C14—C15119.98 (19)
C1—C6—N1109.33 (15)C13—C14—H14A120.0
N1—C7—O1116.50 (15)C15—C14—H14A120.0
N1—C7—S1128.59 (13)C14—C15—C10120.25 (17)
O1—C7—S1114.90 (11)C14—C15—H15A119.9
C9—C8—S1109.67 (12)C10—C15—H15A119.9
C9—C8—H8A109.7
C7—O1—C1—C2179.71 (19)C1—O1—C7—S1178.11 (12)
C7—O1—C1—C60.52 (17)C8—S1—C7—N18.41 (18)
O1—C1—C2—C3178.94 (17)C8—S1—C7—O1170.44 (13)
C6—C1—C2—C30.8 (3)C7—S1—C8—C9177.42 (12)
C1—C2—C3—C40.5 (3)S1—C8—C9—O20.7 (2)
C2—C3—C4—C50.0 (3)S1—C8—C9—C10179.75 (13)
C3—C4—C5—C60.3 (3)O2—C9—C10—C15178.88 (17)
C4—C5—C6—C10.0 (2)C8—C9—C10—C150.7 (2)
C4—C5—C6—N1179.14 (16)O2—C9—C10—C110.8 (3)
C2—C1—C6—C50.5 (3)C8—C9—C10—C11179.60 (16)
O1—C1—C6—C5179.26 (15)C15—C10—C11—C120.0 (3)
C2—C1—C6—N1179.86 (17)C9—C10—C11—C12179.69 (17)
O1—C1—C6—N10.08 (18)C10—C11—C12—C130.0 (3)
C7—N1—C6—C5179.68 (17)C11—C12—C13—C140.2 (3)
C7—N1—C6—C10.43 (18)C12—C13—C14—C150.2 (3)
C6—N1—C7—O10.83 (19)C13—C14—C15—C100.1 (3)
C6—N1—C7—S1178.00 (13)C11—C10—C15—C140.0 (3)
C1—O1—C7—N10.89 (19)C9—C10—C15—C14179.73 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N1i0.932.563.395 (2)149
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H11NO2S
Mr269.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.8580 (2), 14.0780 (5), 18.6840 (7)
V3)1277.82 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.886, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
13902, 3659, 3175
Rint0.037
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.04
No. of reflections3659
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.19
Absolute structureFlack (1983), 1514 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR2004 (Burla et al., 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N1i0.932.563.395 (2)148.8
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Footnotes

Additional corresponding author, e-mail: zsrkk@yahoo.com. Thomson Reuters ResearcherID: A-5471-2009.

Acknowledgements

We thank the University of Isfahan and the University of Malaya for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAntane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443–2449.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst. 37, 258–264.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.  Google Scholar
First citationGrossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807.  CrossRef CAS Web of Science Google Scholar
First citationMarco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678–6679.  CSD CrossRef CAS Web of Science Google Scholar
First citationNi, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829–6833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.  Google Scholar
First citationPadmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds